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DENOTATЮNAL SEMANTICS OF PARALLEL 
PROGRAMMING LANGUAGES 

PETER BREZÁTSY 

The concise explanation of the principles and then the development and application of denota-
tional semantic for a class of parallel programming languages is given in the paper. The semantics 
of monitor type language constructs, which serve the synchronization of concurrent processes, 
is expressed by a designed system of semantic domains and semantic functions. The developed 
model is applied to a concrete parallel programming language. 

1. INTRODUCTION 

Parallelism has become an increasingly important topic of research in programming. 
The effective utilization of contemporaneous computer systems is conditioned by 
its successful management. The important trend in this research is the development 
of parallel programming languages which must meet many relatively pretentious 
criteria. In the process of design, implementation and using of these languages the 
precise definition of their semantics has an important role. In the last years a great 
deal of progress has been made towards the development of a theoretical framework 
appropriate to the formal analysis and the specification of the semantical aspects 
of computer languages. 

In the existing approaches to the formalization of the semantics only little attention 
has been devoted to the parallel programming languages. This paper deals with 
problems of denotational semantics definition of parallel features of the subset 
of the language CLJl (Concurrent Language 1). This language belongs to the class 
of parallel languages, which contain constructs for the description of concurrent 
processes synchronized by monitors. 

The method of denotation semantics combines a powerful and lucid descriptive 
notation with an elegant and rigorous theory. This paper is aimed at the descriptive 
technique without going into background mathematics at all. A similar approach 
describing basic ideas of denotational semantic can be found in [4], [7]. 
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2. DENOTATIONAL SEMANTICS 

An essential part of our formalization will be the defining of various sets which 
have according to Scott's criteria features of complete lattices. We shall call these 
sets domains. At the application in practice we abstract from lattice features and 
intuitively domains will be thought of just like sets and therefore we shall use the 
normal set theoretic notation on them. For example {x | P(x)} is the set of all x's satis
fying the condition P(x); xe S means x belongs to S;f : Sx -> S2 means/is a function 
from S1 to S2. 

Denotational semantics gives a functional correspondence between syntactic 
constructs of a programming language and abstract mathematical entities, repre
senting their meanings (semantical values). The language constructs, appearing in 
programs, are elements of syntactic domains. Each element of the syntactic domain 
is mapped by a suitable semantic function to the element of the semantic domain. 
The semantic functions are defined by the system of mutual recursive equations. 
The semantic equation expresses semantic interpretation of the considered element 
(phrase of the language) of the syntactic domain by means of the meanings of its 
components (subphrases), which are also elements of syntactic domain of the con
sidered language. 

3. DEFINING DOMAINS 

In this section the symbols D, D', D1, D2,... etc. will stand for arbitrary domains. 
We suppose that each domain D contains an error element errD; we shall drop the 
domain subscript and allow the proper domain to be determined from the context, err 
is called the improper element. All other elements are called proper. 

3.1. Standard domains 

The following domains are standard and will be used without further explanations: 

numbers: Num = {0, 1, 2, ...} U e r r 

truth values: B = {true, false} \j err 
identifiers: Id = {/ | /is a string of letters or digits beginning with a letter) U e r r 

U is the operator of the set union. 

3.1. Finite domains 

Finite domains will be defined explicitly by listing their elements in the way we 
defined the domain B. In the following parts we shall be listing only proper domain 
elements and we shall assume that each domain D contains the error element errD too. 



3.3. Derivations of domains by domain expressions 

3.3.1. Function space [D, -» D2] 

[D, ~* D2] is the domain of functions from D, to D2. 

[D, ->D 2 ] = { / | / : D , ^ D 2 } 

D, is called the source of j and D2 the target of j . Functions which source or 
target contains functions are called higher order functions. 

We may write D, -* D2 instead of \_DX -» D 2] . By convention —> associates to the 
right so, for example, 

Dx ^ D2^ D3-^ D4 means [D, -* [D2 -* [D3 -> D 4 ] ] ] . 

