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ON BROADCAST CHANNELS WITH SIDE INFORMATION
UNDER FIDELITY CRITERIA*

BHU DEV SHARMA, VED PRIYA

In this paper we define the rate distortion functions for the memoryless broadcast channels
when side information about the source is provided at both the encoder and the decoder. Basic
equations and the Variational equations are obtained under two different sitnations, the most
general situation being the case of fidelity criterion acting along the main channel only whereas in
the second situation fidelity criteria act along both the main as well as the side channel. The
forms of the Variational equations for Gaussian Channel under squared error fidelity criterion
and the convexity of the rate distortion functions in both the cases have also been discussed.

1. INTRODUCTION

The idea of a ‘broadcast’ channel was first introduced by Cover [3] who defined
it as a channel involving simultaneous communication of information from one
source to several receivers. The basic problem in such channels is how to send
information from a single source to several receivers simultaneously. Cover [3]
obtained upper and lower bounds on the capacity region of a broadcast channel.
An inner bound to the general broadcast channels for the three communication
situations was derived by van der Meulen [5] and Sato [8] obtained an outer bound
to the capacity region of broadcast channels. Recently Sharma and Priya [9] extended
the concept of fidelity criterion to Multiple Channels viz. Two-User Channels,
Broadcast channels and Multiple Access Channels and derived the Basic equations
for these channels.

The problem of communication through a channel when side information about
the source is provided has been studied by many authors. For work in this direction,
one may refer to Wyner and Ziv [12], Sharma and Priya [11] and Priya [6] etc.
In this paper we consider the problem of information transmission through a broad-

* This work was supported by a Fellowship awarded to the second author by the Council
of Scientific and Industrial Research, New Delhi, India.

27



cast channel and define the rate distortion function when side informatjon about the
source is provided at the encoder and the decoder. In Section 2 Basic equations
for the broadcast channels are obtained and the convexity of the rate distortion
function is established when fidelity criterion acts on the main channel only. In
Section 3 we define a new rate distortion function when the fidelity criteria act
along the main channel as well as along the side channel and derive Basic equations
for this case also. The study is then extended to the continuous case in Section 4.
The Variational equations for Gaussian Channels under squared error fidelity

criterion are discussed in Section 5. .

2. BASIC EQUATIONS WHEN FIDELITY CRITERION ACTS
ON THE MAIN CHANNELS ONLY

A. Preliminaries and Definitions

We consider a 2-receiver discrete memoryless broadcast channel
K= [X x Z, Q0. 72| % 2), Yy x Y]

where X, Z, Y; and Y, are finite sets and Q(y;, 2
defined over Y; x Y, such that

Q(Bl' B, I A, B) = HlQ(}’m Y2t I Xty Zz)
1=

for all A= (x,,....x,)eX", B=(zy,...,z,)eZ" and B, = (Fets o0 Vr) € Y75
r=1,2; n 2 1. Here X is the input alphabet, Z is the side information alphabet
about X and Y; and Y, are.the output alphabets, where for n = 1, X", Z" and Y;
denote the set of n tuples 4, B and B, (r = 1, 2) respectively. The quantity Q(y., y, |
\ x, z) denotes the transition probability of receiving y, € Y; and y, € ¥, when xe X
and z € Z are transmitted through the channel.

The distortion between the source letter x € X and the reproduced letter y; e ¥;
shall be denoted by g,(x, y;), where as usual o,(x; y;) = 0 with equality iff x = y;
fori=1,2. '

If P(x, z) denote the joint probability of xeX, z e Z then clearly the average
distortion for the ith output may be defined as

(1) (@)= Y P(x,z) 0 y: |~ 2)edx ) (i=1.2)

X2Zi¥1,¥2

x, z) are transition probabilities

Further for D, 2 0, D, 2 0, we define M(D,, D,) as the set of transition pro-
bability distributions Q(¥y, 2 | %, z), x€ X, z€ Z, y; € ¥, and y, € ¥, satisfying

(2) P(x, Z, V1» .Vz) = P(x, 2) Q(J’n V2 I X, Z)
3 P(x, 2) =yZy P(x, z, y1, ¥2)
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and
4) d(Q) £ D; (i=1,2)

