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ON THE BAYESIAN INDUCTГVE PROCESSES 

JEAN SALLANTIN, THIERRY VAN DER PYL 

The inductive Bayesian processes deal with the Bayes formula and with a concatenation rule 
of the tests. Generally the tests are supposed independent in probability to allow multiplication 
as the concatenation law. Then the average inverse /f-theorem is true and the entropy decreases 
after a certain number of tests to get a limiting value. We introduce a one parameter family of 
semigroups instead of multiplication, to study the stability of Bayesian processes. We show that 
the decrease of the entropy is no more assured, but the convergence is still conserved. Thus, 
in the case when the independency of tests is not supposed we must exhibit a semigroup of the 
family. That is, we must adjust the theoretical results obtained for a semigroup to the experimental 
ones. 

We see on an example that the principle of minimum entropy allows to select a solution among 
all the possible ones (selection of a new test, selection of a semi-group). 

1. INTRODUCTION 

The Bayesian inductive processes appear in pattern recognition every time the 

description of an object is not immediately available: the problem is then to construct 

an object representation sequentially, allowing to decide what concept is verified 

by the object [8]. At each step the questions arise l) of the choice of the new test 

to be done to complete representation 2) of the use of the new information so obtained 

to decide on the concept verified by an object 3) to know when to stop. 

Generally one suppose that the tests are statistically independent so that the pro­

bability fi(Yt A Y2 | A;), called deductive similarity, for an object verifying concept 

A; to give the issues Yj to test Y t and Y2 to test Y2, is equal to the product of pro­

babilities fi(Yt | A;) and /z(Y2 | At). 

With the Bayes formula one deduces n(At | Yt A Y2) called inductive similarity 

between representation YjY2 and concept At. 

The operating method is justified by the fact that on the average, when the repre­

sentation becomes big enough, one can decide what concept is verified by the object: 
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this is expressed by the expected inverse ff-theorem by Watanabe [10], Watanabe 
and al. [12] and the convergence theorems of the pseudoquestionnaires by Terre-
noire [9]. 

After having defined the general principles of the inductive methods (Sections 
2 and 3), we examine each step when we do not suppose the test independency any 
more then we introduce a concatenation law which is no longer the product (Section 
4). We look at the asymptotic behaviour of the inductive similarities in Section 5, 
to conclude in Section 6 that the expected inverse H-theorem is no longer true and 
that to suppose the test independency cannot be a limiting case for the dependency. 

Finally, in Section 7 we give an algorithm and we show how, on a biological 
application, and with the variation of the concatenation law, we can extract some 
production rules which could be used in a next step, to construct a new object repre­
sentation. 

Fig. 1. Structure of a pattern recognition problem. 

2. TRADITIONAL SCHEME 

Taking into account the structural analysis of the pattern recognition algorithms 
(Simon, Backer, Sallantin [6]), we know that the principle of a lot of methods 
of pattern recognition is to establish a link between the representation space of the 
studied objects and the interpretation space of the concepts or observations charac­
terizing the qualities of this objects [7]. 

This link is established with the help of a family of similarity measures /(X; A) 
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explaining the similarity between the object which has X as a representation, and the 
concept A. Thus the structure of a pattern recognition problem can be expressed 
as in Fig. 1. Then there are two ways of establishing the object-concept similarities: 
— the deductive similarities ("concept driven" similarities) which show what an 

imposed structure on the concept implies on the object-concept link. 
— the inductive similarities which show what a representation induces on the 

concepts ("data driven" similarities). 

Remarks 

— For Watanabe [10], the notions of deduction and induction are expressed as 
follows: 
let H be an hypothesis, 
let D be a particular fact (experimental data) 
let A be an auxiliary fact 

Induction means to induce H (resp. A, H A A) from A A D (resp. H A D, resp. D). 
Deduction means to deduce D from H A A. 

In this paper, we call A a concept, D a representation, H a structural hypothesis 
on the concepts. The deductive similarities correspond to the deduction notion 
expressed by Watanabe: the influence of the concept structure on the representa­
tions. 

The inductive similarities are of another kind: they consist in inducing concept A 
from knowledge of the structure hypothesis H and of representation D. 

Thus presented, the pattern recognition procedures are characterized not only 
by the structure hypothesis but also by a sequence of inductions and deductions. 
— the best formalized case of inductive and deductive similarity measures is the one 

when the representations and the concepts are elements of a probability space 
of measure (i. 