3.3.2. Product [D, x D2 x ... x D„] 

[D, x D2 x ... x D„] denotes the product of the domains D,, D2, ..., D„, i.e. 
the domain of ^-tuples dx, d2, ...,d„ where dieDi. If de [D, x D2 x ... x D„] 
then d | / is the ith coordinate of d. 

[D, x D2 x ... x D„] = {(d„ d2, ..., d„) \dleDl,d2 e D2, ..., d„eD„) 

(du d2, ..., d„) I i = df (we automatically assume 0 < i < n + 1) 

D" is the domain of all n-tuples of elements of D. 

If j : [D, x D2 x ... x D„] -> D then there is an equivalent function of type 
D, -> D2 -> ... -> D„ -> D. 

3.3.3. Sum [D, + D2 + ... + D„] 

[D, + D2 + ... + D„] denotes the disjoint union of the domains D,, D2, ..., D„. 
Each member of [D, + D2 + ... + D„] corresponds to exactly one member of some 
D, 

3.3.4. Sequences D* 

D* is the domain of all finite sequences of elements of D. If d e D* then either d 
is the empty sequence ( ), or d -= (d,, d2, ..., cj,) where n > 0 and each dt is a mem
ber of D, i.e. D* = D° + D1 + ... + D" + .. .. 

D° is equivalent to the empty sequence ( ). d f i is the sequence consisting of all 
but the first / elements of d. 

(d1,d2,...,di_l,di,di + i,...,d„)V = (di+l,--;d„). 

If d = (d1,d2,...,d„),d' = (d[,d'2, ..., d'n) then d » d' = (dx,d2, ...,d„,d\,d'2. ... 
..,<). 
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4. DEFINING FUNCTIONS 

For defining functions we shall use ^-notation. 

Suppose E(x) is some expression involving x such that whenever d e D is substituted 
for x, the resulting expression E(d) denotes a member of D'. For example if both 
D and D' are Num then E(x) could be x + 1. For such expressions the notations: 

Xx . E(x) 

denotes the function jf: D -» D' such that for all deD is valid: fd = E(t/). For 
example Xx . x + 1 denotes the function of type Num -> Num. 

An expression of the form I\jtf. E(x) is called X-expression, x is its bound variable 
and E(x) its body. The body always extends as far to the right as possible, thus 
Xx . x + 1 is Xx . (x + 1) not (Xx . x) + 1. 

Just as we can form expressions like " j l " to denote the application of j to 1 
so we can form expressions in which ^-expressions are applied to arguments, for 
example: (Xx. x + l) 2 = 2 + 1 = 3. 

When evaluating (Xx . E(xj) a to E(a) one must only substitute a for those occurren
ces of x in E(x) which are not bounded by inner X's. For example (Xx . (Xx . x + 1)) a 
evaluates to Xx . x + 1 not Xx . a. 

If b e B, dx, d2e D the conditional term b —> du d2 signifies the value tf: when b 
is true and the value d2 when b is false. For example Xx . (x = 0) -» true, false 
denotes the test-for-zero function of the type Num -> B. 

b± -» t/j , /32 -» t/2, ..., />„ -» <:/„, t/„+1 means 

& . - < / . , (fc2-*rf2, (... (b„^dn,d„+,)...)) . 

If f:D->D, dl,...,dneD and d[, ..., d'ne D' then / [ t / ; , ..., tf /̂tf., ..., t/„] 
denotes the function identical to /except at t/j, ..., d„ where it has values d'.,..., t/̂  
respectively. 

Sometimes it is convenient to structure expressions by writing 

let Xj = Ej , x2 = E2. ..., x„ = E„ in E(X], x2. ..., x„) 

instead of E(Et, E2, •.., E„). 
Fixed points of functional equations solve recursions. With fix (F) we denote 

the least fixed point / 0 of the function E so that the equation/0 = E(/0) is valid. 

5. METHODOLOGY OF THE APPROACH 

The idea of a denotational semantics for a language is perfectly well illustrated 
by the contrast between numerals on the one hand and numbers on the other in [8]. 
The numerals are expressions in a certain language; while the numbers are mathe
matical (abstract) objects. 
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In more detail we may consider the following explicit syntax for binary numerals 

v : : = 0 | 1 | vO | vl . 