We first confine ourselves to the case of fidelity criterion acting along the main
channel only with side information about the source provided at both the encoder
and the decoder. We define the rate distortion function RX|Z(D1, D,) as
®) Ryz(Dy, D) = min IX; Y, V.| Z),

Oy1,921x,2)eM(Dy,D2)
where I{X; Y;, Y, | Z) is given by
Oy, y2|% 2
© VT2 = F Hn) Qs | w2 log L0ndzled)
X,2,91,2 Q(yl! Y2 | Z)
is the mutual information which Y, and Y, provide about X when side information
Z about the source X is provided, Q(yy, ¥2 | z) being the transition probability
of receiving y; € Yy, y, € Y, when z € Z is transmitted.

B. Evaluation of Ry;(D;, D,)

Our problem is to minimise I(X; Y;, T2 { Z) subject to the constraints:

™ Oy ¥2| % 2) 20

(8) Y 0y >z ’ x,z) =1

and Y

©) ,,; , P(x,2) Q(yy, y2 | % Z) ai(x. yi) = Di (i =1,2)

We shall employ the technique of Lagrange multipliers for obtaining a solution
to this problem.
Ignoring the constraints (7) temporarily, we form the augumented function

‘I(Q) =1X;Y,, 1, [ Z) - % "(x’ Z)Z O(y1: V2 [ X, z) -

X,z Yisy2
2
—_Zl S0 Y P(x,2) Q0 ¥ | x, 2) e, vi)
= X,Z,¥1.¥2
where u(x,z) and S; (i = 1,2) are Lagrange multipliers. Taking log i(x, z) =
= u(x, z)[P(x, z), we can rewrite J(Q) as
(10)
00wy |%2)  _ 3
HQ)= ¥ P(x2) Qys 2| x, 2) log s = Y Siedx
xzyi Mx,2) Qyy, y2|2) =1 (x. 73)
For stationary points, we must have '
dJ(0) e
dQ(y;, y2|x 2)
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which gives

or QUnylxa) oo V]
P ) [] ® i, 200013 | 2) 5ol ’y‘)] ’

and consequently
2
(1) QUi y2|%2)  Ax2) Qis vz | ) exp (X S e, 1)
Now summing (11) over y1, ¥, and using the constraints (8); we get
2
(12) x2) = [T 00 y2 | 2) exp (L Sieibo vl
Yi.y2 i—

Further equations (9) and (11) give
(13) D, = Y ofx yi) Px, 2) Ax, 2) O(yy, y2 | 2) exp (Zl S; e, )

i
X,Z,¥1,¥2

Moreover from (11) we also have

Qi v2|%2) ooy v A
(14) log TSAE og A(x, z) +.Zl soix, ¥)

so that (6) and (14) yield
2
I(X; Y, Y2| Z) = ¥ SiD; + ¥, P(x, z) log A(x, z)
i1 X,z

Thus the minimum of I(X; Y3, Y, | Z) is given by
2
(15) Ryiz(Dy, D;) =Y, S;D; + ¥ P(x, z) log A(x, z)
i1 %z

Equations (13) and (15) are the Basic equations when side information about
the source is provided at the encoder and the decoder with fidelity criterion acting

along the main channel only.
When side information about the source is not provided at the encoder and the

decoder, then Basic equations (13) and (15) reduce to
2
D=} eilx yi) P(x) Ax) Q(yy, y2) exp (ZIS.- edx y)) (i=1,2)

X ¥1.¥2 =

and
2
Ry = Y 8,D; + Y P(x)log A(x)
=1 ;

where

Mx) = [ 3 001, y2) exp (éS.- el y))] ™!

Y1,¥2
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which are the Basic equations for broadcast channels obtained in [9] when no side
information is provided.
C. Convexity of Rx|z(D;> D2)

We now consider the convexity property of Ry z(Dy, D). For any pair of distor-
tion values (Dj, D3) and (D}, D3)and any number 4 € [0, 1] we shall show that

Ryjz(AD7 + (1 =2)Dy,aDy + (L =) D3) £
= ;-RX[Z(D;’ D'z) + (l - A) Rx[z(Dllly D;) .

