SOME NONLINEAR STATISTICAL PROBLEMS OF A POISSON PROCESS

FRANTIŠEK ŠTULAJTER

Abstract

Some results of the theory of random vectors with values in linear spaces are used to study the structure of a space of random variables with finite dispersion generated by a Poisson process and the problem of estimation of nonlinear functionals of an intensity measure of a Poisson process.

1. INTRODUCTION

The aim of this paper is to study some nonlinear statistical problems of a Poisson random process. Similar problems are considered for example in [1] or in [3] for double stochastic Poisson processes. We shall study in more details the structure of the space $L^{2}(P(\lambda))$ of random variables with finite dispersion generated by a Poisson process with an intensity measure λ and the problem of estimation of nonlinear functionals of an unknown intensity measure λ of a Poisson process. It is shown that $L^{2}(P(\lambda))$ is equal to the orthogonal sum of $L_{n}^{2}(P(\lambda)) ; n \geqq 0$, where $L_{n}^{2}(P(\lambda)) ; n \geqq 0$ are (mutually orthogonal) subspaces of $L^{2}(P(\lambda)) . L_{0}^{2}$ is the space of constants, L_{1}^{2} is "the linear subspace" of $L^{2}(P(\lambda))$, generated by the centered Poisson process, L_{2}^{2} is "the quadratic subspace" of $L^{2}(P(\lambda))$, and so on. Generating sets of $L_{n}^{2}(P(\lambda))$ for $n=1,2,3$ and 4 are given. The same result is true for the space of random variables with a finite dispersion generated by a Gaussian process with zero mean value and a given covariance function as it is shown in [8]. But the rule according to which we form the generating sets of $L_{n}^{2} ; n \geqq 0$ for a Gaussian process is different from that derived here for the generating sets of a Poisson process.

In the Part 4 of this paper it is shown that every "polynomial" of a measure λ_{f} (given by $\lambda_{f}(\mathrm{~A})=\int_{A} f \mathrm{~d} \lambda_{0}$) has an unbiased estimate. It is shown that a dispersion of the best unbiased estimate can be calculated by the same way as it is given in [9].

2. PRELIMINARIES REGARDING POISSON PROCESS

There are many possibilities to define a Poisson process. The best way, for our objective, is to define a Poisson process as a random point measure valued vector as it is done in [7], where the following statements can be found.
Let (T, \mathscr{T}) be a measurable space; denote by $\mathscr{M}(T, \mathscr{T})$ the vector space of finite measures defined on (T, \mathscr{T}) and by $\mathscr{L}_{\infty}(T, \mathscr{T})$ the space of bounded measurable functions defined on (T, \mathscr{T}). Let $\mathscr{C}\left(\mathscr{H}, \mathscr{L}_{\infty}\right)$ be a σ-algebra of subsets of $\mathscr{M}(T, \mathscr{T})$, generated by linear transformations $\mu \rightarrow \mu(A) ; A \in \mathscr{T}$. Then we have: for every fixed finite measure $\lambda \in \mathscr{M}(T, \mathscr{T})$ there exists a unique probability measure $P(\lambda)$ defined on $\left(\mathscr{M}(T, \mathscr{T}), \mathscr{C}\left(\mathscr{M}, \mathscr{L}_{\infty}\right)\right)$ called the Poisson law with intensity λ on $\mathscr{M}(T, \mathscr{T})$. This measure is a distribution of a Poisson process X transforming a probability space $\left(\Omega, \mathscr{F}, P_{\mathrm{i}}\right)$ into $(\mathscr{M}, \mathscr{C})$. Realizations of the random process X have the form $X(\omega)=\sum_{j=1}^{n(\omega)} \delta_{t_{j}(\omega)}$, where $\left\{t_{1}(\omega), \ldots, t_{n(\omega)}(\omega)\right\}$ is a finite set of points of T and δ is a Dirac measure. The random process X has the following properties: for every $A \in \mathscr{T}$ the random variable

$$
\left\langle X(\omega), \chi_{A}\right\rangle=\int_{A} \mathrm{~d}\left(\sum_{j=1}^{n(\omega)} \delta_{t_{j}(\omega)}\right)=N_{A}(\omega)=\text { the number of points }
$$

$t_{j}(\omega)$ in the set A,
has a Poisson distribution with the parameter $\lambda(A)$. If f_{1}, \ldots, f_{n} belong to $\mathscr{L}_{\infty}(T, \mathscr{T})$ and have disjoint supports, then $\left\langle X, f_{1}\right\rangle, \ldots,\left\langle X, f_{n}\right\rangle$ are independent random variables, where

$$
\left\langle X, f_{i}\right\rangle(\omega)=\left\langle X(\omega), f_{i}\right\rangle=\int f_{i} \mathrm{~d}\left(\sum_{j=1}^{n(\omega)} \delta_{t(\omega)}\right) ; \quad i=1, \ldots, n .
$$