Thus they correspond to the conditional probabilities fi(X | A) (deduction) and 
fi(A | X) (induction). But this is not the only frame in which we can conceive induc­
tion and deduction. 

3. INDUCTIVE PROCESS 

Let us suppose the objects representation is a real sequence xh i — 1,.... n. We 
call X„ this representation. A new representation is obtained by adding a new variable 
x„ + 1 to X„. We call X„+1 this new representation. 

We denote by j(X; A) the object-concept similarity measure; more precisely: 
j(A | X) is the inductive similarity measure andj(X | A) the deductive one. 

Let us consider the similarity measures j(X„; A) andj(X„ + 1; A). 
The inductive process establishes a link between the similarity measures j(X„; A) 

andj(X„ + 1; A) taking into account the information given by the new representation. 
Of course such inductive processes are made to select, among all the available 
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tests which complete a representation the ones that will increase the discriminating 
power of the inductive similarity measures f(At | Xn+1) for a set of concepts Ah 

i = 1,.... m. 
When the similarities are valued in [0, 1], the criterion to determine the new 

test is to maximize the transmitted information. That is what we are going to use 
in what follows. 

We define an inductive automaton as an inductive process which decides on the 
choice of the new representation to increase the discriminating power of the inductive 
similarity measures. 

Remarks 

— We request, from an inductive automaton, to decide early, at least to estimate 
the decision risk. 

— the truth of the decision can be estimated by confrontation with the experiment; 
this is a problem of another kind. 

— the inductive automata may depend or not on the order of the tests which allow 
the construction of the representation. In the works of Terrenoire [9] and in 
Watanabe [ l l ] , and more generally, the order of the tests does not interfere. 

Considering that the inductive and deductive similarity measures act like condi­
tional probabilities we define an operating method. If they are supposed to be condi­
tional probabilities then we can develop a mathematical formalism which is much 
more than an operating method. In this work we distinguish the operative hypothesis 
from the justification hypothesis; this allows us to show the singular behaviour 
of the automata which suppose the independence of the successive tests. 

4. BAYESIAN INDUCTIVE PROCESS 

Let us define the formalism: 
Q is the set of objects 
if is the set of concepts 
Yj, ..., Y„ are the elementary representation spaces obtained respectively as the set 
of issues of the objects to the first test,..., to the nth test (these tests are also denoted 
by Y l 5 . . . , Y„). 

We can construct 2" representation spaces corresponding to all the possible se­
quences of tests taken among Yt,..., Y„ (if we do not consider their order, and if 
we exclude the repetition of the same test). 

We denote by X; (/ = 1, ..., n) the set of issues of the objects of Q, to a sequence 
of i tests we suppose to be Y . , . . . , Y;, without loss of generally. 

Let us suppose we have defined a deductive similarity measure between the element­
ary spaces Y 1 ; . . . , Y„ and the set of concepts ^C: 

/•: Y. x. Se •-> [0,1] 
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(Yi; A) ->j(Y; | A) where Y; is one of the possible issue to the test Yf. 
Let us suppose we have the normalization: 

X j ( Y ; | A ) = l, where Y i£Y; . 
Y , 

From these similarity measures between Yt and S£, we would like to construct 
a similarity measure between X„ and Z£; for this purpose we shall use an associative 
composition law also called a semigroup from [0, 1] x [0, 1] in [0, 1], 
with 0 * x = 0 = x * 0 

l * x = x = x * l 

Thus we define j(X; | A), where X; is a sequence of issues Y 1 ( . . . , Y; to the tests 
Y1 ; ..., Yji.e. X i e X i 

(1) j(Xi | A) = j(Y, | A) * j(Y2 | A) * ... *j(Yi | A) 

Remark. A fundamental result from Ling [5] and Kampe de Feriet [3] determines 
all the topological semigroups which take their values on a closed interval [a, b\ 
from R and satisfy: 

• * is continuous 
• * is nondecreasing with respect to the right and to the left 

for every x 6 [a, b\ : b * x = x ("contracting") semigroup or a * x = x 
("expanding" semigroup) 

All these semigroups are necessarily commutative ones, and are characterized by 
their idempotent i.e. the set of x e \a, b~\ such as x * x = x. 

A lot of authors use particular semigroups to determine deductive or inductive 
similarity measures (e.g. Kayser [4]). 

