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A SIMPLE RECURSIVE ESTIMATOR 
WITH ON-LINE ORTHOGONALIZATION 
OF THE INPUT SEQUENCE 

JAROSLAV MARKL 

The optimal one-step identification algorithm for noise free linear systems is generalized 
by means of on-line orthogonalization of the input sequence. The suggested generalization 
employs a fixed small amount of old data and thus radically accelerates convergence of 
estimation. An additional minor modification can guarantee numerical stability of the proposed 
algorithm. 

1. INTRODUCTION 

The optimal one-step identification algorithm ("learning identification", Kacz-
marz's algorithm) [ l , 6] is very attractive for various applications thanks to its 
numerical simplicity. However, its applicability is often restricted due to the slow 
convergence. An extremely slow convergence rate occurs in the following cases: 

1) All input vectors have almost the same direction. This occurs when the variations 
of coordinates of the input vectors are relatively small in comparison with the 
magnitudes of their mean values. 

2) The changes of direction of input vectors are relatively small. This occurs when 
the input sequence is significantly correlated. This is the case of identification 
of dynamical systems. 

There are some ways how to prevent this phenomenon, however. A simple remedy 
to improve the slow convergence due to the former cause is to work with deviations 
instead of the original input quantities. A simple method precluding the slowness 
due to the latter cause is described in [1, 4]. 

This paper presents a method (inspired by [7]) that prevents the retardation due 
to the both causes mentioned above. It also substantially improves the rate of con
vergence even in the best case when the input sequence is both centred and uncorrelat-
ed. Approaches, similar to that of [7], have been recently presented in [2, 3]. 

The structure of the paper is as follows. First a generalization of the optimal 
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one-step algorithm is formulared (Section 2). In Section 3, the orthogonalization 
of the input sequence is investigated. In Section 4, convergence and some other 
properties of generalized algorithm are proved. In Section 5, the theoretical state
ments are illustrated by experimental results. Section 6 contains some recommenda
tions for practical use of the algorithm. 

2. THE ALGORITHM 

The following notation will be used: 

t discrete time, t — 0, 1, 2, ... 

yt scalar output 

z, H-dimensionaLinput vector 

b n-dimensional vector of unknown parameters 

b A estimate of vector b 

d, error of estimate, dt = b — b A 

The optimal one-step algorithm for parameter estimation of the linear system 

(2.1) y, = zjb 

has the form 

(i i\ t * LA , y, - - f b t A - I , 
(2.2) bt = b (_j + - zt 

This algorithm can be easily derived by minimizing the criterion 

(2-3) /(V) = (V-b,A-1)
T(bt

A-V-1) 

subject to the condition 

(2.4) yt = z?bt
A 

Thus, the new estimate b A complies with the new data (yt, z,) and at the same time it 
has the minimal distance from the previous estimate b A_,. 

The object of the theoretical studies in Sections 3 and 4 is the following generaliza
tion of the recursive procedure (2.2). 

Pt zrC • 
(2-5) C , - - . * . - ! - - ^ 

f i ť .1 • '~] 

(,6) ь,=ь,1 + ^ t , 
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where p„ t — 1, 2 , . . . are adjustable parameters satisfying the following conditions: 

(2-7) p, e {0, 1 , 2 , . . . , « - 1} 

(2.8) P, __ t - J 

(2-9) P, ___».-_ + - • 

The quantity pr will be referred to as the depth of orthogonalization. Note that the 
choice p, = 0 in (2.5), (2.6) leads back to the original algorithm (2.2). In Section 6 
the algorithm (2.5), (2.6) will be slightly further generalized to guarantee its applica
bility under practical circumstances. 