Let Q'(v1. 75 [ x, z) and Q"(v1, ¥ | x, z) achieve the points (D}, Dy; Ryjz(D}, D3))
and (D}, Dj; Ryjz( D> D3)) respectively and let
(16) Q*(ylv Va2 I x,z) =14 Q,(yl’ Y2 [ *s Z) + (1 - )') Q”(YU Y2 I X, Z)

It is easy to see that {O*(¥y, ¥; | X, )} is a bonafide transition probability distri-
bution. Also we have

(17) Ry2(AD} + (1 = 4) D1, 2D} + (1 — 2 D3) £ 1(Q*(vy, y2 | x, 2))

where
(18) 104y, y2 [ %, 2) =
= Y Plx,z)[A QW | % 2) + (1 =2 Q" (yi, 2| %, 2)]
log A Q}(Yn an z) + (1 -4) Q”(.Vx, Va2 | X, Z)

10 y2]2) + (L= Q1 y2]| 2)
For a > 0, b = 0; we have the inequality
(19) log(a + b) < loga +B
a

with equality iff b = 0.
‘We shall use the inequality (19) for the set of values a4, b, and a,, b, given by
(20) o= QUuralxz) Q0 |x2)
0'(yiry2|2) Q" (y1¥2 | 2)
_ U= [00Ly|2) 0Ly |x2) = 01 y:]2) Q032 | % 2)]
(i y2 l 2 [A (1 2 l )+ (L =) Q01 2 I 2)]

by

and

b, = Q' (1 y2|2) QU1 y2 | %, 2) = Q1 2] 2) Q1,92 %, 2)]
Q32| 2 [ QU ya|2) + (1= D Q0w y2]| 2)]
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Now in view of (19) and (20) equation (18) gives

X,z )IOgQ(‘h’Jz X, 2 )
Q()’p}zl )

(1 =)0y ’x, Q,(yi’y2| QU()’D Y2 [ )Q,}nhlx’ z)]
(v, }’z’x Z)[AQ(hxhlz) +(1=2)Q" (hs)z{z)]

+U —/1) Z P(x Z)Q”)’i:)’z]x, Z)]OgQ(}l’V‘ X, )+
X,Z,¥1,¥2 Q() 112|

/[Q”(}19}ZIZ)Q(yI’YZ|Y ) = Q(yl‘yz[Z)Q(ynyzlxw
Q"(y1, Vz[x z [}bQ(ha)’zin'f‘ l_A)Q J’1,)z|

= QW y2 | 2) + (1= VHQ (1, y2 | %, 2))

1(Q*(y1, y2 | %, 2)) =3 /12 P(x, 2) Q' (y1. y2

+

ie.
(21) KQ*(y1, y2| % 2)) S A(Q(yy, vz | %, 2)) + (1 = DIQ"(y1> 2 | %, 2)) =
= IRy 5(D}, D3) + (L — Z) Ry(DY, D3)

Combining equations (17) and (21) we obtain that Ry;z(D;, D,)is a convex function
of D, and D,.

In the next section we consider the situation when the side information about the
source is provided at the encoder and the decoder and in addition to the fidelity
criteria Dy and D, acting along the side channel also.

3. BASIC EQUATIONS WHEN FIDELITY CRITERIA ARE OVER MAIN
AS WELL AS SIDE CHANNEL

A. Definition of Ry (D;, D5; d;, d)
ForD,; 20,D,20,d, =20,d, = 0;let M(Dl, D,; d,, dz) be the set of transition
probability distributions Q(yy, ya l x, z) satisfying
¥ odx i) P(x, 2) Q(y1s ¥2 | x,z) £ D,

X,Z,71,¥2

2 Q:'(Z, ,Vi) P(x’ Z) Q()’p Y2 1 X, Z) =d,; (i =1, 2)

X ZsY14Y2
where (2, ;) is the distortion between ze€ Z and y; € Y; (i = 1,2).
We define the rate distortion function Ry,(Dy, D,; dy, d,) with fidelity criteria
over the main channel and side channel as

(22) Ry Dy, Dys dy, dy) = min X, Y, Y, | Z)
Q(y1,¥2]%,2)eM(Dy,D2;dy ,d3)
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where 1(X; Y, Y, ] Z) is the ordinary Shannon’s mutual information between the
source X and reproduced alphabets Y; and Y, when side information Z about the

source X is prescribed.
B. Evaluation of Ry ;(D,, D,; d,, d;)