The real Laplace transform of the probability space $(\mathscr{M}, \mathscr{C}, P(\lambda))$ is given by $L_{P_{(\lambda)}}(f)=$ $=\int \mathrm{e}^{\psi(f)} \mathrm{d} P(\lambda)$, where ψ is an isomorphism between the vector space $L_{0}(T, \mathscr{T}, \lambda)$, consisting of classes of equivalence of real measurable functions defined on (T, \mathscr{T}) and the space $L(\mathscr{M}, \mathscr{C}, P(\lambda))$, given by

$$
\psi(f)\left(\sum_{j=1}^{n(\omega)} \delta_{t_{j}(\omega)}\right)=\sum_{j=1}^{n(\omega)} f\left(t_{j}(\omega)\right) .
$$

We can write $L_{P(\lambda)}(f)=\exp \left\{\int_{T}\left(\mathrm{e}^{f}-1\right) \mathrm{d} \lambda\right\}$. The Laplace transform is finite, and so defined, for those functions $f \in L_{0}(T, \mathscr{T}, \lambda)$ for which a function $g=\mathrm{e}^{f}$ belongs to $L^{1}(T, \mathscr{T}, \lambda)$; it is the set

$$
D=\left\{f \in L_{0}: f=\ln g ; g \geqq 0, g \in L^{1}(T, \mathscr{T}, \lambda)\right\}
$$

The function $f=0 \bmod \lambda$ is an inner point of the set D, from which we have that a transformation x_{P} defined by

$$
\left[x_{P}(Y)\right](f)=\mathrm{E}_{P_{\lambda}}\left[Y \cdot \mathrm{e}^{\psi(s) / 2}\right] ; \quad Y \in L^{2}\left(\mathscr{M}, \mathscr{C}, P_{\lambda}\right), \quad f \in D
$$

is an isomorphism between the Hilbert spaces $L^{2}(\mathscr{M}, \mathscr{C}, P(\lambda))$ and a reproducing kernel Hilbert space $H\left(K_{\lambda}\right)$ with the kernel

$$
K_{\lambda}\left(f, f^{\prime}\right)=L_{P(\lambda)}\left(\frac{f+f^{\prime}}{2}\right) ; \quad f, f^{\prime} \in D .
$$

The problem of equivalence of two Poisson laws $P(\lambda)$ and $P\left(\lambda_{0}\right)$ is solved by the next assertion: let λ and λ_{0} be two positive finite measures on (T, \mathscr{T}). Then $P(\lambda)$ and $P\left(\lambda_{0}\right)$ are equivalent iff λ and λ_{0} are equivalent. In the last case denote by $f_{\lambda}=\mathrm{d} \lambda / \mathrm{d} \lambda_{0}$. Then

$$
\frac{\mathrm{d} P(\lambda)}{\mathrm{d} P\left(\lambda_{0}\right)}=\exp \left\{\psi\left(\ln f_{\lambda}\right)-\int_{T}\left(f_{\lambda}-1\right) \mathrm{d} \lambda_{0}\right\},
$$

where ψ is the above mentioned isomorphism restricted to $L^{1}\left(T, \mathscr{T}, \lambda_{0}\right)$.
Now let $T=\left[0, T_{0}\right], T_{0}>0$ be an interval on the real line. Then $N(t)=$ $=\left\langle X, \chi_{[0, t]}\right\rangle ; 0 \leqq t \leqq T_{0}$ is a Poisson process with an intensity measure λ, for which we have:

$$
\mathrm{E}_{\lambda}[N(t)]=\lambda([0, t]) ; \quad 0 \leqq t \leqq T_{0}
$$

and

$$
R_{\lambda}(s, t)=\operatorname{Cov}_{\lambda}[N(s), N(t)]=\lambda([0, \min (s, t)])=\left(\chi_{[0, s]}, \chi_{[0, t t}\right)_{L^{2}(\lambda)} .
$$

In a special case when λ is Lebesgue measure we get $R_{\lambda}(s, t)=\min (s, t)$, what is the covariance function of the Gaussian Wiener process, too. In the following section we show how these results can be used to solve some nonlinear statistical problems of a Poisson process. The results obtained, are similar to those valid for a Gaussian random process, described in [8] and [9].

