KYBERNETIKA— VOLUME /8 (1982), NUMBER 5

FIRST-ORDER AUTOREGRESSIVE PROCESSES
WITH TIME-DEPENDENT RANDOM PARAMETERS

ALENA KOUBKOVA

We consider a first-order autoregressive process {X,} with random parameters which are not
independent in time. We ask when {X,} is stationary and derive the form of its covariance func-
tion and spectral density under the assumption that the random parameters generate a first-order
moving-average process. We also construct the best linear prediction.

1. INTRODUCTION

Autoregressive models with random parameters are natural generalizations of
classical autoregressive processes. The problem of stationarity of the autoregressive
series with independent random coefficients was solved by Andél (see [1]) and
Nicholls and Quinn (see [3]). In some practical situations (for instance in applica-
tions to economy) the assumption of independence cannot be accepted and it is
suitable to consider some kind of time-dependence among the coefficients. In the
simplest case random parameters generate the first-order moving average process.
In this paper we investigate conditions of stationarity of such a series, its covariance
function and spectral density, the inverse of its variance matrix and we construct
the best linear prediction.

We shall assume that the first-order autoregressive series with random parameters
is generated from a random variable X, with EX, = 0 and Var X, = ¢* > 0 by

(1) X, =b()X,-y +a 'Y, for t=2,..,N

where Y,, ..., Yy are independent random variables with zero means, unit variances,
and independent of X,; a > 0 is a number and b(2), ..., b(N) is a series of random
parameters generated by

@ b(t) = BoZo + FrZoey for t=2,..,N
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where Z,, ..., Zy are independent random variables with zero means and the same
variance 6% > 0 which are independent of X, Ys, ..., Yy, and f, + 0, B, + 0 are
real numbers. Obviously

(3) Eb(t)=0 for t=2,...N
and the covariance function B(f) of {b(f)} satisfies
B(0) = Eb*(s) = (B + B1) 8",
) B(1) = Eb(s + 1) b(s) = BoB,5%,
B(t) =0 for t=2,...,N—2.

2. CONDITIONS FOR STATIONARITY AND COVARIANCE
FUNCTION

If we write X, in the equivalent form
(35) X, =b()b(t = 1)...b(2) X, +a ' b(t) ... b(3) V5 + ...
e+ a ()Y, + a7y,
then it becomes evident that the assumption of independence Z, ..., Zyon X, Ys, ...
..., Yy implies
(6) EX,=0 forall 1.
The covariance function R(s, t) of {X,} is
(7) R(s,t) = EX.X, = Eb(s)... b(t + 1) b7(1) ... b*(2) 0 +
+ a 2E[b(s)... b(t + 1) b2(t) ... b*(3) + ... + b(s)... b{r + 1)]
fors,t =2,..,N,s 2 tand
R(s, 1) = E[b(s) b(s — 1}... b(2)] o* . .
Now what we ask is, under which conditions R(s, t) depends only on the difference

s — 1. We first derive a necessary condition for stationarity of {X,}.

Lemma 1. Let the variables Z,, ..., Zy have the same moments EZ? and EZ}

for all 1. If the series X1, ..., Xy is stationary, then

(8) EZ} =0, EZ}=6* forall t=1,..,N

and

©) o U here B+ o2 <1
LB+ e co
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Proof. If X,,..., Xy is stationary then VarX, = VarX, = ... Var X, = ¢?
where (by (7))

(1) VarX, = EX? = EbX(s) ... b%(2) 0 + a2E[b(s)... b(3) + ...
o+ b(s)+ 1] for s=2,...,N.
Now from Var X, = ¢% we get (9), from Var X; = o? we get EZ{ = 6* and from

Var X, = 0% we get EZ} =0. 0

Lemma 2. Let Z,, ..., Zy be independent random variables with EZ, = 0, EZ? =
= &% EZ} = 0, EZ} = 6* for all 7 and let b(2),..., b(N) be generated by (2). Then
s—k-1
(11) EZ2b¥(s)... b3 (k) = B3 Y. YOI VEDYs ~ j — 1) ... b¥(k) +
? 5
+ BIERS*CTOEZE D (k)
foral2 <ssNand2 <k s )
Proof. We usc induction. Evidently (11) holds for s = k = 2. Now
EZZb%(s) ... b*(k) = PEEZIEL* (s — 1) ... b*(k) +
+ REZZEZZ (s — 1)... b(k)
and from the assumption that (1 1) holds for s — 1 it follows that it holds for s, too.
Lemma 3. Under the assumptions of Lemma 2 it holds
(12) Eb*(s) ... b*(k) = [0%(65 + AT
for2£s<Nand2 =k £s.

Proof. We use induction again. Obviously (12) holds for s = k = 2. Assume that
it holds for s — 1. Then

Eb?(s) ... b¥(k) = BoEZIEb*(s — 1)... b*(k) + BTEZZ_ (b*(s — 1)... b*(K).
Now (12) follows from the induction assumption and Lemma 2. O
Corollary 4. The conditions (8) and (9) imply that Var X, = o for all s = 2, ...
.o N.

Proof follows from (10) and Lemma 3. O
Next we show that the conditions (8) and (9) are sufficient for stationarity of X, ...
..., Xy. First we prove two auxiliary lemmas.