Our problem is to minimise I(X; Y}, Y, | Z) subject to the constraints (7), (8) and

(23) 2 edx y) P(x,2) Q(yy, y2 | %, 2) = D,

X2,V 1:Y2

(24) Z oilz, yi) P(x, z) Oy, ya l X, Z) =d, (i=12)

x,Z,¥1.)2

As earlier ignoring the constraints (7); we form the augmented function J(Q) as

J(Q) = 1(X; Y, Y, Z) - ):Zzﬁ(x, Y Qv ralx2) -

- ZS: Z g,—(x,y,-)P(x,z)Q(yl,yzlx,Z)—

=1 X251,

Si Y oz v) P(x, 2) Qs» ¥2 | %, 2)

1 x,z.y1,02

Mo

where B(x, z), S; and S; are Lagrange multipliers. Taking log n(x, z) = B(x, 2)[P(x, z);

we may rewrite J(Q) as
J(Q)= Y P(xz)0(ny:]xz2) [log 01, v2 [ 2) _
X,2.51,92 ) ( ! ) n(x, Z) Q(YD Y2 | Z)

2 2
—‘Zl S;ox. y) = ‘2155 ailz, ya)]
i= =

Now for stationary points, we must have

dJ(9) _
dQ(J’p Va2 | X, Z)

- : :
e 9 [tog 202N 5000 - S siaie )] - 0
or
(25) Q0|52 = 2) Qv 72 | D exp [ 3810530 + 3, 51 e, )
In view of equations (23), (24), (6) and (25) we now obtain
() D= ¥ o) P92 00 | )ero [3 Sias 1) +

+ iizlsé iz yi))
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(27) d; = 1_4 Q(Z y)P(x")’T(x z) Q(Yx }2IZ)€XP[ZS '(x’yi) +

+ ZISE ailz ¥:)]

X)Z,¥1,Y2

and

I(X; Y, Y, | Z) = 3, P(x, 2) log n(x, z) +§5,-D,- + 3. Sids
where " a
28 uxz)=[% Q(yl,nIZ)CXP[ZS ailx, y;) + ZS' ei(z y)117°

Yuy2

Clearly, Ry(Dy, Dy; dy, dy) which is the infimum of I(X; Y7, Y, [ Z) satlsﬁes

(29) RyiADy, Dy; dy, d,) = Y. P(x, z) log n(x, z) + Z S:D; + Z Sid;
N X,z i=1 i=1
These equations (26), (27) and (29) are the required basic equations for the case
under consideration.
Remark. It can be easily seen that the results of Section 2 follow as a special case
of the above equations.
C. Convexity of the function Ryx|z(D,, D,; dy, d,)

‘We now show that RX,Z(Dl, D,; dy, dy)is aconvex U function of Dy, D,; dy and d,.
Let the transition probabilities Q'(y1, y2 | %, z) and Q"(y,, y, | x, z) achieve the
points (Dj, D3, di, d5; RX|Z(D'1, Dy dy, d'z)) and (D, D3, dy, d3; RXIZ(D'{, Dy;
1, d3)) respectively and let for any scalar 1[0, 1],
0*(y1, ¥2 Ix, Z) =1 Q,()’I’ Y2 ’ x, z) + (1 - }‘) Q”()’b V2 , X, Z)

It easily follows that Q*(yl, Va2 | X, z) is a bonafide transition probability distribu-
tion and that D,(Q*) and d,(Q*) are linear functions of D; ,D, and d,, d, respectively
5o that

0*(y1, v, | x, 2) € M(AD} + (1 — ) Dy, AD} + (1 ~ A) Dy; id +
+ (1= A)dy,ady + (1 — 2) d)
Next we have
Ryz(AD}y + (1 = 2) DY, ADy + (1 — 2) Dys Ad + (L — Z) d}, Ady +
+ (L= 2)d3) S 1(Q*(ys, v2 | %, 2))
where I(Q*(yy, ¥z | %, 2)) is given by equation (18).