3. THE STRUCTURE OF THE SPACE $L^{2}(\mathscr{M}, \mathscr{C} P(\lambda))$

Let (T, \mathscr{T}) be a measurable space, λ a finite measure on it and $P(\lambda)$ a distribution of a Poisson process X with values in $(\mathscr{M}, \mathscr{C})$. To solve statistical problems of nonlinear estimation of random variables (for example problems of noniinear filtration) based on a Poisson process it is necessary to know the structure of the space $L^{2}(\mathscr{M}, \mathscr{C}$, $P(\lambda))=L^{2}(P(\lambda))$.
It was mentioned in the Section 1 that the Hilbert space $L^{2}(\mathscr{M}, \mathscr{C}, P(\lambda))$ is isomorphic with the reproducing kernel Hilbert space $H\left(K_{\lambda}\right)$ with a kernel

$$
K_{\lambda}(f, g)=L_{P(\lambda)}\left(\frac{f+g}{2}\right)=\exp \left\{\int_{T}\left(\mathrm{e}^{f / 2} \cdot \mathrm{e}^{g / 2}-1\right) \mathrm{d} \lambda\right\},
$$

where this kernel is defined on a set $E \times E$ with

$$
E=\left\{f \in L_{0}: \mathrm{e}^{f / 2} \in L^{1}(T, \mathscr{T}, \lambda)\right\}=\left\{f: f=\ln h ; h \geqq 0, h \in L^{2}(\lambda)\right\} .
$$

According to this isomorphism, the system of random variables $\{\exp \psi(f) ; f \in E\}$
generates $L^{2}(\mathscr{M}, \mathscr{C}, P(\lambda))$. Since it is difficult to characterise the space $H\left(K_{\lambda}\right)$, we use the fact that the set of random variables $\left\{\exp \left\{\psi(f)-\int_{T}\left(\mathrm{e}^{f}-1\right) \mathrm{d} \lambda\right\} ; f \in E\right\}$ generates $L^{2}(P(\lambda))$ too, and according to Lemma 2 of [8] we have the following assertion: the Hilbert space $L^{2}(P(\lambda))$ is isomorphic with a reproducing kernel Hilbert space $H\left(M_{\lambda}\right)$ of functionals defined on E, with a kernel

$$
\begin{gathered}
M_{\lambda}(f, g)=E_{P(\lambda)}\left[\exp \left\{\psi(f)-\int_{T}\left(e^{f}-1\right) \mathrm{d} \lambda\right\} \exp \left\{\psi(g)-\int_{T}\left(e^{g}-1\right) \mathrm{d} \lambda\right\}\right]= \\
=\exp \left\{\int_{T}\left(\mathrm{e}^{f}-1\right)\left(\mathrm{e}^{g}-1\right) \mathrm{d} \lambda\right\}, f, g \in E
\end{gathered}
$$

Now let $H\left(N_{\lambda}\right)$ be a reproducing kernel Hilbert space with a kernel

$$
N_{\lambda}\left(h, h^{\prime}\right)=\exp \left\{\int_{T} h \cdot h^{\prime} \mathrm{d} \lambda\right\} ; \quad h, h^{\prime} \in F
$$

where

$$
F=\left\{h \in L^{2}(T, \mathscr{T}, \lambda): h \geqq-1 \bmod \lambda\right\} .
$$

Define a transformation ϑ on a set of generating elements of $H\left(N_{\lambda}\right)$ onto a set of generating elements of $H\left(M_{\lambda}\right)$ by $\vartheta\left(N_{\lambda}(\cdot, h)\right)=M_{\lambda}(\cdot, \ln (h+1)) ; h \in F$. ϑ can be naturally extended to an isomorphism between $H\left(N_{\lambda}\right)$ and $H\left(M_{\lambda}\right)$, because we have:

$$
\begin{aligned}
& \left\langle N_{\lambda}(\cdot, h), N_{\lambda}\left(\cdot, h^{\prime}\right)\right\rangle_{H\left(N_{\lambda}\right)}=\left\langle\vartheta\left(N_{\lambda}(\cdot, h)\right), \vartheta\left(N_{\lambda}\left(\cdot, h^{\prime}\right)\right)\right\rangle_{H\left(M_{\lambda}\right)}= \\
= & \left\langle M_{\lambda}(\cdot, \ln (h+1)), M_{\lambda}\left(\cdot, \ln \left(h^{\prime}+1\right)\right)\right\rangle_{H\left(M_{\lambda}\right)}=\exp \left\{\left(h, h^{\prime}\right)_{L^{2}(\lambda)}\right\} ;
\end{aligned}
$$

$h, h^{\prime} \in F$. Thus we have proved the following lemma:
Lemma 3.1. The Hilbert space $L^{2}(\mathscr{A}, \mathscr{C}, P(\lambda))$ is isomorphic with the reproducing kernel Hilbert space $H\left(N_{\lambda}\right)$ with the kernel $N_{\lambda}\left(h, h^{\prime}\right)=\exp \left\{\int_{T} h h^{\prime} \mathrm{d} \lambda\right\} ; h, h^{\prime} \in F$.

Now we are able to give the following theorem.