Lemma 5. Under the assumptions of Lemma 2 it holds
(13) EZb*(s)... b*(k) =0

foral2 < s<Nand2 £k <s.
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Proof. We use induction. 1t is easy to prove that EZ,b%(2) = 0. Now
EZb%(s) ... b2(k) = BoBLEZZEZ,_,b*(s — 1)... b*(k)
and it is equal to 0 by the induction assumption. ]

Lemma 6. Under the assumptions of Lemma 2 it holds

(14) Eb(s)... b(k) = BoB18%Eb(s — 2) ... b(k)
for2£k<N-2andk +2=<s < Nand
(15) Eb(s)... b(t + 1) b*(1) ... b*(k) =

= Pof10%Eb{s — 2) ... b(t + 1) b*(r) ... b2(k)
forall 2 <t N -2 1+2<s<Nand2 k=t

Proof is easy. m]

Corollary 7. The covariance function R(s, 1) satisfies
(16) R(s, 1) = BoBi0°R(s — 2,1)
foralll £t <N —-2andt+2=<s<N.

Theorem 8. The series X, ..., X, is stationary if and only if (8) and (9) are satisfied.
The covariance function R(r) is of the form

o¥(Bop16°)"* for t even
= = e N - .
(17 R(1) {O for t odd t=01 .. !

Proof. From Corollary 4 it follows R(0) = ¢”. Evidently R(2, 1) = Eb(2) ¢* = 0.
From Lemma 5 we obtain that

Eb(s + 1) bX(s) ... b*(k) = B,EZb?(s)... b*(k) = 0
and it implies R(s -+ 1, s) = 0 = R(1). Then we use Corollary 7 and get
(18) Rty = R(s + t,5) = BoP16* R(s + t — 2,5) = Bof,0° R(t — 2)

for t = 2,..., N — 1. We use induction to conclude the proof. [}

3. SPECTRAL DENSITY

Theorem 9. The spectral density of the series X, ..., Xy exists and it is equal to

1) = a? 1 — (BoB19%)?
’ 21 1 — 2f0f,67 cos 24 + (BoB10%)

(19)
forie(—mmn>.
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Proof. A sufficient condition for existence of the spectral density is
(20) z lR t l < w

(see [2], p- 43). In our case (20) is equal to az Z |BoB182|'" which is a geometric

series with the quotient |/i0/)’1§2! < I and so (20) holds Now the spectral density
can be computed by

(21) () = L Y e R(Y)
(see [2]. p- 43). O

4. INVERSE OF VARIANCE MATRIX

Lemma 10. The series X (, ..., Xy has the same variance matrix as the second-order
autoregressive series with fixed parameters generated by
(22) V.= BoB0*V,_y + ¢ 'Y, for t=3,..,N

where V;, V, are random variables with zero means and a covariance matrix

62 0
b _<0 a'2>

which are independent of Y3, ..., Yy and
¢l = g7! \/7_1_‘ ('[?0/)’152)2_.
1= (5 + 50
Proof. Evidently EV, =0 and R(t) = Bof,6° R(t — 2)for t=2,..,N ~ 1.
For t = 0 we get

R(0) = EV} = (BoB8%) EVI 5 + ¢™% = (BoB07) R(0) + ¢ 2
and so
—2 -2
RO = — o= g2,
1- (ﬁ0ﬁ16 ) 1- (ﬂo + ﬁ1)52
For ¢t = 1 we have
R(l) =B V= ﬁuﬁlézEVt—IVz = ﬁoﬂ152 R(l)‘

and then R(1) = 0. o

Theorem 11. Denote G = Var (X, ..., X)) where N 2 2. Then clements 7,
of the matrix H = G™* are

a) for N =2:
(23) hyy=hyy =0"% by = hy = 0;
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b) for N = 3:

1
hyy = hs; = e, hy, = ¢ 2 ,
o*[1 ~ (BoB10°)]
= BoB16*
(24) hyy = hyy = — L0
' a?[1 ~ (Boh18%)7] '

hy, = 0 in the other cases:

c) for N = 4:
1
hy = ———-——— for s=1,...,4,
T L= (Boi?))

—Bord® -
0_2[1 - (ﬁvﬁléz)z] for s=1,2,

hy = 0 in the other cases;

d) for N > 4:

(25) hysi2 = hyirs =

1
o[1 — (Bob10?)]

2)2
(11,3 S O S VP

hy, =

I 58 e =
T — (o0

—BoB10*
a1 = (Boh:9°)°]

hy, = 0 in the other cases.

(26) Bogyr = hyay = for s=1,..,N-2,

Proof. We can use the resulis for the inverse of the variance matrix of the series
Vi, Vy (see [2], p. 170-172). 0
5. PREDICTION

Assume that X, ..., X are known variables. We shall find the best linear pre-
diction X’NH of the variable Xy, based on X, ..., Xy, ie. XNJ,, will be of the form

27 Kyre =X + .o+ epXy
such that

(23) B — Xy

is minimal.
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Theorem 12. The best linear prediction of the random variable X ., based on
Xy, oo Xyis

(29) 2. - (BoB18%)"* Xy for t even
Nt (BoP103) "V Xy, for t odd.
The residual variance in both cases is

(30) 42 = E(XN» ¢ XN+1)Z = ’72[1 - (ﬁOﬁléz)'] .

Proof. Minimization of (28) leads to normal equations

(31) E(Xyy = Xy = . — X)X, =0 for k=1,..,N.
In the matrix form it is
€y EXy+ Xy
Var (X, ... Xy) |1 ) =
Y EXys Xy
and then
I RN +1t—1)
(32) t]l=H :
Cx) R(t)
From (32) and Theorem 11 we get
(33) ¢y =...=cy_; =0, cy=(Bof0%)"* forteven,
Gg=..=cya=cy=0, cy; = (ﬁoﬁl‘sl){lﬂ)/z

for ¢ odd.

The proof (30) is easy. ]

(Received February 3, 1982.)
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