3. ORTHOGONALIZATION OF THE INPUT SEQUENCE 

The formula (2.5) which transforms the sequence {z,} into the sequence {£,}, 
together with constraints (2.7) —(2.9), represents some generalization of the well-
known Gram-Schmidt procedure. Choosing p, = t - 1, t = 1,2, ..., n we get 
the original Gram-Schmidt orthogonalization of n n-dimensional vectors. In the 
general case the sequence {pt} may be an arbitrary sequence fulfilling the conditions 
(2.7)-(2.9), namely an infinite one. Characteristic features of the generalized ortho
gonalization process are stated in the following theorem: 

Theorem 3.1. Let the sequence {£,} be generated by (2.5) in accordance with 
(2.7)-(2.9). Let further 

(3-1) . . - „ . , . . - „ . + ! , . . . , . . - , 

be an orthogonal system of non-zero vectors. Then 

1) If vector z, is linearly independent of the system (3.1) then also the extended system 

C.-pej Qi-Pt+1» •••» Cr—i, C< 

is an orthogonal system of non-zero vectors. 

2) If vector z, is linearly dependent on the system (3.1) then ., = 0. 

Proof. Simple and straightforward. 

Somewhat stronger assertion can be proved for the very beginning of the ortho
gonalization process: 

Theorem 3.2. Let 

(3.2) zuz2,...,zt_l T__n 

be a system of linearly independent vectors and the vectors .,, t = 1,2,..., T be 
generated by (2.5) with the depth pt — t — 1. Then it holds: 

347 



1) If the vector zt is linearly independent of the system (3.2) then the system 

Ci,C2,...,C t-1 ,C, 

is an orthogonal system of non-zero vectors. 
2) If the vector z, is linearly dependent on the system (3.2) then ft = 0. 

Proof. By induction on T. 

The following theorem and its corollaries enable us to evaluate the numerical 
stability of the orthogonalization process. 

Theorem 3.3. Under assumptions of theorem 3.1 it holds 

(3-3) ffC, = -?*, - f &fl 
J'l it-jit-j 

Proof. The proof follows immediately from (2.5). 

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then: 
1) The inequality 

(3.4) C7C« ^ - 7 * , 

is valid and the equality in (3.4) holds if and only if the vector z, is orthogonal 
to the linear subspace spanned by the vectors in (3.1). 

2) Let (CjC,yk> denote the value of expression (lit provided the depth of ortho
gonalization is p, = k. The inequality 

(3.5) (cTc.f' _i (tfcf-1 ' 

is valid and the equality in (3.5) holds if and only if the vector zt is orthogonal 

to C,-k-
3) For t ^ n the relations (3.4), (3.5) can be generalized as follows: 

(3.6) o s (cicf-1* _£...__ mr} s m,r} = (c<ao) = -?-. 
If the vector z, is not orthogonal to any of the vectors Cr-i. C.-2. •••> Ct-n+i 
then all inequalities in (3.6) are strict. 

Proof. The proof follows directly from Theorem 3.3. 

The assertions given above justify to consider the expression Cjf, as a "measure 
of orthogonality" or as a "measure of deviation" between the vector z, and the 
linear subspace spanned by the vectors (3.1) (in the general case when the function 
pt is an arbitrary function satisfying conditions (2.7) —(2.9)) or spanned by the 
vectors (3.2) (in the special initial case when pt = t — 1, t _i n). If the vector z, is 
orthogonal to the subspace (maximal deviation) then CjCt = zlzt'-> if t n e vector z, 
lies inside the subspace (minimal zero deviation) then £jCr = 0. In all other cases 
C7C(e(0;zJz,). 
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Trying to eliminate (in the "measure of deviation") the dependence upon the magni
tude of the vector zt, we can use the expression (t

t^lzTzt instead of ^7Cr- According 
to (3.3) we get 

rTr Pt (7
Tr Y Pt 

where y_,. is the angle between vectors zt and C,-j- The measure of deviation defined 
by (3.7) takes the values from interval <0; 1>; the zero value corresponds to the 
minimal zero deviation and the value 1 to the maximal orthogonal deviation. Values 
close to zero indicate that the latest pt input vectors are "almost linearly dependent" 
(we also say that the latest input data are "ill conditioned" or "ill exciting"). 