Here we have used the Greek letter v as a metavariable over the syntactical category 
(domain) of numerals which we call Nml. We introduce a semantical interpretation 
function 9 : Nml -> Num which to each v e Nml assigns the function value 9[v] 
which is the number denoted by v. Inasmuch as v to be defined on a recursively defined 
set Nml, it is reasonable that 3 itself should be given a recursively definition by the 
four following semantic equations 

3[0] = 0 

»[-] = 1 

S[v0] = 2 . % ] 

S[vl] = 2 . 9[v] + 1 . 

In the semantic equations we shall enclose the object language expressions in spe
cial brackets [ ] . 

In specifying a syntax we shall provide only an abstract form of a syntax which 
specifies the compositional structure of programs while leaving open some aspects 
of their concrete representations as strings of symbols. 

Let us suppose, we have a simple programming language, in which Com is defined 
as a syntactic domain of commands and Exp as a syntactic domain of expressions; 
their typical elements we denote E and E respectively. Let the grammar includes: 

E::= . . . | E i ; E 2 | . . . 

E : := ... |succ E| ... 

so that a command may be also a sequence of two others commands and the expres
sion succ E means adding one to the value of the expression E. 

Let % denotes the semantic function for the evaluation of commands, S denotes 
the semantic domain of an abstract store states and a E S. Considering a command 
to specify a transformation on a state a, we can write #[E ] e [ s -> s] that is, the 
meaning of command execution is the transformation of a store state. When the 
store state is at before an execution of some command E, it is a2 after its execution. 
Thus we can write *£[E] al = a-,. 

Thenignoringthe possibilities of aofo's, errors and nontermination within commands, 
the natural meaning of T\\ E2 would be the composition of effects of # [E i ] and 
# [E 2 ] . The semantic equation for this is 

^ [ E 1 ; r 2 ] = X<7.^[E 2](^[E 1](r) . 

This semantic equation can be interpreted as follows: if a is the store state before 
the executing of E, first one new store state a1 is formed as the effect of executing E,; 
the following executing of E2 causes the new transformation to the state a2. Thus 

252 



the function (€ can be specified 

<t : Com -» [ s -» s] 
or without the brackets 

<g : Com -» S -» S. 

The nature of the domain s varies from language to language but it must always 
contain at least enough information to give the contents of all the abstract store 
locations in use; it must therefore include a component with functionality L —> V. 
L is the domain of locations. Their contents determine the abstract store state. 
V is the domain of all storable values. 

Dynamic allocation and deallocation of locations require a more complex 
model of the abstract store. The locations must be partitioned into "active" and 
"inactive" areas, as follows: 

S=L-+[T x V] . 

Each location has associated (in addition to the usual stored value) with a truth 
value "tag" to record whether it is active or inactive in the current store state. 

Programming languages allow names chosen by the programmer to stand for or 
denote certain objects. The relationship between the name and the thing it denotes 
is a function of type Id -» [D x Typ] which is an element of the semantic domain 
of environments. This domain will be denoted by Env and g will stand for an indi
vidual environment. D is the domain of denoted values and Typ is the domain of 
their types. In many semantical definitions Env is simply defined as Id -» D. However, 
this is insufficient for us when we want to express semantics of an abstract data types 
mechanism and the meaning of a data type compatibility. 

We can specify the function (€ now as 

(d : Com -» Env -» s ~» s. 

The effect of executing f,; T2
 c a n he understood now as 

*[ri; rj e = xa. * [ r j e(«[rJ ea). 

It is appropriate to say here that in many languages (e.g. in Algol 60) the name 
of a variable denotes a location in the context of some environment. This location 
remains fixed throughout the scope of the name. The ordinary value associated 
with the name is the content of this location. The location is sometimes known as 
the L-value of the name and its content is called the R-value. 

Executing an expression is intended primarily to produce a value. This value may 
be used in other expressions, commands or declarations; it may clearly depend 
on both the environment and the store, so that we might expect to find the valuations 
appropriate for expressions to be specified 

S : Exp -» Env -» S -» E 
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where E is the domain of expressed values. For languages allowing possibilities of side 
effects we must this specification modify to 

& : Exp -* Env -* S -* [E x S] . 