4.1. Law of Concatenation 

In this paper we shall consider the commutative semigroups defined on [0, 1] by: 

x * y = 
(x - г)(y - e) , v г -,2 

b — '- + є ď (x, y) є [є, 1 - E]2 

1 — 2є 
x * y = inf (x, y) if (x, y) $ [e, 1 - e ] 2 

where e £ [0, J ] . 

From Kampe de Feriet [3], we can show that there exists no nilpotent element in 
]e, 1 - e[, i.e. element x such that: 

3«e/V x * x * . . . * x = x" = e and x"_ 1 + e 

but 

Vx 6 [E, 1 - e[ , lim x" = e 

e and 1 - e play in [s, 1 - e] respectively the part of 0 and 1 in [0, 1]. 
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It is easy to show that: 

V(x, y) e [0, l ] 2 , x * y ^ xy and lim x * y = xy 
£->0 

with the two following particular cases: 

if e = 0, x * y = xy 

if e = \, x * y = inf (x, y). 

Thus is e varies from 0 to \, we uniformly pass from multiplicative law to infimum 
law. 

This family of semigroups is sufficient for our study because: 
— the existence of other idempotents that 0 and 1 is the only one to play a part. 
— these semigroups uniformly approach the multiplicative law used in probability 

to express independence. 
From the experiment (issues to the tests) it is possible to deduce a deductive simi­

larity measure between the elements X; of the representation spaces X ; and the 
concepts of S£. 

Now using the Bayes inversion formula we shall define an inductive similarity 
measure. 

4.2. Bayesian Model of Induction 

In probability, one considers a probability space (Q, si, fi), where Q is the set 
of objects, si a cr-field and fi a probability measure; the concepts A, of J§? are considered 
as a measurable countable partition of Q, and the objects of Q having the same 
description X belonging to the representation space 3C are considered as a measu­
rable set of si. The deductive similarity measure is then defined by: 

XeSC , A,- e JSP , f(X \ At) = n(X | A;) (conditional probability) . 

The inductive similarity measure is defined by: 

f(At | X) « n(A, | X). 

Bayes formula can be written as: 

,(AAx)= jffliiMdi) 

^ Jl > ln(X\A^(A) 

and thus we can write in a probability frame 

y . / (X \At)n(Ai) 
t 

In a general frame, when we use similarity measures which are not built as condi­
tional probabilities, we shall keep this last formula where the ^(Ajj's are the a priori 
weights (>0) on the concepts Aj of 3? corresponding to their plausibility (likelihood, 
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credibility, preference . . .) . The denominator of (2) is nothing but a normalization. 
A main property of the Bayesian inversion is kept : for any weight on the concept, 

if we know by deduction that f(X | Aj) = 0, then j(A, | X) = 0. This means the 
concept Aj is logically refutable. 

Moreover: 

MA A el? M l * ) _f{X\At)n(Al) 
" J f(Aj\X) f(X\Aj)n(Aj) 

4.3. Choice of the New Test 

The new test Y is chosen among all the possible ones maximizing the transmitted 
information. This quantity is defined by: 

(3) U(j(A; | X)) - I 2 ® U(/(A, | XY)) 

Y m(X) 

where 

X is the object description before experimenting the test Y. 

XY is the new object description after experimenting the test Y and when the issue 

to the test Y is Y. 
m(Z)= 'Zf(Z\Ai)ti(Ai) 

AteSf 

V(f(Aj | X)) (resp. V(f(Aj | XY)) is Shannon's entropy of the distribution: 
(j(A! | X), ..., f(Aj | X),. . .) where A; e J27 

(resp.(/(A1|XY),...,j(A,.|XY)...) 
N 

Shannon's entropy V(pj) of any incomplete distribution (pu ..., pN) with £ ps ^ 
g 1, 0 ^ pj S 1 is defined by: j = 1 

N 

E PJ
 l o 8 Pj 

ufe)=- ^S 
YPJ 

J = l 

Formulas (l), (2), (3) constitute an operating method to calculate the inductive 
similarity measures from the deductive ones. 

5. REPETITION OF THE SAME TEST 

Various authors (see Giasu [2] and Watanabe [10]), use the repetition of the same 
test to study the behaviour of the Bayesian inductive automata: this behaviour 
is mathematically expressed by the average inverse //-theorem which says that on 
an average the discriminating power of the inductive similarity measures increases 
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from some stage of the process (i.e. when the number of tests is increasing) and 
converges at the infinity. 