Again, using the inequality (19) for the values ay, by; a;, b, as given by equation

(20), we have
1Q*(y1s 23 %, 2)) < (Q(ys, y2 1%, 2)) + (1 = Q" (yy, v, | %, 2))
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Thus
Ryz(AD} + (1 — 2) Dy, D5 + (1 — ) D5 Ady + (L —A)d), 2dy + (1 —2)d3) =
4 RXIZ(D;’ D;; di, dé) + (1 - ]») Rx]z(D'{, Dj; dy, d'ﬁ)

Hence Ry 7(D,, D,; d,, d,) is a convex U function of Dy, D,, d, and d,.

4. CONTINUOUS CASE
We now extend the above investigation for the continuous case.

A. Definitions

Let us denote the source X by the infinitc sequence {...,X,_, X, X1y, ...}
(= <t < ) the side information Z about the source X by {..., Z,_1, Z,, 2,4y, ...}
(—o0 <t < o0); the message received by the receiver Y, by {..., ¥1s-1, Y16 View15+++}
(- <t < ) and the message received by the receiver Y, by {..., ¥2—1 V2o
Vags1s--} (—00 < t < o0). We shall denote the probability density function (p.d.f.)
of the source letter x € X by P(x), the p.d.f. of the side information letter z € Z
by P(z), the joint p.d.f. of x € X and z € Z by P(x, z), the transition p.d.f. of receiving
y1€Y,, y,€Y, when x€X and zeZ are transmitted through the channel by
O(yi, y2| %, z) and the joint p.df. of xeX, y,eY;, y.eY, and zeZ by
P(x, z, y1, yz)-

Now as usual, the distortion between the source letter x € X and the reproduced
letter y, € Y; (i = 1, 2) will be denoted by g{x, y;) where ¢(x, y;) Z 0 with equality
iff x =y, fori=12

Also the average distortion d,(Q) between the source alphabet X and the reproduced
alphabet Y; is defined by

(1) d(Q) = J j ﬂdx az dyy dys P(x, 2) O(rsr y2 | %) o 3) (i = 1,2)

The transition p.d.f. Q(yl, Y2 l X, z) is said to be D; admissible if

(32) d(Q) =D, (i=12)
We shall denote the set of all D; admissible transition probabilities Q(y;, y» [ x, z) by
(33) M(Dh Dz) = {Qi(YI:J’z | X, Z) : di(Q) S Dgi=1, 2}

Further, the mutual information between the source alphabet X and the reproduced
alphabets Y, and Y, when side information Z about the source alphabet is pre-
scribed is given by

(34) (X; Y, Y, |2) =
(1 ¥21 %, 2)

= H‘J‘(dx dz dy, dy, P(x, z) Q(y1, ¥2 | x, z) log _‘QQ(y,, v 12)

o
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We now define the rate distortion function Ryz(D, D,) of the source X when side
information Z about the source is provided at the encoder and the decoder and there
is fidelity criteria acting only over the main channel as

RyA(Dy, D) = Inf I(X;Y,,Y,|2)
0

(y1.y2]%,z)e M(D1,D2)

B. Evaluation of Ryz(D,, D,)

We now proceed to evaluate the function Ry;z(D1, D,). Our problem is to minimise
I(X; Y,, Y, | Z) subject to the constraints:

(36) Q(YI’ J"zIX, Z) =0, '
(7 del 4y, Qvy, y2| % 2) = 1,
and

(39) J'm'dx ;12 dys dys P(x,2) Qv v2 | % D) ek v) = Do (i=1,2)

In order to solve it, we shall employ the classical methods of multipliers and the
calculus of variations. As usual, ignoring the constraints (36) temporarily, we form
the augumented function

J(Q) =I(X;Y, 1, | z) - JIdx dz u(x, Z) jd)’1 dy, Q()’l’ Y2 l X, z) —
- i Sijjjjdx dzdy, dy, P(x, 2) Q1 ¥z | %, 2) i, yi) =
i=1

- ﬂ'ﬂdx dz dyy dy; P(x, 2) Q0 2 | % 2) [log A(TQ%%Z) -

2
- Z S; Q,-(x-, .Vi):|

i=1
where u(x,z) and Sis (i =1,2) are Lagrange multipliers and log i(x, z) =
= u(x, z)[P(x, z).
Let us consider a perturbation Q*(y,, ¥, [ x, z) about Q(y1, ¥, I x, z) given by
(39) 0* (v, 72| % 2) = Qv y2 | % 2) + ey 32 | %, 2)
where 5(yy, ¥2 | X, z) is such that

