KYBERNETIKA - VOLUME 19 (1983), NUMBER 1

ON REPRESENTABILITY OF P. MARTIN-LÖF TESTS

CRISTIAN CALUDE, ION CHITESCU

The tests of P. Martin-Löf [4] constitute themselves as an alternative to the A. N. Kolmogorov theory of complexity [2]. But these theories are not equivalent. In the present paper we investigate the possibility of expressing the P. Martin-Löf tests in terms of Kolmogorov complexity. We show that this can be done by adding an element to the primary alphabet. This "enlarging" procedure generates a series of other problems (for instance, new P. Martin-Löf tests appear, which are not Kolmogorov expressible).

1. BASIC NOTIONS

Throughout the paper N will be the set of all natural numbers, i.e. $N = \{0, 1, 2, ...\}$. If A is a finite set, card (A) will be the number of elements in A.

For every non-empty sets A and B and for every function $f: A' \to B$ (where $A' \subset A$) we shall write $f: A \xrightarrow{\circ} B$. We shall say that f is a *partial function* from A to B. We consider that $f(x) = \infty$ in case f is not defined in the point x.

Let $X = \{a_1, a_2, ..., a_p\}, p \ge 2$ be a finite alphabet. Denote by X^* the free monoid generated by X under concatenation, i.e. X^* consists of all strings $x = x_1x_2...x_m$, where the x'_i s belong to X, and also the null string λ belongs to X^* . For every a in X and every natural n > 0, $a^n = aa...a$ (*n* copies of a). For every x in X^* , l(x)is the length of x, i.e. l(x) = m in case $x = x_1x_2...x_m$ and $l(\lambda) = 0$. For Recursive Function Theory see [3] and [5]. We shall consider partial recursive functions (*p.r. functions* in the sequel)

 $\varphi: X^* \times N \xrightarrow{\circ} X^*$ or $g: N - \{0\} \xrightarrow{\circ} X^* \times N$.

For every p.r. function $\varphi: X^* \times N \xrightarrow{\circ} X^*$, the Kolmogorov complexity induced by φ is a function $K_{\varphi}: X^* \times N \rightarrow N \cup \{\infty\}$, defined by $K_{\varphi}(x \mid m) = \min \{l(y) \mid y \in X^*, \varphi(y, m) = x\}$ in case $x = \varphi(y, m)$ for some y in X^* and $K_{\varphi}(x \mid m) = \infty$, otherwise.

For every $W \subset X^* \times (N - \{0\})$ and for every natural $m \ge 1$ we shall write $W_m = \{x \in X^* \mid (x, m) \in W\}$. A non-empty recursively enumerable set $V \subset X^* \times (N - \{0\})$ will be called *Martin-Löf test* (M-L test) if it possesses the following two properties:

- 1) For every natural $m \ge 1$, $V_{m+1} \subset V_m$,
- 2) For every natural numbers $m, n, m \ge 1$,

card {
$$x \in X^* \mid l(x) = n, x \in V_m$$
} < $p^{n-m}/(p-1)$.

We agree upon the fact that the empty set is a M-L test.

The critical level induced by a M-L test V is the function $m_V: X^* \to N$, given by $m_V(x) = \max \{m \ge 1 \mid x \in V_m\}$ in case such m exists, and $m_V(x) = 0$, in the opposite case.

2. RESULTS

We recall the main example of M-L test used in [1]. Let $\varphi: X^* \times N \xrightarrow{\circ} X^*$ a p.r. function. Then the set

 $V(\varphi) = \{(x, m) \mid x \in X^*, m \in N - \{0\}, K_{\varphi}(x \mid l(x)) < l(x) - m\}$

is a M - L test (see Example 10 from [1]). Note that $(x, m) \in V(\varphi)$ iff there exists y in X^* with l(y) < l(x) - m and $\varphi(y, l(x)) = x$. This example suggests the following

Definition 1. Let $V \subset X^* \times N$ be a M-L test. We say that V is representable if there exists a p.r. function $\varphi : X^* \times N \xrightarrow{\alpha} X^*$ such that $V = V(\varphi)$.

Example 2. (Not all M - L test are representable).

Take p = 2, $X = \{0, 1\}$. The set $V = \{(000, 1), (010, 1), (111, 1)\}$ is a M-L test. We claim that V is not representable. Indeed, in case there exists a p.r. function $\varphi: X^* \times N \xrightarrow{\circ} X^*$ such that $V = V(\varphi)$ we can infer the existence of three strings y_0, y_1, y_2 in X^* with $l(y_i) \leq 1$, and $\varphi(y_0, 3) = 000, \varphi(y_1, 3) = 010$ and $\varphi(y_2, 3) = 111$. It follows that $\{y_0, y_1, y_2\} = \{\lambda, 0, 1\}$.