The deductive similarity measures /(Y ; | A5) are known by learning, taking into 
account the structural hypothesis on the set of concepts „Sf (see Fu [l]). 

The use of a family of tests does not change the nature of the problem. The average 
inverse H-theorem is still true. 

We shall show that, except for the unique case when e = 0, which generalizes 
the independence notion of the conditional probabilities (^(X A Y | A) = n(X | A) • 
• n(Y I A), to the deductive similarity measures, the average inverse //-theorem is 
no longer true, although there is always the convergence at the infinity. 

This result seems important because it shows that generally we must supervise 
the construction of the inductive similarity measures (choice of e) by a learning on a set 
of objects known to verify some given concept (training set). 

First let us suppose that we dispose of only one test Y with issues Y, , . . . , Ym, 
that we can repeat. The elements of Xp = Y x . . . x Y (p times) will be sequences of 
issues to the test Y repeated p-times. 

We are interested in a set of n concepts i f = {Au ..., A„] that we try to explain 
with the help of the elements Xp (p belonging to N): thus we are looking for inductive 
similarity measures f(Aj | Xp) with Aj e if, Xp e Xp. 

Let us suppose that /(Y ; J Aj) is known for every issue Yf to the test Y, and every 
concept Aj of if. Moreover we suppose the a priori weights on the concepts A} are 
known. 

For a sequence X p e Xp of p issues Y f l , . . . , Yip to the test Y p-times repeated, 
the formulas (1) and (2) give: 

f(A | X ) = U(Yn\Aj)*--*f(Y<P\AjlKAj) { Jl P) Uf(Yn\Aj*...*f(Yip\Ak)]»(Ak) 
Akese 

Because the composition law * is associative and commutative, we can put together 
the issues Y1; ..., Ym. Let cc^p), ..., am(p) be the frequences of the issue? Y1; ..., Ym 

in the sequence Xp 

where 

f(A ix Ì = írdp\үЛAj)*-*fм(үЛШááiì 
^ -• I , ) ľ [ r l W ( Y i | Ak) џ ... џfM[Ym | Ak)] џ(Ak) 

AueSЄ 

Г^\үt | л) = Д Y , . | Л ) * . . . * Д Y І | Л ) 

pa,(p)-times 
Simplifying the writing, we get: 

icx/^n^ujiKA) 
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This last expression is nothing but the operating method of the automaton in the 
case of the repetition of one test only: the way we compute inductive similarities. 

This process is not far from the weighing processes of [2]. 

Remark. 1 is a neutral element for * : Vx e [0, l ] 1 * x — x * 1 = x. Therefore 
we can suppose that if a,(p) = 0 we have f«'<pyp(Yt | A}) = 1 for all A} e £?. This 
justifies the simplified writting (4). 

The use of laws * allows us to compute the expression (4) completely. 

5.1. Computation of the expression /*- ,{rt(Y, I A}) 

Different cases can occur: 

1st case: «,(-) 4 0 and /(Yf | A,) e ]e, 1 - e[ 
then 

fp««py(Y. I A.) = iiiMAA^r^. + , 

2nd case: at(p) 4 0 and j(Yf | A}) $ ] e , 1 - £[ 

then 
r'(p\Yi\Aj)^f(Yi\AJ). 

5.2. Computation of the numerator of (4) 

The concept Aj being given we can distinguish several kinds of sequences of issues 
to the test Y repeated p-times. 
1 th case: There exists in the sequence an issue Yf of relative frequency a,(p) + 0 
such that / (Y, | A}) g j . 

Then: 

(5) xf"^"\Yi\Aj) = m{(f(Yi\AJ)) 
i = 1 YisUj 

where U} is the set of issues Yf of frequency a.,(p) = 0 verifying /(Yf | Aj) ^ e 

2nd case: All the issues Yf of frequency af(p) + 0 are such that j(Yf | Aj) >, 1 — e. 
Then 

(6) xr*>^(Yi\Aj) = M(f(Yi\AJ)) 
' '=1 YieVj 

where V} is the set of issues Yf of frequency a,(p) 4= 0 verifying j(Yf | A/) >. 1 — e. 