Realistic input sequences are such that the equalities in (3.6) occur quite excep
tionally. From relations (3.6) it follows subsequently: the larger is the depth of ortho-
gonalization, the greater is our expectation that the value of £]£, will be close to zero. 
Since the expressions (T_J£t_J are in denominators of (2.5) the danger of numerical 
instability of orthogonalization process increases with the depth of orthogonalization. 
This danger is further multiplied if the input sequence {z,} is significantly correlated. 
Then the angle between the vector zt and the linear subspace of (3.1) (general case) 
or of (3.2) (special initial case) is small and the value of (lit can be inadmissible close 
to zero even if the depth of orthogonalization is relatively low. 

A reliable protection against the danger of numerical instability is proposed 
in Section 6. 

4. CONVERGENCE OF THE GENERALIZED ALGORITHM 

It is well known that the original algorithm (2.2) converges (t,A -> b for t -* oo) 
if the input sequence is general enough. Remember that the sequence {zj of n-dimen-
sional vectors is said to be general enough if there exists an infinite sequence of inte
gers {kj}, where ki+1 < kt + n, such that each subset [zkt, zki+u ..., zkj + 1} spans 
the entire n-dimensional space (see e.g. [8]). 

In this section we shall prove that the generalized algorithm (2.5), (2.6) converges 
for each input sequence for which the original algorithm (2.2) converges. We shall 
also see that the rate of convergence increases with the depth of orthogonalization. 

For the sake of convenience we rewrite the relation (2.6) for recursive estimation 
in terms of the estimation error 

(4-1) d . - d t - t - e , ^ 
itQt 

where et is the error of the output prediction 

(4.2) e, = y, - zTb^ . 
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We denote 

(4.3) Lt = dJdt = (b-b?)T(b-bn. 

The rate of convergence at time t will be measured by means of a difference of the 
function L, 

(4.4) ALt = Lt-Lt_1 

The function L, = L(dt) is the Lyapunov function for the iterative process (4.1): 
L(dt~) is positive definite and equal to zero for dt = 0 and, as it will be shown — see 
(4.8), the difference AL(dt) is negative semidefinite. 

Lemma 4.1. Let the sequence of estimates {br
A} be generated by algorithm (2.5), 

(2.6), or, equivalently, the sequence of estimation errors be generated by algorithm 
(2.5), (4.1). Then.it holds for ( = 1,2,.... 

(4-5) dT- iC,= e, 

(4.6) dX-r = 0 for r = 0, 1, 2, ..., pt 

Proof. The proof can be easily performed by induction. 

Theorem 4.1. Let AL^ denote the value of AL( provided the depth of ortho-
gonalization is pt = k (k e {0 ,1 , . . . , n — l} , k ^ t — 1). 
Then 

(4.7) -oo < AL(r1} g AL(r2) £ ... l5 AL(1) g AL(0) g 0 . 

Proof. From (4.1) we get 

dJd, = dl1dt_1-2^dl1i;t + £ 
t t t ( t f t t 

and hence using (4.5) and according to notation (4.3), (4.4) 

(4.5) • * - - £ 

or, if we express explicitly the depth of orthogonalization 

(4 9) AL™ = e-i— 
[ ] ' (£Qm 

The inequalities (4.7) follow immediately from (4.9) and (3.6). . Q 

In reality the equalities in (4.7) occur only exceptionally (see the end of the pre
vious section) and that is why the rate of convergence of the generalized algorithm is 
growing up with the depth of orthogonalization. 

The identification with maximal admissible depth of orthogonalization is described 
by the following theorem: 
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Theorem 4.2. Let zu z 2 , . . . , z„ be linearly independent. Then the estimation algo
rithm (2.5), (2.6) with depth pt = t — 1 reaches the exact estimate at most in n steps, 
i.e. b„A = b. 