Theorem 3.1. There exist an isomorphism say φ, between the Hilbert space $L^{2}(\mathscr{M}, \mathscr{B}, P(\lambda))$ and $\exp \odot L^{2}(T, \mathscr{T}, \lambda)=\oplus L^{2}(T, \mathscr{T}, \lambda)^{n \odot}$, where $L^{2}(\lambda)^{n \odot}$ is the n-th symmetric tensor power of the space | $n \geq 0$ |
| :--- |
| $L^{2}(\lambda)$. |
| 1 |

Proof. It was proved in Lemma 3.1. that $L^{2}(P(\lambda))$ is isomorphic with $H\left(N_{\lambda} ; F\right)$ where $N_{\lambda}\left(h, h^{\prime}\right)=\exp \left\{\left(h, h^{\prime}\right)_{L^{2}(\lambda)}\right\}$ is defined on $F \times F, F$ being a subset of $L^{2}(\lambda)$. It is known from the properties of RKHS (see [5]) that $H\left(N_{2} ; F\right)$ is isomorphic with a subspace of RKHS $H\left(N_{\lambda} ; L^{2}(\lambda)\right)$ of functionals defined on $L^{2}(\lambda)$ generated by a set of functionals $\left\{N_{\lambda}(\cdot, h) ; h \in F\right\}$. Since $H\left(N_{\lambda} ; L^{2}(\lambda)\right)$ is isomorphic with $\exp \odot L^{2}(\lambda)$, it is enough to show that the set $\left\{N_{\lambda}(., h) ; h \in F\right\}$ generates $H\left(N_{\lambda} ; L^{2}(\lambda)\right)$. Let $f \in H\left(N_{\lambda} ; L^{2}(\lambda)\right)$ and let $\left\langle\mathrm{f}, N_{\lambda}(., h)\right\rangle_{H\left(N_{2} ; L^{2}(\lambda)\right)}=0$ for all $h \in F$. We have to show that $f=0$. In our case it holds that $f(g)=\sum_{n \geqq 0}\left(f_{n}, g \otimes \ldots \otimes g\right)_{L^{2}(\lambda)^{n} \otimes}$, where
$f_{n} \in L^{2}(\lambda)^{n \otimes}$. Further we have: $N_{\lambda}(g, h)=\sum_{n \geq 0}((1 / n!) h \otimes \ldots \otimes h, g \otimes \ldots \otimes g)_{L^{2}(\lambda) n} \otimes$ and thus $0=\left\langle f, N_{\lambda}(\cdot, h)\right\rangle_{H\left(N_{\lambda}\right)}=\sum_{n \geqq 0}\left(g_{n}, h \otimes \ldots \otimes h\right)_{\left.L^{2}(\lambda)\right)^{n}} \otimes$ for all $h \in F$, where g_{n} is a projection of f_{n} onto the subspace $L^{2}(\lambda)^{n \odot}$ of $L^{2}(\lambda)^{n \otimes}$. From the last equality we get that $\sum_{n \geqq 0} t^{n}\left(g_{n}, h^{n \odot}\right)_{L^{2}(\lambda) n^{n} \odot}=0$ for all $t \geqq 0$ and for all $h \in L_{+}^{2}(\lambda)=\left\{h \in L^{2}(\lambda)\right.$: $: h \geqq 0 \bmod \lambda\}$, what is possible only in the case when $\left(g_{n}, h^{n \odot}\right)=0$ for all $h \in L_{+}^{2}(\lambda)$. If we set $h=\sum_{j=1}^{n} c_{j} h_{j}$, where c_{1}, \ldots, c_{n} are any nonnegative real numbers and h_{1}, \ldots $\ldots, h_{n} \in L_{+}^{2}(\lambda)$, then we get that $\left(g_{n},\left(\sum_{j=1}^{n} c_{j} h_{j}\right)^{n \odot}\right)_{L^{2}(\lambda) n^{n}} \odot-$ a polynomial in nonnegative variables c_{1}, \ldots, c_{n} is identically equal to zero, from which we get that $\left(g_{n}, h_{1} \odot \ldots\right.$ $\left.\ldots \odot h_{n}\right)_{L^{2}(\lambda)^{n} \odot} \odot h_{1}, \ldots, h_{n} \in L_{+}^{2}(\lambda)$ - a coefficient of polynomial by a variable $c_{1} \ldots c_{n}$, is equal to zero. Since the set $L_{+}^{2}(\lambda)$ generates $L^{2}(\lambda)$, the set $\left\{h_{1} \odot \ldots \odot h_{n}\right.$; $\left.h_{1}, \ldots, h_{n} \in L_{+}^{2}(\lambda)\right\}$ generates $L^{2}(\lambda)^{n \odot}$ for all $n \geqq 0$, and thus g_{n} must be zero element for all $n \geqq 0$.