3 rd case: There exists issues Yf of frequency a,(p) 4= 0 such thatj(Yf | A}) e ]e, 1 — e[ 
and all the issues Yf of frequency af(p) jt 0 are such that /(Yf | Aj) > e. 
Then 

(7) X fp«.(P)(Y. I Aj) = -S-afi + e 
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where Wj is the set of issues Y; of frequency different from 0 such that j(Y; | A J) e 
e ]e, 1 - e[ when we are in the conditions of this 3rd case; coj is the set of indices 
i of Y; e Wj. 

5.3. Mean value of (4) and asymptotic value 

To find the average behaviour of (4), when p is given, we must look at all the se­
quences of issues and define a "typical sequence" of length p. 

For this purpose, we suppose that Y is a random variable which takes the values 
Yj, ..., Ym with respective probabilities yu :.., ym. 

We look at the vth issues (v g p) of all the sequences of p issues; we can define 
the "ensemble-average" frequency for the issue Y;: it is by definition the probability 
of Y; i.e. yh independent of v. 

Then the "time-ensemble average" frequency for Y; that is the average of the 
ensemble average, when v varies from 1 to p is also yt. 

Then the typical sequence of length p will be characterized by y; as frequency of Y; 

and then by inductive similarity measures denoted by/(Ay | Xp) such that: 

„ , , L*fy'Pt\Aj)]KAj) 
I(Aj\XP) = 

£[xj-(Y ; |A)]KA) 
Aktte f-* 

Let us consider now lim/(A,-1 Xp) = J(Aj | XOT) which represents the asymptotic 
p-*oo 

mean-value of the inductive similarity measures. 

We distinguish several kinds of concepts: 
1st case: The subset U of Z£ corresponding to the preceding first case. 

If Aj e U then: 

(5') Jim H jw'(Y; | Aj) = inf (j(Y; | A,)) " 
p-co • - ! Y,eUj 

As a particular case in U we have the concepts A3 such that there exists an issue 
Y; of probability yt 4= 0 verifying j(Y; | Aj) = 0. This subset of U will be denoted 
byU*. 
2nd case. The subset V of SC, corresponding to the preceding second case. 

If Ay e Vthen: 

(6') lim H / " ' ( Y , | Ay) = inf (j(Y; | Ay)) 
p - o o ' - 1 Y,eVj 

3rd case: The subset Wot 3? corresponding to the preceding third case: 
If Ay e W then: 

(7') lim £ j™(Y; | Ay) = e 
p-»oo ' - 1 

Returning to J(Aj | X j when Ay belongs respectively to U, V, W, we distinguish 
the situations when e + 0 and e = 0: 
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5.4. Computation of f(Aj | X j 

5.4.1. Case e * 0 

(i) If A j e U* then for every pf(Aj | Xp) = 0 and then/(A ; | X J = 0. The concept 

Aj is said logically refutable, 

(ii) If AjeU - U* (resp. V) then 
inf (f(Yt\Aj))n(Aj) 

J(Aj | X J = XisMifa^) # 0 

where 

D = £ inf (j(Y; | A,)) K A ) + I inf ( / (¥, | A,)) /i(A*) + e £ n(Ak); 
AkeV Vk AkeV Vk AksW 

D is different from 0 because e is different from 0 except if i ? = U* 

(iii) I f A , e W t h e n 

W | x j = £-A) 

5.4.2. Case e = 0 

When e = 0, which corresponds to the case when * is the multiplicative law, 

the behaviour off(A} | X j is different because U = U*, V = 0 and D = 0. 

(i) If A j e U, then / (A ; | Xp) = / ( A ; | X j = 0 and A} is logically refutable, 

(ii) If A j belongs to the subset Wx of IT such that: 

W1 - {Aj e Wl np'(Y( | A.) = max fV'O!. | A.))} 
i = i w i = i 

then 

/ ( , ) | X j = - ^ L 
n J>1 x) EKA) 

AkeWt 

(iii) If A^ e Jf - Wi, then/(AJ. | X j = 0 

Remark. Here we have only supposed that the test Y was a random variable, but 
generally the similarity measures are not conditional probabilities except for the 
case when e = 0, where they can be so. 

In this last case e = 0 expresses the independence of any sequence of iterated 
tests Y. 

6. CONCLUSION 

6.1. We see that the Bayesian model of induction when e = 0 is the only one to 
take into account the information provided by the successive issues to the tests, 
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when we decide after an infinite sequence of tests. This decision is taken when we 
choose among the concepts Jz? one of the concepts Aj verifying: 

f(Aj | Xoo) = max f(Ak \ X„) 
Akese 

In other cases where e is different from zero, the experiment does not provide 
any information. This means that the infinite iteration of tests does not allow us 
to "learn" by elimination of cases. There are no more concepts refuted by the process. 