For instance, we choose $\varphi(\lambda, 3) = 000$ (and $\varphi(0, 3) = 010$, $\varphi(1, 3) = 111$). For this φ we must have $(000, 2) \in V(\varphi)$, because $l(\lambda) = 0 < l(000) - 2 = 3 - 2 = 1$. This shows that $(000, 2) \in V(\varphi) - V$, which is a contradiction.

In order to avoid this situation we shall "enlarge" the alphabet X by adding a single new element a_{p+1} (distinct from $a_1, a_2, ..., a_p$) obtaining the new alphabet $Y = \{a_1, a_2, ..., a_p, a_{p+1}\}$.

In this case, every M-L test $V \subset X^* \times N$ can be viewed as a M-L test $V \subset Y^* \times N$. We shall see that all such M-L tests are representable and in fact the function $\varphi: Y^* \times N \xrightarrow{\circ} Y^*$ which represents V (i.e. $V = V(\varphi)$) takes values in X^* . To be more precise, we have the following

- 4	-
4	- ٦
•	~

Theorem 3. Let $X = \{a_1, a_2, ..., a_p\}$ and $Y = X \cup \{a_{p+1}\}$ as before. For every M - L test $V \subset X^* \times N$ there exists a p.r. function $\varphi : Y^* \times N \xrightarrow{\circ} Y^*$ such that $V = V(\varphi)$ and $(\varphi(Y^* \times N)) - \{\infty\} \subset X^*$.

Proof. First, we order Y as follows: $a_1 < a_2 < ... < a_p < a_{p+1}$. This order induces the lexicographical order on Y^* as follows:

$$\lambda < a_1 < a_2 < \ldots < a_p < a_{p+1} < a_1 a_1 < a_1 a_2 < \ldots$$

$$a_1 a_{p+1} < a_2 a_1 < a_2 a_2 < \dots < a_{p+1} a_{p+1} < a_1 a_1 a_1 < \dots$$

Only the non trivial case $V \neq \emptyset$ will be considered.

We shall construct a p.r. function $\varphi: Y^* \times N \xrightarrow{\circ} Y^*$ having the property $K_{\varphi}(x \mid l(x)) = l(x) - m_{V}(x) - 1$ for every x in X^* , such that $(x, 1) \in V$.

We distinguish two cases: a) V is infinite and in this case there exists an injective recursive function $g: N - \{0\} \to X^* \times N$, such that $g(N - \{0\}) = V$ (see [5]); b) V is finite and in this case there exists a (p.r.) injective function $g: \{1, 2, ..., q\} \to X^* \times N$, such that $g(\{1, 2, ..., q\}) = V$ (we write card (V) = q). Namely we write for i in the domain of g the value $g(i) = (x_i, m_i)$.

The action of φ will be described in the sequel by the following procedure. Let $g(1) = (x_1, m_1)$ and

$$\varphi(a_{p+1}^{l(x_1)-m_1-1}, l(x_1)) = x_1$$
.

Let $g(2) = (x_2, m_2)$. Two possibilities can occur: either $(l(x_2), m_2) \neq (l(x_1), m_1)$, or $(l(x_2), m_2) = (l(x_1), m_1)$. In case $(l(x_2), m_2) \neq (l(x_1), m_1)$, put

$$\varphi(a_{p+1}^{l(x_2)-m_2-1}, l(x_2)) = x_2.$$

In case $(l(x_2), m_2) = (l(x_1), m_1)$, put

$$\rho(a_{p+1}^{l(x_2)-m_2-2}a_p, l(x_2)) = x_2.$$

The construction is possible because

$$2 \leq \operatorname{card} \left\{ x \in X^* \mid l(x) = l(x_2), (x, m_2) \in V \right\} < p^{l(x_2) - m_2} / (p - 1)$$

which shows that $l(x_2) - m_2 \ge 2$.

In general, at step *i* let $g(i) = (x_i, m_i)$. In case $(l(x_i), m_i) \neq (l(x_j), m_j)$ for all j = 1, 2, ..., i - 1 put

$$\varphi(a_{p+1}^{l(x_i)-m_i-1}, l(x_i)) = x_i$$

In the opposite case let

 $1 \leq k = \operatorname{card} \{ j \in N \mid j < i \text{ and } (l(x_j), m_j) = (l(x_i), m_i) \} \leq 1$

$$\leq \left[(p^{l(x_i)-m_i}-1)/(p-1) \right] - 1,$$

because V is a M-L test. The elements $y \in Y^*$ with $l(y) = l(x_i) - m_i - 1$ are

1.5

(in lexicographical order):

 $y_1, y_2, ..., y_r$ where $r = (p + 1)^{l(x_i) - m_i - 1}$.