Now we shall study in more details the special case when $T=\left[0, T_{0}\right] ; T_{0}>0$, $\mathscr{T}=\mathscr{B}(T)$ and λ is a finite measure on (T, \mathscr{T}). From Theorem 3.1. we have

Corollary 3.1. The Hilbert space $L^{2}(\mathscr{M}, \mathscr{C}, P(\lambda))$ is isomorphic with the Hilbert space $\exp \odot H\left(R_{\lambda}\right)$, where $R_{\lambda}(s, t) ; s, t \in T$ is the covariance function of a Poisson process $N(t)=\left\langle X, \chi_{[0, t]}\right\rangle ; 0 \leqq t \leqq T_{0}$.

Proof. It was mentioned in Part 1 that $\left\langle R_{\lambda}(., s), R_{\lambda}(., t)\right\rangle_{H\left(R_{\lambda}\right)}=R_{\lambda}(s, t)=$ $=\left(\chi_{[0, s]}, \chi_{[0, t]}\right)_{L^{2}(\lambda)}$. Since the system of functions $\left\{\chi_{[0, t]} ; t \in T\right\}$ generates $L^{2}(\lambda)$ and the set $\left\{R_{\lambda}(\cdot, t) ; t \in T\right\}$ generates $H\left(R_{\lambda}\right), L^{2}(\lambda)$ and $H\left(R_{\lambda}\right)$ are isomorphic.

It follows from the definition of $\exp \odot H\left(R_{\lambda}\right)$ as a direct sum of Hilbert spaces $H\left(R_{\lambda}\right)^{n \odot} ; n \geqq 0$ and from the isomorphism between $L^{2}(P(\lambda))$ and $\exp \odot H\left(R_{\lambda}\right)$, that the same partition to orthogonal components must hold for the space $L^{2}(P(\lambda))$, too. According to this we can write: $L^{2}(\mathscr{M}, \mathscr{C}, P(\lambda))=\underset{n \geq 0}{\oplus} L_{n}^{2}(\mathscr{M}, \mathscr{C}, P(\lambda))$ where $L_{n}^{2}(P(\lambda))$ are orthogonal subspaces of $L^{2}(\lambda)$. For problems of nonlinear estimation of random variables the following theorems is useful.

Theorem 3.2. Let $T=\left[0, T_{0}\right], T_{0}>0$ and let λ be a finite positive measure on $(T, \mathscr{B}(T))$. Then for any random variable $U \in L^{2}(\mathscr{M}, \mathscr{C}, P(\lambda))$ we have $U=\underset{n \geqq 0}{\oplus} U_{n}$, where

$$
U_{n}=x\left(\mathrm{E}_{\lambda}\left[U . x\left(R_{\lambda}\left(\cdot, t_{1}\right) \odot \ldots \odot R_{\lambda}\left(\cdot, t_{n}\right)\right)\right] ; t_{1}, \ldots, t_{n} \in T\right)
$$

$n \geqq 0$, and x is an isomorphism described in Corollary 3.1.
Proof. Since the set $\left\{R_{\lambda}\left(., t_{1}\right) \odot \ldots \odot R_{\lambda}\left(\cdot, t_{n}\right) ; t_{1}, \ldots, t_{n} \in T\right\}$ generates $H\left(R_{\lambda}\right)^{n \odot}$, the system of random variables $\left\{x\left(R_{\lambda}\left(\cdot, t_{1}\right) \odot \ldots \odot R_{\lambda}\left(., t_{n}\right)\right) ; t_{1}, \ldots, t_{n} \in T\right\}$ generates the Hilbert space $L_{n}^{2}(P(\lambda)) ; n \geqq 0$. A symmetric function of n-variables
$\left(t_{1}, \ldots, t_{n}\right): \mathrm{E}_{\lambda}\left[U . \chi\left(R_{\lambda}\left(., t_{1}\right) \odot \ldots \odot R_{\lambda}\left(\cdot, t_{n}\right)\right)\right]$ - an element of $H\left(R_{\lambda}^{n \odot}\right)$, we can identify with that element of the space $H\left(R_{\lambda}\right)^{n \odot}$, the image of which by the isomorphism x is the random variable U_{n} - a projection of a random variable U on the subspace $L_{n}^{2}(P(\lambda))$. (For more details see [8]).

Now we shall try to clarify how the random variables $x\left(\left\{R_{\lambda}\left(\cdot, t_{1}\right) \odot \ldots \odot R_{\lambda}\left(\cdot, t_{n}\right)\right.\right.$; $\left.t_{1}, \ldots, t_{n} \in T\right\}$) - generating elements of $L_{n}^{2}(P(\lambda))$ can be found for $n \geqq 0$.