6.2. In the Bayesian inductive processes supposing the independence of the con­
ditional probabilities used as similarity measures (i.e. e = 0), it has been noticed 
that the process forgets at first and then learns to reach a total knowledge: it is the 
average inverse //-theorem (Watanabe [10] and Yousri [13]). 

In the Bayesian inductive processes built on the probabilistic independence, we 
can say from the last result that any decision taken after the pth stage would be 
better (if p is big enough). 

But in the case when e 4= 0, and when we use any deductive similarity measures, 
the average //-inverse theorem is no longer true; nevertheless we still have the con­
vergence of Shannon's entropy U(p) when p -* oo defined as: 

£ / ( A ; | X n ) l o g / ( A , | X p ) 
JJ(p) _ _ _S_ 

w EMI*,) 
AjeSf 

but the decrease is no more assured (see Fig. 2). 

Fig. 2. - graph of U(p) for « = 0 
- graph of U(p) for e — 0-3 

6.3. From the points 1 and 2, we can say that the methods when e = 0, are singular. 
Thus the hypothesis e = 0 must be justified, for instance when there is the pro­

babilistic independence. 
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Otherwise, the experiment justifies the operating method i.e. the choice of e and 
the number of iterations: that is why the strategies are supervised by a learning that 
is to say by a set of objects known to verify a given concept (training set). 

6.4. In this paper, we use the entropy in two different ways: 
— entropy as an operating tool to construct an inductive process; 
— entropy as a mathematical tool to evaluate a mathematical hypothesis, here the 

hypothesis of independence between tests. 

7. APPLICATION 

The inductive Bayesian processes can be used to extract the "best" sequences 
of tests to discriminate between concepts, when we have no a priori knowledge 
on the relationship between tests and when we have not enough objects and all the 
possible sequences of issues to more than one test. 

We first give an algorithm using the principles developed in the preceding sections. 
This algorithm extracts some production rules which could be used to determine 
the relationship between a new object and a concept. Then we use it on an example. 

7.1. Algorithm 

Step 1: Compute on a training set the deductive similarities for any concept As 

and any issue Y; to any test Y. 
Step 2: Give a value to the number N of tests. 
Step 3: Choose a training set T for induction. 
Step 4: Give a value to e. 
Step 5: For every element x of the training set do Steps 6 and 7. 
Step 6: Select the N tests using the formulas (1), (2), (3) which express the inductive 

process. Compute the inductive similarities and their divergence. 
Step 7: Affect x to one of the concepts, using the computed inductive similarities. 
Step 8: Compute the divergence between the concepts determined in Step 7 and the 

a priori known concepts. 
Step 9: Choose the e's which give the lowest divergence. 
Step 10: Determine for the above values of e, what the issues of the used tests were, 

and what their links to the concepts were (extraction of production rules). 

Example 

We explain on an example how to extract short sequences of tests. 

In a set of hydrocarbure molecules built with benzenic cycle we want to study how 
the geometrical properties of their frame support the discrimination between the 
cancerogenous ones and the other ones. 
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More specifically, we want to express some production rules to discriminate the 

two classes, dealing with only 3 tests (At = 3). 

7.2.1. Deductive similarities (Step 1) 

Table 1 (resp. Table 2) gives the deductive similarities between the issue 0 or 1 

of each of the nine tests T1;..., T9, and the concept " t o be cancerogeneous" denoted 

by A (resp. " t o be non cancerogeneous" denoted by A). 

Тable 1. Deductive s milarities for A. 

-ì т2 ^з TA ^5 т6 Ti т8 
т9 

Issue 0 
Issue 1 

0-83 
017 

0-33 
0-57 

017 
0-83 

0-58 

0-42 
0-67 
0-33 

0-58 

0-42 
0-67 
0-33 

0-33 
0-67 

0-58 
0-42 

Тable 2. Deductive similarities for Л. 