For example S"{succ E] QO = £{£} Qa + 1. 

The main purpose of a declaration is to form, or alter an environment, in which 
part of a program is to be executed. A declaration may have a side effect, therefore 
the semantic function S evaluating declarations can be specified now as 

9 : Dec -» Env -» S -» [Env x S] . 

A continuation semantics is a special sort of denotational semantics. It enables 
us to model an abnormal flow of control through the program (e.g. jumps, sub
routine calls, coroutines, concurrent programs). In the continuation semantics we 
make the denotations of constructs depend on the rest of the program — or con
tinuation — following them. The intuitive idea is that each construct desides for 
itself where to pass its result. Usually it will pass it to the continuation corresponding 
to the "code" textually following it in the program — the normal continuation — but 
in some cases it will be ignored and the result passed to some other abnormal con
tinuation. 

The execution of a command F in the presence of the store state a and the environ
ment Q merely replaces a by a'. The part of the program following T is executed 
in a semantic context that differs from the one in which F was executed because the 
state of the store has changed. There should therefore be a function p., which maps 
store states into "answers" and which is built from the part of the program following 
r in such a way that fia' is the answer obtained by first executing T and then continu
ing with the rest of the program. It is natural to write this answer /la' as ^[T] Qfia 
and to assume that %'' is specified as 

c6 : Com -» Env -» [S -* A] -* S -» A 

A is a domain of answers i.e. the anticipated results of the whole programs, in which 
commands are embedded. Answers can include store states, expressible values and 
other possible results such as environments, error messages and so on. The exact 
structure of A is language dependent. 

What happens on executing the part of a program that follows a command can 
therefore be mimicked by a function belonging to the domain S -» A; such a function 
will be termed a command continuation. After letting C = S -* A, (€ is specified as 

V : Com -» Env -» C ~» C . 

The semantic value of ^[T] Qfi is the continuation which models what happens 
if F is executed in the environment Q before the rest of the program (as mimicked 
by fi) is executed. Thus VfTj Qfia should be the answer obtained by supplying the 
store state a when F is followed by the continuation^;. If the execution of F terminates 

254 



without errors or jumps occurring the store state produced is passed on to (i; under 
all other circumstances ri is displaced by a different continuation. 

The effect of executing Tj; F2 can be understood now as 

4r 1 ; r 2 ]^ = ̂ [r1IeMr2lw}-
Braces are used to mark complex continuation arguments as a notational aid. 
Executing an expression can produce a result in E along with an altered store, 

so an expression continuation, which represents what happens on executing the part 
of a program that follows an expression, yields an answer in A. We take the domain 
of expression continuations A" to be \E x s] -> A or rather E-> S -> A; since 
we set K = E -> C Accordingly we can write 

5 : Exp -> Env -> K -> C . 

Since declarations pass an environment, together with a possibly changed state 
of the store, to the rest of the program following them we define X — the domain 
of declaration continuations by X = Env -> S -> A; since we set X = Env -> C. 
Accordingly we can write: 

6 : Dec -> Env -> X -> C. 

6. MONITORS 

An operation sequence described by a given part of a program is called a process. 
When a program is organized in a way that entails executing two portions of it 
simultaneously it is said to be concurrent. A language which enables to create con
current programs is said to be parallel. 

An interaction in two ways may originate between concurrent processes: 
1. directly so that they are sharing or interchanging data, information, data structures 

and so on; 
2. indirectly so that they are competing for the same resources. 

The modular language construct - monitor, was developed [3] to master the 
conflicts between concurrent processes. From a language theory point of view 
a monitor is a facility for defining abstract data types. It is a collection of data and 
procedures, shared by several processes in a concurrent program. Syntactically, 
monitor declarations start with the reserved word monitor, followed by data and 
procedure declarations, and end with a part which initializes the declared data. 
Real shared components are represented by monitor objects which are defined and 
initialized by appertaining language constructs. 