Let φ be the isomorphism from Theorem 3.1. Then we have

$$
\varphi(\exp \odot(h-1))=\exp \left\{\psi(\ln h)+\int_{T}(h-1) \mathrm{d} \lambda\right\} ; \quad h \in L_{+}^{2}(\lambda)
$$

where $\exp \odot h=\sum_{n \geqq 0} 1 / \sqrt{ } n!h^{n \otimes}$ or

$$
\varphi(\exp \odot(-f))=\exp \left\{\psi(\ln (1-f))+\int_{T} f \mathrm{~d} \lambda\right\}
$$

where f is any function from $L^{2}(\lambda)$ such that $f \leqq 1 \bmod \lambda$. If we set $f=\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]}$, where $0<t_{1} \leqq t_{2} \leqq \ldots \leqq t_{n}$ are any fixed points from the interval $\left[0, T_{0}\right], n \geqq 0$ and c_{1}, \ldots, c_{n} are any suitable chosen real numbers such that $\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]} \leqq 1$, then we get

$$
\begin{aligned}
& x\left(\exp \odot\left(-\sum_{i=1}^{n} c_{i} R_{\lambda}\left(., t_{i}\right)\right)\right)=\varphi\left(\exp \odot\left(-\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]}\right)\right)= \\
& \quad=\exp \left\{\psi\left(\ln \left(1-\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]}\right)\right)+\sum_{i=1}^{n} c_{i} \int_{T} \chi_{\left[0, t_{i}\right]} d \lambda\right\}
\end{aligned}
$$

From the equality
$\exp \odot\left(-\sum_{i=1}^{k} c_{i} R_{\lambda}\left(., t_{i}\right)\right)=\sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{k}=0}^{\infty} \frac{c_{1}^{n_{1}}}{n_{1}!} \ldots \frac{c_{k}^{n_{k}}}{n_{k}!}\left(-R_{\lambda}\left(., t_{1}\right)\right)^{n_{1} \odot} \odot \ldots \odot\left(-R_{\lambda}\left(\cdot, t_{k}\right)\right)^{n_{k} \odot}$ we have that $(-1)^{n} R_{\lambda}\left(., t_{1}\right) \odot \ldots \odot R_{\lambda}\left(\cdot, t_{n}\right)$ is a coefficient by a variable $c_{1} \ldots c_{n}$. Since $\left\{R_{\lambda}\left(., t_{1}\right) \odot \ldots \odot R_{\lambda}\left(., t_{n}\right) ; t_{1}, \ldots, t_{n} \in T\right\}$ generates $H\left(R_{\lambda}\right)^{n \odot}$, to find $x\left(R_{\lambda}\left(., t_{1}\right) \odot \ldots \odot R_{\lambda}\left(\cdot, t_{n}\right)\right)$, it suffices to find a coefficient by $c_{1} \ldots c_{n}$ in an expansion of the random variable $\exp \left\{\psi\left(\ln \left(1-\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]}\right)\right)+\sum_{i=1}^{n} c_{i} \int_{T} \chi_{\left[0, t_{i}\right]} \mathrm{d} \lambda\right\}$. To do this, we can proceed as follows: using formally the expression $\ln (1-x)=$ $=-\sum_{k=0}^{\infty} x^{k+1} / k+1$ we get

$$
\exp \left\{\psi\left(\ln \left(1-\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]}\right)\right)+\sum_{i=1}^{n} c_{i} \int_{T} \chi_{\left[0, t_{i}\right]} \mathrm{d} \lambda\right\}=
$$

$$
\begin{aligned}
& =\exp \left\{-\int_{T} \sum_{k \geqq 0} \frac{\left(\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]}\right)^{k+1}}{k+1} \mathrm{~d} N(t)+\sum_{i=1}^{n} c_{i} \int_{T} \chi_{\left[0, t_{i}\right]} \mathrm{d} \lambda\right\}= \\
& =\exp \left\{\sum_{i=1}^{n} c_{i}\left(\int_{T} \chi_{\left[0, t_{i}\right]} \mathrm{d} \lambda-N\left(t_{i}\right)\right)-\int_{T} \sum_{k \geqq 2} \frac{\left(\sum_{i=1}^{n} c_{i} \chi_{\left[0, t_{i}\right]}\right)^{k}}{k} \mathrm{~d} N(t)\right\} .
\end{aligned}
$$

Expanding the function exp into an infinite series we get the coefficient by $c_{1} \ldots c_{n}$ of this expandion. We are not able to derive an general expression for this coefficient for any $n \geqq 0$. Here are the first four, derived by this method:

$$
x\left(R_{\lambda}(\cdot, t)\right)=N(t)-\int_{T} \chi_{[0, r]} \mathrm{d} \lambda ; t \in T
$$