Put $\varphi(y_{r-k}, l(x_i)) = x_i$. The construction is possible because

$$r = (p+1)^{l(x_i)-m_i-1} > \left[(p^{l(x_i)-m_i}-1)/(p-1) \right] - 1 \ge k.$$

It is seen that φ acts as a function.

Notice that in case V is finite and card (V) = q, then the procedure stops at step q. In case V is infinite, the procedure continues indefinitely.

To be more piecise, we shall describe the domain of φ . To this aim, we partition the range of g according to the following rule (equivalence): $g(i) = (x_i, m_i)$ is equivalent to $g(j) = (x_j, m_j)$ iff $(l(x_i), m_i) = (l(x_j), m_j)$. The equivalence class of (x_i, m_i) contains at most h elements, where $h = (p^{n-m} - 1)/(p - 1)$, $n = l(x_i)$ and $m = m_i$. So, the range V of g is the union $\bigcup_{j=1}^{\infty} E_j$ of equivalence classes E_j (in case V is infinite) or is a finite union $\bigcup_{j=1}^{u} E_j$ (in case V is finite). For every equivalence class E_j which contains t elements we consider the set C_j consisting of the last t strings of length

l(x) - m - 1; here E_j is the class of (x, m). Put then $B_j = \{(y, l(x)) \mid y \in C_j\}$ for the above pair (x, m). The domain of φ is $B = \bigcup_{j=1}^{\infty} B_j$ (in case V is infinite) or

 $B = \bigcup_{j=1}^{N} B_j$ (in case V is finite). We got the domain of the *function* φ which is now a p.r. function.

Take x in X* such that $(x, 1) \in V$, so $m_V(x) > 0$. There exists unique i > 0 such that $g(i) = (x, m_V(x))$. According to the procedure, there exists y in Y* with $l(y) = l(x) - m_V(x) - 1$ such that $\varphi(y, l(x)) = x$, which shows that $K_{\varphi}(x \mid l(x)) \leq l(x) - m_V(x) - 1$. On the other hand, the equality $\varphi(y', l(x')) = x$ implies x' = x and $l(y') = l(x) - m_j - 1$, where $g(j) = (x, m_j)$. This can be done for some $m_j \leq m_V(x)$, which implies $l(y') \geq l(x) - m_V(x) - 1$, showing that $K_{\varphi}(x \mid l(x)) \geq l(x) - m_V(x) - 1$.

The last equality proves the inclusion $V \subset V(\varphi)$.

To prove the converse inclusion $V(\varphi) \subset V$ we notice first that $(x, m) \in V(\varphi)$ implies that $(x, 1) \in V$ (see the construction of φ).

Now we take $(x, m) \in V(\varphi)$ and we prove that $m \leq m_V(x)$ (i.e. $(x, m) \in V$). Supposing that $m > m_V(x)$, we get $(x, m_V(x) + 1) \in V(\varphi)$, which yields the existence of y in Y* such that $l(y) < l(x) - m_V(x) - 1$ and $\varphi(y, l(x)) = x$. This contradicts the above mentioned property of φ , namely: for $(x, 1) \in V$, we have $K_{\varphi}(x \mid l(x)) = l(x) - m_V(x) - 1$.

We conclude with some more examples and a small discussion pertaining the previous facts.

Actually, Example 2 can be generalized:

Example 4. (For every alphabet X with $p \ge 2$ elements there exists a finite M-L test V and an infinite M - L test W, which are both non-representable).

a) Let $p \ge 2$ and put $k = (p^p - 1)/(p - 1)$. We can consider k different strings $y_1, y_2, ..., y_k$ in X^* , with length $l(y_i) = p + 1$. The finite M-L test $V = \{(y_i, 1) \mid i = 1, 2, ..., k\}$ is not representable.

Indeed, in case V would be representable, we could find the (different) strings $z_1, z_2, ..., z_k$ in X^* having all length $l(z_i) and such that <math>\varphi(z_i, p + 1) = y_i$, for i = 1, 2, ..., k. Because $p^{p-1} < k$, at least one of the string s_i , say z_i , must have length $\leq p - 2$. So $\varphi(z_i, p + 1) = y_i$ and $l(z_i) \leq p - 2 < l(y_i) - 2$. This shows that $(y_i, 2) \in V(\varphi)$, contradicting the fact that $(y_i, 2) \notin V$.

b) Put $W = V \cup \{(a_1^i, 1) \mid i = p + 2, p + 3, ...\}$, where V was defined at a).