Access to a monitor object is restricted to calls to its procedures, written "Iobjm 

. Iproc(. • • parameters ...)". IobJm is the name of the monitor object and Iproc identifies 
which of the monitor's procedures is to be called. Only the procedure bodies and the 
initialization part may refer to the monitor's data. 

Usually a monitor object is known to several processes and is used to allocate 
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resources among or to communicate between them. To insure the orderly use, entry 
to a monitor object is subject to mutual exclusion. Calls to a monitor object are 
served one at a time; if while the object is processing a call a second call to the same 
object occurs, the second caller waits in a queue until the object finishes with the first 
call. 

A monitor's procedures may schedule their actions upon and replies to calls by 
\cmd . wait and Icond. signal operations. Iconi is a queue of defferred calls, declared 
in the monitor's data in the form "Icond : condition". The Icond. wait operation places 
the currently calling process into the queue Icond, suspends its processing and releases 
the monitor's mutual exclusion so that other calls may be accepted. The Icond. signal 
operation restarts processing of the first call waiting in Icond. 

In a concurrent program the execution of one portion of the program may be 
interleaved with the execution of another at the end of any of the "indivisible opera
tions". Such operations may not be displayed overtly in the syntax of the language 
but they become apparent in the semantic equations. 

The using of continuations enables us to model the execution of concurrent 
programs. But up to now there have appeared only a few works (e.g. [5], [6]) that 
form a theoretical basis on which it is possible to define the semantics of many 
constructs of parallel programming languages. In the literature no work has been 
dealing so far with the denotational semantics of monitors. 

7. FORMAL DEFINITION OF THE SEMANTICS 
OF THE LANGUAGE CLjl 

At the designing of the language CLjl we have come out from the language Con
current Pascal [3]. The complete definition of CL/1 is given in the work [ l ] . In this 
paper we present only those parts of the definition, which are connected with the 
parallel control structure of the language. 

Syntactic domains and their elements: 
r 6 Com commands 

Fp e Com,., parallel commands 
rd e Com,* delaying commands 
Ts e Coms signalling commands 
E e Exp expressions 

AVe Dec„ declarations of basic type variables 
A Cond E DeCcmd declarations of condition variables 
A Abs e Def„js declarations of monitor type abstractions 
A Objm e Decern declarations of monitor objects 

AFm e Defpm declarations of monitor procedures 
Ina e Init„ initialization parts of monitor type abstractions 
In € Init initializations of monitor objects 
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Tl e Par formal parameters 
Pf e Prist,- formal access rights 
Pa e Prista actual access rights 

Te Type types 
/ e Id identifiers 

Abstract syntax: 

r : : = ... | Ti;r2 | begin AV*; A Abs*; A Obj*; /„; Tend 
| cobegin Ppl, Pp2, ..., Ppn coend | ... 

T„ : : = ... I / : = E I if E then T„, else T„, I while E do T„ 

r, 
rs 

AV 
A Cond 
A Abs 
A Obj,„ 

AFm 

Ina 

In 
n 
Pf 

Ps 

T 

objn 

pi t , a c ' p2 

| T p i ; r p 2 | b e g i n J V * ; r „ e i K i | / . 
= A if E then / c 0 „ d . wait 
= A fond • signal 

= / „ : T 
= /„„„,, : cond 

C(E*) 

= monitor lm{P*); begin AV*; A Cond*; AF*; begin Ina end end 

= var labjm 

= proem /j 
= . . . | / n | 

„(T/*); begin zIV*; Pd; T • Tv end 

= ш i t / o W ( P * ) | / П l ; / и J A 

= / 
= / 
= /. obj 

- integer 

v a r IoW 

var Job: 

E 

I real boolean 

The introduced syntax does not specify elements of the syntactic domains Exp 
and Id. We distinguish the different elements of the same domain by means of indices. 
The asterisk " * " denotes the operation of creating a list, which is semantically evaluated 
by the sequential application of an appropriate semantic function on the particular 
elements of this list. A denotes a null category. For the creation of n concurrent 
control paths there is designed the language construct 
cobegin Ppl, Pp2, ..., Ppn coend. 