Let us denote by $M(t)=N(t)-\int_{T} \chi_{[0, t]} \mathrm{d} \lambda ; t \in T$. Then

$$
\begin{gathered}
\chi\left(R_{\lambda}\left(. . t_{1}\right) \odot R_{\lambda}\left(\cdot, t_{2}\right)\right)=M\left(t_{1}\right) M\left(t_{2}\right)-N\left(\min \left\{t_{1}, t_{2}\right\}\right) ; \quad t_{1}, t_{2} \in T . \\
\chi\left(R_{\lambda}\left(\cdot, t_{1}\right) \odot R_{\lambda}\left(\cdot, t_{2}\right) \odot R_{\lambda}\left(\cdot, t_{3}\right)\right)=\prod_{i=1}^{3} M\left(t_{i}\right)-\sum_{i=1}^{3} M\left(t_{i}\right) N\left(\min \left(T_{3}-\left\{t_{i}\right\}\right)\right)+ \\
\quad+2 N\left(\min T_{3}\right), \text { where } T_{3}=\left\{t_{1}, t_{2}, t_{3}\right\} ; \quad t_{1}, t_{2}, t_{3} \in\left[0, T_{0}\right]=T . \\
\chi\left(R_{\lambda}\left(., t_{1}\right) \odot \ldots \odot R_{\lambda}\left(\cdot, t_{4}\right)\right)=\prod_{i=1}^{4} M\left(t_{i}\right)-\sum_{i<j} M\left(t_{i}\right) M\left(t_{j}\right) N\left(\min \left(T_{4}-\left\{t_{i}, t_{j}\right\}\right)\right)+ \\
+2!\sum_{i=1}^{4} M\left(t_{i}\right) N\left(\min \left(T_{4}-\left\{t_{i}\right\}\right)\right)-3!N\left(\min T_{4}\right)+\sum_{i=2}^{4} N\left(\min \left\{t_{1}, t_{i}\right\}\right) . \\
. N\left(\min \left(T_{4}-\left\{t_{1}, t_{i}\right\}\right)\right), \quad \text { where } \quad T_{4}=\left\{t_{1}, \ldots, t_{4}\right\} ; \quad t_{1}, \ldots, t_{4} \in T .
\end{gathered}
$$

Remark. Setting $t_{1}=\ldots=t_{n}=T_{0}=1, n=1, \ldots, 4$ and $\lambda=l$ Lebesgue measure, where $l>0$, we get the first four orthogonal polynomials of a complete orthogonal system of a Poisson distribution on integers with a parameter l :

$$
\begin{aligned}
& p_{0}(x)=1 \\
& p_{1}(x)=x-l \\
& p_{2}(x)=(x-l)^{2}-x \\
& p_{3}(x)=(x-l)^{3}-3 x(x-l)+2 x \\
& p_{4}(x)=(x-l)^{4}-6 x(x-l)^{2}+8 x(x-l)+3 x^{2}-6 x
\end{aligned}
$$

where

$$
\sum_{x \geq 0} p_{i}(x) p_{j}(x) \frac{l^{x}}{x!} \mathrm{e}^{-t}=a_{j} \delta_{i j} ; \quad 1,2, \ldots, 4
$$

4. ESTIMATION OF FUNCTIONALS OF AN UNKNOWN INTENSITY MEASURE OF A POISSON LAW

The basis for this part is a general theory of locally best unbiased estimates as given in [6] and used for example in [9]. Now we shall apply this theory to the special case of the estimation of functionals of an unknown intensity measure of a Poisson law.

As we mentioned in Part 2, for two Poisson laws with $\lambda \ll \lambda_{0}$ on (T, \mathscr{T}), we have

$$
\frac{\mathrm{d} P(\lambda)}{\mathrm{d} P\left(\lambda_{0}\right)}=\exp \left\{\psi\left(\ln f_{\lambda}\right)-\int_{T}\left(f_{\lambda}-1\right) \mathrm{d} \lambda_{0}\right\} \text {, where } f_{\lambda}=\frac{\mathrm{d} \lambda}{\mathrm{~d} \lambda_{0}} .
$$

As we have shown in the preceding part, the system of random variables $\left\{\exp \left\{\psi(\ln f)-\int_{T}(f-1) \mathrm{d} \lambda_{0}\right\} ; f \in L_{+}^{2}\left(\lambda_{0}\right)\right\}$ generates $L^{2}\left(\mathscr{M}, \mathscr{C}, P\left(\lambda_{0}\right)\right)$. Every random variable of a type $\exp \left\{\psi(\ln f)-\int_{T}(f-1) \mathrm{d} \lambda_{0}\right\} ; f \in L_{+}^{2}\left(\lambda_{0}\right)$ can be regarded as a Radon-Nikodym derivative $\mathrm{d} P\left(\lambda_{f}\right) / \mathrm{d} P\left(\lambda_{0}\right)$ of a measure $P\left(\lambda_{f}\right)$ with respect to the measure $P\left(\lambda_{0}\right)$, where λ_{f} is defined on (T, \mathscr{T}) by $\lambda_{f}(\mathrm{~A})=\int_{A} f \mathrm{~d} \lambda_{0} ; f \in L_{+}^{2}\left(\lambda_{0}\right)$, $A \in \mathscr{T}$. Thus there exist a one-to-one correspondence between measures λ absolutely continuous with respect to λ_{0} and functions (precisely equivalent classes of functions) from $L_{+}^{2}\left(\lambda_{0}\right)$.