Tг т2 n TA ^5 т6 т7 ^8 т9 

Issue 0 
Issue 1 

0-35 
0-65 

0-75 
0-25 

0-40 
0-60 

0-85 
015 

0-35 
0-65 

0-95 
005 

0-55 
0-45 

0-85 
0-15 

0-85 

0-15 

7.2.2. Inductive similarities (Steps 5, 6, 7) 

For every e (reported on the first line of Table 3) we have found the best sequence 

of three tests for any object of the training set: this sequence is characterized by its 

discriminating power between A a A, computed from the inductive similarities 

and valued from - 5 (in this case the object is more likely to belong to A) to 5 (in 

this case the object is more likely to belong to A): this is reported in Table 3 for each 

of the 32 objects of the training set. 

On the training set, we select the issues which are used for the selected test. 

The expression of the inductive similarity for these specific answers correspond 

to the so called production rules: evaluation on inductive inference. 

7.2.3. Productions rules (Step 11) 

The production rules are the following: 

F o r e = 0T: 

f(A 
f(л 
f(Л 
f(л 

(T8 = 0) л (T6 = 0) л (T2 = 0)) = 0-8 

(T8 = 1) л (T6 = 1) л (T3 = 1)) = 0-2 

(T8 = 1) л (T6 = 0) л (Г. = 1)) = 0-5 

(T8 = 1) л (T6 = 0) л (T, = 0)) = 0-2 
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Table 3. Discriminating power for every object when e varies. 

0 0001 001 002 0 0 5 0 1 0-2 0-3 0-4 0-5 

- 4 - 4 - 3 1 1 3 1 0 0 0 

- 4 - 3 - 3 - 4 - 4 - 3 - 4 - 4 - 4 - 4 

4 4 4 4 4 3 3 3 3 3 
1 1 1 1 1 3 1 0 0 0 
1 1 - 2 — 2 - 1 0 - 2 - 3 - 3 - 3 

- 4 - 3 - 3 - 4 - 4 - 3 - 4 - 4 - 4 -4 
- 5 - 3 - 3 - 4 - 4 - 3 - 4 - 4 - 4 - 4 

- 4 — 3 - 3 - 4 - 4 - 3 - 4 - 4 - 4 - 4 

- 4 - 3 - 3 - 4 - 4 - 3 - 4 - 4 - 4 - 4 

- 5 — 3 - 3 - 4 - 4 - 3 - 2 - 3 - 3 - 3 

1 1 1 1 1 3 1 0 0 0 
- 5 — 3 - 3 - 4 - 4 - 3 - 2 - 3 0 0 

0 0 0 4 4 3 3 3 3 3 
- 4 - 4 - 3 1 1 0 1 0 0 0 
- 4 - 4 - 3 1 1 3 1 0 0 0 

0 0 0 4 4 3 3 3 3 3 
4 4 4 4 4 3 3 3 3 3 

4 4 4 4 4 3 3 з 3 3 
0 0 0 4 4 3 3 3 3 з 
4 4 4 4 4 3 3 3 3 з 

— 5 - 3 - 3 - 4 - 4 - 3 - 2 - 3 - 3 - 3 
- 4 - 4 - 3 1 1 3 1 0 0 0 
- 4 - 4 - 3 1 1 3 1 0 0 0 

0 0 0 4 4 3 3 3 3 3 
4 4 4 4 4 3 3 3 3 3 
0 0 0 4 4 3 3 3 3 3 
4 4 4 4 4 3 3 3 3 3 

- 4 - 4 - 2 — 2 - 1 0 - 2 - 3 - 3 - 3 
- 5 - 3 - 3 - 4 - 4 - 3 - 4 - 4 - 4 - 4 

0 0 0 4 4 3 3 3 3 3 

1 1 1 1 1 0 1 0 0 0 
4 4 4 4 4 3 3 3 3 3 

For £ = 0-02: 

fiA 
f{л 
f{л 
f{л 
f{л 

(T8 = 0) л (T6 = 0) л (T! = 1)) = 0-9 
(T8 = 0) л (T6 = 0) л (Tt = 0)) = 0-6 
(T8 = 1) л (Tt = 0) л (T3 = 1)) = 0-1 
(T8 = 1) л (Г. = 1) л (T2 = 1)) = 0-3 
(T8 = 1) л (Tx = 0) л (Tз = 0)) = 0-1 

These production rules could give a new description of the objects of the training 
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set, which would take into account the relationship between objects and concepts. 
In the same way, we know that, in statistical pattern recognition, the a posteriori 

conditional probabilities give an optimal description in the sense of the Bayes error. 
(Received April 29, 1982.) 
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