Semantic domains: 

T 
N 
R 

a e L 
ôeD 
E £ E 
peV 
a e S 

= L + V + Uscand + Abs + Proc„ 
= D 
= T + N + R 
= L - [T x V] 

booleans 
integers 
reals 
locations 
denoted values 
expressed values 
stored values 
store states 

257 



Q 6 Env = [M - [Z> x TypJJ x [{initobj} - Id*] 
environments 

,4 = s + Env + £ • + / ? answers 
/( e C = s ->• A command continuations 
x e K = E -* C expression continuations 
y e X = Env -> C declaration continuations 

TypB = {integer, real, bool} basic types 
TypM = {monitor} abstraction type 
Ids ,̂ = {Isml, Ism2, . . . , Ismk} monitor object types 
TypC = {cond} condition variable type 
TypP = {proem} monitor procedure type 

T e Typ = TypB + TypM + UsA + TypC + TypP 
types 

i e I = { 1 , 2 , ..., n} processes 

y eP = [Com„ + {set, reset}] x Env x P parallel continuations 

x'eQ = P" comprehensive parallel continua
tions 

n e H = {1, 2 , . . . , n}°° rosters 

v e Y = [ldohJ -> [/ x /" x Z ] ] process states 
of monitor objects 

£ e Z = Idsc<,,„, -> /" process delays 

ij/e W = Id*bj monitor object stacks 

o e O — V* comprehensive monitor object 
stacks 

Idsco„(, is the domain of semantic values of identifiers of conditional variables. 
Each element of this domain is a reference to a list of processes waiting for a fulfilment 
of the condition joined with the appertaining conditional variable. 

Abs is the domain, which elements are semantic meanings of abstract data types 
defined by monitors. Elements of the domain Proc,„ are meanings of monitor pro
cedures. 

The second component of the environment enables to make accessible, by means 
of the so called implicit name initobj, a list of identifiers of those monitor objects, 
which are initialized in the given moment. The component Ids^ of the domain of 
types reflects the existence of the abstract data types mechanism in the considered 
language. Isml, Ism2, ...,Ismk are new data types introduced by declarations of 
monitors ml, ml, ..., mk. Elements of the processes domain / a r e natural numbers, 
by which we refer to individual, in the given moment existing, concurrent processes. 
To each process i is connected its parallel continuation y, e P. It determines a com
mand, which has to be executed as immediately following, in which environment 
and with which next parallel continuation (i.e. predicts a computational future 
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of the process i). By the component set, reset we define the successful beginning 
respectively ending of a procedure execution of a monitor object. The interleaving 
of a process execution at the end of any of the "indivisible operations" is defined 
by certain element ^ e H. The indivisible operations may not be displayed overtly 
in the syntax of the language, but provided the language is given the denotational 
semantics they become apparent in the semantic equations. Before each execution 
of n concurrent processes one element ^ is created. It is the infinite list, items of which 
are randomly distributed elements of the domain /. However, this distribution of 
elements must fulfil certain criteria of correctness. At the end of any of the indivisible 
operations the head of the list ^ is analysed. The result of this analysis influences 
the choice of the process which has to be running and the head is popped. If the 
control is given to another process it is necessary to preserve the parallel continuation 
of the process running till then. The domain Q serves for that. The process states 
of monitor objects VE Y join three elements with any monitor object: a process 
t, e /, which is just executing some procedure of this object, a list of processes t"e I" 
waiting for the entry into some procedure of this object and a process delay £ e Z, 
which is a function joining a list of waiting processes to each conditional variable. 
The domain of comprehensive monitor objects stacks O = \ji" explicitly binds 
with each process a list of identifiers of those monitor objects, the procedures of 
which an appertaining process is just executing. Each such a list \j/ is an element 
of the semantic domain \j/ = Id*6j. and it is processed as stack. 