Proof. If vectors zu z2,..., z„ are linearly independent then the vector £., f2> • • •> ?» 
are linearly independent too (Theorem 3.2) and therefore the system of equations 
(4.6) (Lemma 4.1) with pt = n — 1 has only trivial solution d„ = b — b„A = 0. • 

5. EXPERIMENTAL VERIFICATION 

Estimator (2.5), (2.6) was experimentally studied for two types of the orthogonaliza-
tion processes: 

1) Continuous orthogonalization of depth p, pe {0, 1,..., n — 1} In this case 
the depth is constant, naturally except the initial phase. The function p, is given by 

(5A) Pr = \ t - 1 for ' - 1 . 2 . . . . . P + 1 
V ' [P t = p + 2 , p + 3,... 

i.e. 
{pt} = { 0 , 1 , 2 , . . . , - - l , p , p , j > , . . . } . 

2) Repeated orthogonalization of depth p, p e {0,1, ..., n — 1}. In this case the 
orthogonalization depth is a periodic function which permanently repeats the initial 
phase of (5.1). The function p, is given by 

(5.2) pt = t - ] mod (p + 1) 
or 

{pt} ={0,l,...,p,0,l,...,p,0,\,...,p,...} 

Note that both functions (5.1) and (5.2) satisfy the conditions (2.7)-(2.9). 

We shall compare how the original and the general-zed algorithm works in two 
unfavourable situations mentioned in the introduction, namely, when the input 
sequence is a) not centred, b) con elated. 

The system to be identified has the form of (2.1) with n = 5, b = (1, - 2 , 3, - 4 , 5). 
The initial estimate b$ was chosen to be the zero vector. The accuracy of identifica
tion is measured in the time interval (tu t2) by a logarithm of averaged squared 
distance between the true parameter vector and its estimate, i.e. by the quantity 

(5.3) log10 ( — - 't djdt 
\t2 - tx + 1 fti 

The results of comparison for the case of non-centred inputs are summarized 
in Table 1. The input sequence was gaussian, uncorrelated, with the mean E{zt} = 
= (200, 100, 50, 100, 200) and with the variance D{z,} = (25, 16, 9, 4, 1). The 
columns of the table correspond to various variants of generalized algorithm (2.5), 
(2.6). In particular, the first column corresponds to original algorithm (2.2). In the 

351 



table the values of (5.3) are tabulated. The symbol " —" used there denotes the 

numerical destruction of computation due to the finite word-length of the computer. 

In all experiments the same realization of random sequence was used. 

The Table 2 compares the runs of identification for the case of correlated inputs. 

Table 1. The run of identification in the case of non-centred inputs. 

<ti; t2> 

i - 10 
11- 20 
21- 30 
31- 40 
41- 50 
51- 60 
61- 70 
71- 80 
81- 90 
91-100 

141-150 
191-200 

Originál 
alg. (2.2) 

p=0 

1-696 
1-695 
1-695 
1-694 
1-693 
1-693 
1-692 
1-692 
1-691 
1-690 

Generalized algorithm (2.5), (2.6) 

Continuous orthog. 
(5.1) 

p= 1 

1-47 
1-07 
0-37 
0-05 

-0-06 
-0-16 
-0-21 
-0-38 
-0-54 
-0-63 

-3-75 
-6-01 

1-05 
1-32 
2-35 
4-43 
6-17 

Repeated orthog. 
(5.2) 

p= 1 

1-39 
0-36 

-0-50 
-1-35 
-2-65 
-3-81 
-4-27 
-4-93 
-6-45 
-6-95 

-7-85 
-8-41 

p=4 

1-05 
-6-90 
-6-50 
-7-32 
-6-05 
-5-63 
-6-19 
-8-05 
-7-55 
-7-09 

-7-18 

Table 2. The J un of identifìcation n the case of correlated inputs. 

Original 
alg. (2.2) 

Generalized algorithm (2.5), (2.6) 

< t i ; t 2 > 

Original 
alg. (2.2) Continuous orthog. 

(5.1) 
Repeated orthog. 