The infinite M-L test W is not representable (see the proof of point a)).

Example 5. (For every alphabet X with p elements and every alphabet $Y \supset X$ with p + 1 elements there exists a p.r. function $\varphi : Y^* \times N \xrightarrow{\circ} X^*$ such that the M-L test $V(\varphi)$ over $Y^* \times N$ is not a M-L test over $X^* \times N$).

Let $X = \{a_1, a_2, ..., a_p\}$ and $Y = \{a_1, a_2, ..., a_p, a_{p+1}\}$. We order X lexicographically according to the order $a_1 < a_2 < ... < a_p$ and we order Y lexicographically according to the order $a_1 < a_2 < ... < a_p < a_{p+1}$ (see the construction in the proof of Theorem 3).

Let $A = \{y \in Y^* \mid |l(y) < p\} = \{y_1, y_2, ..., y_i\}$ in lexicographical order. It is seen that $t = 1 + (p + 1) + (p + 1)^2 + ... + (p + 1)^{p-1} = ((p + 1)^p - 1)/p$. Let $B = \{x \in X^* \mid l(x) = p + 1\} = \{z_1, z_2, ..., z_s\}$ in lexicographical order. It is seen that $s = p^{p+1} > t$.

The domain of φ is the set $\boldsymbol{D} = \{(y_i, p+1) \mid i = 1, 2, ..., t\}$. We define $\varphi : \boldsymbol{D} \to \boldsymbol{X}^*$ by $\varphi(y_i, p+1) = z_i$.

It is clear that $V(\varphi)$ is a M-L test over $Y^* \times N$. On the other hand, it is clear that $V(\varphi) \subset X^* \times N$. But, computing card $\{x \in X^* \mid l(x) = p + 1, (x, 1) \in V(\varphi)\}$ we obtain the result $t > (p^p - 1)/(p - 1)$. This shows that $V(\varphi)$ is not a M-L test over $X^* \times N$.

Remarks.

1. We can interpret the result stated in Theorem 3 as follows:

a) The theories of A. N. Kolmogorov [2] (complexity) and P. Martin - Löf [4] (tests) are not equivalent, according to Examples 2 and 4.

b) Considering the P. Martin - Löf theory over an "enriched" alphabet (Y con-

tains one more element) we can express its notions (tests) as notions in the A. N. Kolmogorov theory (representable tests), according to Theorem 3.

c) For every natural $p \ge 2$ and for every alphabet X with p elements there exists a M-L test over $X^* \times N$ which is not representable. So, every non representable test $V \subset X^* \times N$ can be done representable in $Y^* \times N$ by adding an element to X, but in $Y^* \times N$ there exist other non representable tests. The "enlargement" process must continue indefinitely.

2. Example 5 goes in a "converse direction". Here, there are "too many" representable tests over the enriched alphabet.

3. We feel we must add the following ideas:

a) We have already seen that there exists a diastic distinction between the binary case (p = 2) and the non binary cases (p > 2) (see Remark 1, following Corollary 4 in [1]). These ideas of qualitative differences between the cases of alphabets having different numbers of elements (non-representable tests in case p become representable in case p + 1) are pursued in the present paper.

b) The theory constructed over non-binary alphabets is therefore legitime, natural and presents an intrinsic importance.

(Received February 9, 1982.)

REFERENCES

- [2] A. N. Kolmogorov: Three approaches to the quantitative definition of information. Problems Inform. Transmission 1 (1965), 1-7.
- [3] M. Machtey and P. Young: An Introduction to General Theory of Algorithms. North-Holland, New York 1978.
- [4] P. Martin-Löf: The definition of random sequences. Inform. and Control 19 (1966), 602-619.
- [5] H. Rogers, Jr.: The Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York 1967.
- [6] A. Zvonkin and L. Levin: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms (in Russian). Uspechi Mat. Nauk 156 (1970), 85-127.
- Dr. Cristian Calude, Dr. Ion Chitescu, Department of Mathematics, University of Bucharest, Str. Academiei 14, R-70109 Bucharest. Romania.

C. Calude and I. Chitescu: Random strings according to A. N. Kolmogorov and P. Martin-Löf – Classical approach. Found. Control Engng. (to appear).