Choosen semantic functions and equations: 

1. <€ : Com -> Env -> C -» C 

*[r i ;ra]ft«--4f[r1 j t f{«[ra]C A .} 
<?j[begin AV*; A Abs*; A Obj*; In; r end] efi = 

9*[AV] Q{\Q[ . ^*„IA Abs*} QI{XQ2 . 9%m\A Obj J Q2 

te3 • AH fete* • *[r] w}}} 
^[cobegin Tp l , Tp2, ..., Tpn coend] efi = 

let Iscond = Qolhondl I 1 ''n 

let Co(Iscond) = A" for all Iconi declared in all 

environments Q0 = <?[lo6J i 3 in 

let v0{lobj} = (A, A", Co) for all ]obj declared in the environment Q 
o0 = (A*, A*, ..., A*) (n-tuple) 
T' = ((rpl, e, (A, Q, ?)), (rp 2 , e> (Ay Qt ?)),..., (rp:v e,(yl> 0 , ?))) 

in 

New Roster {Xn . (n [ 1 = 1) _ , - ^ j Q{A> Q> ? ) 1(fJ f l } ^ ^ 

(if i 1 •= 2) -* d [r p 2 ] e(A, Q, ?) 2(i, t 1) o0v0x'n, 

(n i l = n - i) - 4 r ^ j ^ Qi ? ) (M _ 1} {n f 1} 0 O U Q T > ; 

4 r P J Q(A, Q, ?) n(n t 1) o0v0x'n 
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2. j : Coro„ - > E n v - J P - > / - > t f - > o - > У - > ß - > C ^ C 
Соroj, = Сошp + Соm,, + Сcnis 

Ąl : = £ ] Qyщovтџ = 
let т = о[J] 4 2 in 
£ЄЩ QT{Ы . đř[£] OT{?I/J . Seŕ a/J(Dо ф.ооť,.)}} 

d[if £ then Г p l else Г p 2 ] Qyщovт џ = 

Й[H] б ( ^ ° 0 {W -ß-+ Do c(Гpl, Q, y) цovт'џ, 
Do i(Гp2, Q, y) цovт'џ] 

d[while £ dо ľp\ Qyщovт'џ = 

Øt.Щ Q(ЬOOІ) {kß .ß^Do i(ľp, Q, (while £ dо Гp; y)) цovґџ, 
Do iyцovт'џ\ 

ĄГpil Гp2} Qyщovт'џ = Ąľpl} в(Гp2, Q, y) ЩOVT'Џ 
ci[begin AV*; ľp end] Qyщovťџ = 

*V{AV*\ Q{ҠQ'-. Do t(ľp, Q', y) цovťџ} 

Ahъj • lnrоcСE*)] QУЩovťџ = 

lЄt QobJ = QІIobj\ 4 1 4 з ІП 

k t Гproc = Qobj{lproc\ 4 U 2 , 

С?i = ЄoьjlhroЛ 4 3. J7* = о о b ,[J p r о J 4 ! 4 1 in 
let о p r о c = fix (ҠQ\ . Var [Л*] -> JS?*[£*] Q'T*{ҠU*. 

Єl[a*/Л*]}, 
.^*[£*]0;т*{^*.Єl[r/л*]}) 

in ЄоbjflprоJ i 2 = prоcш) -> 
((4Ic*J i 1 = л v 0 [/0Ь,] 41 = 0 -

((leí о. = о[/(lř), о (0 4 t)/(о 4 0], о, = о[t/о[Jоfc,] 41] 
І n 4 l prоc] QProC(reset, Q, y) щo^v^ťџ), 

(letо2 = о[о[J O Ь ,]4tо ř /u[J 0 0 ,]42] 
in Do t (set, Q, (lobj. Jp r о c(£*), Q, y)) цov2т'џ)), ? 