(5.2) 

p=0 p=\ p=A / > = 1 p=A 

1 - 10 1-56 1-53 1-13 1-45 1-13 
1 1 - 20 1-49 1-20 -4 -71 0-42 - 7-96 
2 1 - 30 1-37 0-92 -3 -59 - 1-05 -10-91 
3 1 - 40 1-23 0-44 -3-19 - 2-22 - 8-54 
4 1 - 50 1-13 0-25 -2 -06 - 2-99 - 9-21 
5 1 - 60 1-05 0-07 -1-91 - 3-50 -10-77 
6 1 - 70 0-99 -0-02 -1-11 - 4-21 — 10-04 
7 1 - 80 0-77 -0 -44 0-50 - 4-70 - 9-96 
8 1 - 90 0-53 -1 -19 1-90 - 5-02 -10-20 
91-100 0-24 -2 -06 3-20 - 5-60 -10-46 

141-150 -0 -73 -5-25 - -10-02 - 9-10 
191-200 -2 -24 -8 -60 — -10-39 - 8-77 
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The coordinates of the input vector were independent, gaussian, zero-mean and 
unit-variance random processes with the common correlation function R(T15 T2) = 
= q'1' ~121 where xu T2 are instants of discrete time and a(0 g q < 1) is the para
meter of correlation. The value ol this parameter was chosen q = 0,9. 

Fom the reported simulations (and many other unreported ones) the following 
conclusions can be derived: 

1) Orthogonalization of input sequence radically accelerates the convergence 
of estimation. 

2) With orthogonalization depth both rate of convergence and numerical in
stability are growing. 

3) When the continuous orthogonalization is applied then the consequences 
of numerical noise can be catastrophic: the sequence of estimates can start to diverge 
after some time. 

4) If the repeated orthogonalization is used then the numerical noise can cause 
fluctuation and a decrease of estimation accuracy. 

5) With the same depth the repeated orthogonalization gives better results than 
the continuous one (more exact and faster estimation). 

The experimental conclusions 1) and 2) are in a full agreement with the theoretical 
conclusions of Section 3 and 4. The observations 3) — 5) can be theoretically ex
plained in the following manner. If the continuous orthogonalization is used then 
the numerical errors can cumulate within unlimited interval of time in contrast 
with the case of repeated orthogonalization when these errors are cumulated only 
in a limited time interval (after p steps a new orthogonalization process starts and 
it is not burdened by numerical errors of preceding one). In the case of continuous 
orthogonalization the present course of orthogonalization process depends on its 
entire past history and probably it implies rather worse excitation of the proper 
estimation algorithm (2.6) in comparison with the case of the repeated orthogonaliza
tion. 

6. USE OF THE ALGORITHM IN REAL CONDITIONS 

When real systems are identified we must take into account that the input-output 
relation is always to a certain extent a random one and that the parameters of the 
identified object need not be strictly constant. For these reasons it is necessary to re
place equation (2.1), describing the object to be identified, by the more general 
equation 

(6A) yt = -?-», + nt 

The quantity r\t in (6.1) is a random component of the input-output mapping and 
it involves the measurement errors as well as possible structural inadequacies of the 
mathematical model. The variability in time of system parameters can be caused 
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by actual non-stationarity of the object or by only local validity of the model structure 
(then b, depends to some extent on z,). 

For practical use in real conditions, i.e. to estimate the parameters of system (6.1), 
we shall generalize estimator (2.5), (2.6) as follows 

(6.2) Ct = -.-S-f^-Ct-; 
j-i ti-jtt-j 

(6.3) £(C< < ht=> data (z„ yt) are dropped out from the processing 
(as if they never came) 

(6-4) b?=V-x + x,yt~fr
b,fLlt, 

fcttt 

where p„ ht, xt are the control parameters (control functions) of the algorithm. 
The quantity pt is the orthogonalization depth restricted by (2.7)-(2.9). The 
quantity ht is a threshold for the admissible magnitude of £j£, restricted by ht ^ 0. 
The quantity xt is the gain of proper estimation algorithm limited by the inequalities 
0 < «, <. 1. Let us note that particular choice ht = 0, %t = 1 leads back to algorithm 
(2.5), (2.6) discussed in the previous sections. 