(40) ﬂd.vl dy, iy y2|x.2) =0
For stationary points, we must have

(e _,

8=0
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and so

Ifdx dz P(x, z) jdyl Ay n(ys, y2 | %, 2) {log O ya|x2)

Ax, z) O(y1» ¥2 | z)
2
- TS0, )} -o.
i=1
It now follows from (40) and a Fundamental Theorem of the Calculus of Variations

(cf. [2]) that

Q(J’IL}’IZJ,?‘E 5 2'5. (5, 9) = f(x, z
(41) log Xx,2) Q(y1s v2| 2) LSelor) =12

where f(x, z) is a function of x and z only.
Rewriting the equation (41) as

@) ura|xa) = Qs D2 De | 3,0 )

where

¥ 2) = A ) exp U 2)
and using (42) the equation (38) gives

@) o= [[[forazan ar et p ) 0 9 2109,
- €Xp {':Z‘S,» eilx, yi)} -
Further (34) and (42) together yield
I(X; Y, Y, i Z)= J:[dx dz P(x, z) log 1'(x, z) +i§1SiDi
and consequently Ry (D, D,) is given by

2
(44) RyiaDs Da) = H dx dz P(x, z) log (x.2) + ¥, S.D,
i1

where

(45) V(x,2) = [_Udyl dy2 Q1 y2 | 2) exp [iisi e yx)]] 1

Equations (43) and (44) are the required forms of the Variational equations when
side information about the source is provided at the encoder and the decoder and
there is fidelity criteria acting along the main channel only.

C. Definition and Evaluation of Ry;,(D,, D,; d,, d,)

We now consider the situation when in addition to the fidelity criteria D; and D,
acting on the main channel, there aie fidelity criteria d; and d, acting on the side
channel also.
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For D; =0, D, 20,d, 20, d, =0, we define M(Dy, Dy; dy, d,) to be the set
of transition probability density function Q(yl, yalx, z) satisfying

J:’l”hx dzdy, dy, g,-(X, .Vi) P(x, Z, Y1 yz) = D,
ﬂﬂdx dzdy, dy; 0}z, yo) P(x, 2, y1, y2) £

where g}(z, y,) is the distortion between ze Zand y, € Y; (i=12).
Also we define the rate distortion function Ryiz(Dy, Dy; dy, dz) with fidelity criteria
acting on the main as well as the side channel, as

(46) RyoDyy Do dy, dy) = Inf I(X;Y,Y,|Z)

Q(r1,¥2|x,2)eM(D1,D2;d5,d2)

where I(X; Yy, Y, [ Z) is the ordinary Shannon’s mutual information given by (34).
Our problem is to minimise I(X; Y3, X, l Z) subject to the constraints (36), (37),
(38) and

47 ﬂﬂdx dz dy, dy; oi(z, y:) P(x, 2) Qv y2 | %, 2) = d; (i =1, 2)
Ignoring the constraints (36) temporarily, we form the augumented function

J(Q)=IX;Y,, Y, | z) —Jl[dx dz u(x, z) del dy, 9(y1, ¥2 | %, z) —
- S;Hﬂdx dz dy; dy, P(x, 2) Q(yy, y2 | %, 2) ai(%, y2) —
i=1

2 ~
- Z S;JJ'J‘J‘dx dzdy, dy; P(x, 2) Q(vy, y2 | %, 2) 0i(z, y:) =
= ﬂ]]dx dzdy, dy, P(x, z) Q(y1, ¥2 | X, z) I:Iog M -

Mx, 2) Qv 32| 2)
2 2
- Z S; Qi(xs )'i) - ZlS; Q;(Z, yi)]
i1 =
where u(x,z) and S, S; (i = 1,2) are Lagrange multipliers and log A(x, z) =
= u(x, z)[P(x, z)-

Now proceeding on lines considered in substitutions above, we arrive at the
following stationary point tiansition probabilities