о[if £ then Icmi. wait] Qyщovťџ = 
ìet J00, = (0 41) 41 in 
leí Ҫ = о[/оí),] 4 3 in 
let Iscond = Є [J С 0 „J 4 1 in 
ЩE] e(bool) {Ҡß . ß ^ 
((о[J 0 0 ,]42 = Л)-> 

((letо . = о[С(JsСOЛ(i)] о iЦ(lscor.d)-\ [ЛjĄloЪj\ i 1] 
in Do lyцoViťџ), 

(let t2 = (u[/00,] 4 2) 4 1 in 
let о2 = v[фscm,d) o t/С(/scо„Л] [t2/о[JOÒ,] 4 1] 

[(u[/00,]4 2 ) î l /о[/ 0 0 , ]4 2] 
in Apply (ť 4 t2 4 3) t2цov2т'[yjт' i t] џ))), 

4Уil}{yi2)(y[3)щovx'џ 
Ąhoы • signal] Qyщovťџ = 

let Iscond = Є [J С 0 „J i 1 in 
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let lobi = (o ! () | 1 in 
let { = D[/P„,] 1 3 in 

(C(isco„d) = A -
((u[ieW] | 2 = A) -> 
(let D, = D[A/D[/oW] I 1 in 
Do lyrjooix'n), 
(let(2 = ( D [ i o W ] | 2 ) l l i n 
let o2 = o[(2/u[/0„,] 1 1] 

M^Ji2)tl/o[/ r tJi2]in 
Apply (x' i (2 | 3) Wov2x'[y\x' | (] /.))), 
(let (3 = C(isc0J | 1 in 
let D3 = D[C(isco J t l/C(/sf0„rf)] 

W W 11] 
in Apply (x' \ (3) (3>?oD3T'[y/T' | 1 ] /i) 

a[A] gy^ovx'n = Do vy^vx' p. 
Also additional semantic functions have been defined in [ l ] . Those functions 

evaluate declarations and initializations. The used semantic functions Z£ and 0t 
evaluate expressions which have values in the domains L and Vrespectively. 

Auxiliary functions are important components of denotational definitions. The 
auxiliary function Set expresses the semantics of an assigning of a new value to 
a given location. The function NewRoster models a creation of a new roster. Other 
used auxiliary semantic functions are defined as follows: 

1. Var: Par -> T 
Var [71] = (TI = var I : T) -* true, 

(n = J :T ) -> false, ? 
2. Do:I-+P-*H-*O^Y-*Q-*C-*C 

Do r^ovx'f.i = 
let ij = (/ I 1 in 
(t, = t) -> Ap/j/j y ^ t 1) 0DT'[y/T' 1 (] /i, 

Apply (x' i ,.) (j(j/ t 1) ODT'[y/T' I (] /( 
3. Apply :P-*I-*H-*0-*Y~*Q-*C-*C 

Apply y^ovx'fi = 
(y i 1 = reset) -* Apply (y | 3) (>7o[(o 1 () t l/(o 1 ()] vx'p, 

(y i 1 = sef) -+ Do ^ovx'/i, 

( y i l = A A y J . 3 = ? ) ~ > (Terminatedothers ix' —> /., Do lyqovx'p. , 

»b i 1] (V I 2) (y J 3) (f/ODT'/* 
4. Terminatedothers: I -* Q -* T 

Terminatedothers ix' = 

V [(« = 0 - ( A (*' l i 11 = A A T' i ; l 3 = ?))] -* true, 
jl\ false 

A denotes the conjunction operator. 
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The technique used is a sort of formalised time slicing, but it does not imply that 
the implementation must necessarily be on a single processor. The process considered 
"current" in the semantics is merely the one, on which our mathematical attention 
happens to be fixed at the moment. 

8. CONCLUSION 

The establishing of the definition of the denotational semantics of parallel languages 
has an extensive importance. The formal definition of the semantics of a language 
together with the formal definition of its syntax provides an accurate and complete 
reference standard for designers, implementers and users of the language. The de
signers of the parallel languages have available tools for a precise formulation and 
validation of the semantic properties of the designed language constructs. The defini
tion of the denotational semantics of parallel languages provides the basis for a deri
vation of methods for a systematic synthesis and verification of concurrent programs. 
However, the level of formalization used in the notation of the semantic equations 
is not high enough to ensure completely precise and unambiguous definition of the 
semantics of a language. If the semantics definition of the language CL/l were 
processed by a compiler generator, we should write this definition in a metalanguage 
with an unambiguous grammar and semantics. The paper [2] deals with the problems 
of such metalanguages and with the possibilities of their utilization. 

(Received June 23, 1981.) 
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