The main reason for non-zero choice of the threshold ht is to guarantee the nume
rical security of computation according to formulas (6.2) and (6.4). If we keep in 
mind only this reason then it is sufficient to choose ht as a relatively small positive 
constant h. The magnitude of h depends on the accuracy with which the numbers 
are represented in the computer and is selected in such a way that the division by 
£*£, in (6.2), (6.4) could not cause significant computional errors. Another reason 
for a nonzero choice of ht is the interruption of identification if the excitation of the 
system is bad. The choice of appropriately great threshold causes the identification 
algorithm to work only if the identified system is well excited. 

The reason for xt < 1 is a decrease of the estimate variance when the identified 
system is noisy. If the identified system is deterministic, then the optimal choice 
of control function xt is xt = 1. 

Although we do not treat the identification of stochastic systems theoretically 
we nevertheless give some "rules of thumb" how to choose the control parameters 
in this important case. In Sections 3 and 5 there was theoretically and experimentally 
demonstrated how the orthogonalization and consequently the whole identification 
process is sensitive to numerical noise. It can be shown that the same effect has also 
the noise expressed by the quantity r\t in (6.1). The sensitivity to the noise of both 
kind is growing up with the depth of orthogonalization and is greater for the conti
nuous orthogonalization than for the repeated one. When the system to be identified 
is significantly noisy it is therefore reasonable to use only repeated orthogonalization 
and at most of the depth p = 1. Deeper orthogonalization is admissible only at the 
very beginning of the identification process when we expect a considerable distance 
between the parameter vector b, and its estimate b,A and the identified system can 
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be approximately considered as almost deterministic one. Providing the system is 
noisy, time-invariant and exactly of the form (6.1), the exact estimates can be reached 
if we put pt = 0 from certain time instant t0 and if the gain xt satisfies the well-
know conditions of stochastic approximation. 

In general, the influence of control parameters on the algorithm functioning can 
be characterised as follows. A greater depth of orthogonalization pt or a lower 
threshold ht or a greater gain xt yields increasing activity of the algorithm: the 
algorithm reacts stronger both to excitation and to noise. This consequently implies 
an increasing rate of convergence on the one hand and an increasing variance of the 
estimates on the other hand. Conversely, decreasing pt or increasing ht or decreasing 
xt has the inverse impact: slower convergence and higher finite accuracy of estimation. 

As a matter of fact, formulas (6.2) —(6.4) represent a whole class of identification 
algorithms. When we specify the control functions p„ h„ xt then the element of this 
class is determined. The problem of an appropriate (or even optimal in some sense) 
choice of functions pt, h„ xt for a given identification situation is a very complex 
and difficult one. Probably only in some special cases the problem of optimal control 
of sequential identification can be exactly stated and solved. For example, in [5] this 
was done for algorithm (6.2) —(6.4) with the special choice pt =. 0, ht s 0 and for 
the simple situation when all processes which take part in the identification (excitation 
noise, non-stationarity) are random, uncorrelated and mutually independant. 

In most practical cases we choose the control function h„ xt as constants (ht = h, 
xt = x) and pt according to (5.2) with constant p. When the external conditions 
of identification change and we have reliable information about these changes then 
there is a possibility of an appropriate on-line modification of the control parameters 
p, h, x. 

7. CONCLUSION 

The generalized algorithm (6.2) —(6.4) can be widely used for system identification. 
In contrast with the original algorithm (2.2) the algorithm (6.2)-(6.4) can effectively 
work even under difficult identification conditions (providing the control parameters 
are chosen appropriately). Its main characteristic features are: 

— numerical simplicity (for the recommended depth of orthogonalization p = 1, 
the number of arithmetic operations per iteration depends only linearly on the 
number of estimated parameters) 

— on-line indication of ill excitation and the possibility to keep numerical stability 
at a determined level 

— the possibility of on-line (or only one-shot) adaptation of estimation algorithm 
to the external conditions of the identification process. 

(Received May 20, 1982.) 
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