(48) O(yp 2 J x,z) =
. 2 2
= Oy, ¥2 I 7-') n(x, Z) exp [ zlsi Qi(x: Yi) + Z S; QE(Z, J’i)}
i= i=1
where 7(x, z) = A(x, z) exp {g(x, z)}; g(x, z) being the function of x and z only.
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Thus we obtain

(49) D; = ”J‘J.dx dz dy, dy; edx ¥:) P(x, 2) Q(r1, ¥2 [ 2)n(x, 2) .
2 2

cexp {3 Siadx, yi) + :lez oz yi)}

i=1 =

(50) d; = ﬂ” dx dz dy; dy; €}z, v:) P(x, 2) Q(ye, v2 | 2) nl(x, 2) -

. exp {‘Z:‘S,» odx, yi) + Y. Siaiz v} »

=1
and
2 2
(51) Ryz = L(dx dz P(x, z)log n(x, z) + Y. S;D; + Y. Sid;
=1 =1
where
(2) o 2) =

2 2
=M@mﬂ@thﬂ§M@Mf¥ﬂﬁMﬂ

Equations (49), (50) and (51) are the required forms of the Variational equations
when side information about the source is provided at the encoder and the decoder
and there are fidelity criteria acting along the main as well as the side channel.

5. GAUSSIAN CHANNEL

We now examine the forms of the Variational equations for Gaussian channel
when fidelity criteria are acting along the main channel only.

Let X be the source with mean zero and variance o2, Z be the side information
about the source provided at the encoder and the decoder with mean zero and
variance o2 and Y; be the message received with mean zero and variance ol (i=1,2).
Let the joint p.d.f. of X and Z be given by the following gaussian distribution

1 1 %2 2xzo z*
53 Pi X,z) = ex: —_ PO Xz + =
R e (Y 3k Wb eyl o) |

where ¢ is the coefficient of correlation between x and z. Let us suppose that the
outputs are statistically independent. The conditional gaussian distribution of output
Y; when side information Z about the source is given, may as well be considered
to be given by

1 1
(54) Qi(yil Z) = ’ \/(27'6(1 _ gzzyl))e)(p{— 21{0’262(1 - QZ )

z¥yi zyi.
where @.,, is the coefficient of correlation between y; and z (i = 1, 2).

(yio-z - Qlyiza)z'i)}
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We shall use the above forms of p.d.f. ’s in determining the values of D;and Ry 7
as provided by (43) and (44) for the case when the distortion between x and y, is
given by

(55) ez y) = (x —y)* (i=12)
i.e. when there is the squared error fidelity criterion acting on the main channel.

For distortion measure g,(x, y;) and the transition p.d.f. Q(y; | z) as given by (55)
and (54) respectively, equation (45) gives

(6) A 2) = ilf[n/(l + 28i07 (1 - @3,)) cxp( Silxo, — 20,0, ))

a2l + 2Si3(1 - 2,,)

provided that

0204 2
. 1+ 280, — 0y Zfigy‘(l 3 ) >0, (refer [7])
20'”(1 - sz;) :
where §’ = —S is a non—ve quantity (refer [1]).
Now using (53) and (56), we obtain

2
(57) J'Idx dz P(x, z) log A'(x, z) = ii;log (1 + 287 (1 — e3) +

2 S;[o‘i + nyi“;%( - 2Gx‘7yigngzy(]
= 1428621 - 02,)
Thus from (43) and (44) we get

+

(5%) D= O T 2l + 05+ 2Sio (L =) o)
' [1 + 28051 - o5,)]
and
2 2
(%9) Ryiz = Y, S:D; + 1 3 log (1 + 2Sio3,(1 ~ 03,) +
i=1 i=1

2 Q.2 2 2
+ 5 Siloz = 650, — 20,0,00:00, ]

i=1 1+ 2Si62(1 — @2,)

Uy
*~ Equations (58) and (59) are the required Variational equations for Gaussian Channel
under squared error fidelity criterion.

In our opinion the results of this paper can be of significant interest for further
work in the direction of evaluating the bounds on rate distortion function for broad-
cast channel. Source coding theorems for these channels with side information
provided at the encoder and the decoder may also be established on lines similar
to those considered in [10].

(Received October 29, 1981.)
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