From a general theory of locally unbiased estimates [6] we have that a functional $F(\cdot)$ defined on a set of measures, which are absolutely continuous with respect to λ_{0}, or equivalently, on the set $L_{+}^{2}\left(\lambda_{0}\right)$, has an unbiased estimate with a finite dispersion at λ_{0}, if and only if, $F($.$) belongs to a reproducing kernel Hilber space H\left(K_{\lambda_{0}}\right)$ of functionals defined on $L_{+}^{2}\left(\lambda_{0}\right)$ with a kernel
$K_{\lambda_{0}}\left(f, f^{\prime}\right)=\mathrm{E}_{\lambda_{0}}\left[\frac{\mathrm{~d} P\left(\lambda_{f}\right)}{\mathrm{d} P\left(\lambda_{0}\right)} \frac{\mathrm{d} P\left(\lambda_{f^{\prime}}\right)}{\mathrm{d} P\left(\lambda_{0}\right)}\right]=\exp \left\{\int_{T}(f-1) \cdot\left(f^{\prime}-1\right) \mathrm{d} \lambda_{0}\right\} ; \quad f, f^{\prime} \in L_{+}^{2}\left(\lambda_{0}\right)$.
It was shown in Theorem 3.1 that $H\left(K_{\lambda_{0}}\right)$ and $\exp \odot L^{2}\left(\lambda_{0}\right)$ are isomorphic, from which we get the following characterization of the space $H\left(K_{\dot{\lambda}_{0}}\right)$, suitable for a case of estimation of functionals.

Theorem 4.1. The reproducing kernel Hilbert space $H\left(K_{\lambda_{0}}\right)$ consists of functionals of a type $F_{g}(\cdot) ; g \in \exp \odot L^{2}\left(\lambda_{0}\right)$ defined on the space $L_{+}^{2}\left(\lambda_{0}\right)$ and such that

$$
F_{g}(f)=\sum_{n \geqq 0}\left(g_{n},(f-1)^{n \odot}\right)_{L^{2}\left(\lambda_{0}\right)^{n} \odot}, \text { where } g=\underset{n \geqq 0}{\oplus} g_{n} \in \exp \odot L^{2}\left(\lambda_{0}\right)
$$

and

$$
\left\|F_{g}\right\|_{H\left(K_{2,0}\right)}^{\|^{2}}=\|g\|_{\operatorname{exp\odot } \odot L^{2}\left(\lambda_{0}\right)}^{2} ; \quad h^{n \odot}=\frac{1}{\sqrt{ } n!} h^{n \otimes} \text { for } h \in L^{2}\left(\lambda_{0}\right) .
$$

Proof. Setting $g_{n}=(g-1)^{n \odot} ; g \in L_{+}^{2}\left(\lambda_{0}\right)$ we get, that $F_{g}(\cdot)=K_{\lambda_{0}}(., g)$ is an element of $H\left(K_{\lambda_{0}}\right)$. Using the definition of the norm for the class of functionals $F_{g}(\cdot)$ we get that

$$
\left\langle F_{g}, K_{\lambda_{0}}(\cdot, f)\right\rangle_{H\left(K_{\left.\lambda_{0}\right)}\right.}=\sum_{n \leq 0}\left(g_{n},(f-1)^{n^{\odot} 0}\right)_{L^{2}\left(\lambda_{0}\right)^{n} \odot}=F_{\theta}(f)
$$

for every $g \in \exp \odot L^{2}\left(\lambda_{0}\right), f \in L_{+}^{2}\left(\lambda_{0}\right)$ and the second property of reproducing kernel Hilbert space $H\left(K_{\lambda_{0}}\right)$ is proved.

It was shown in Part 3 that in the case when $T=\left[0, T_{0}\right], T_{0}>0$, the system $\left\{\chi\left(R\left(\cdot, t_{1}\right) \odot \ldots \odot R\left(., t_{n}\right)\right) ; t_{1}, \ldots, t_{n} \in T\right\}$ of random variables generates $L_{n}^{2}\left(P\left(\lambda_{0}\right)\right)$ for every $n \geqq 0$. From this we have

$$
\begin{gathered}
\mathrm{E}_{\lambda_{f}}\left[\chi\left(R\left(\cdot, t_{1}\right) \odot \cdots \odot R\left(\cdot, t_{n}\right)\right)\right]=\mathrm{E}_{\lambda_{0}}\left[\varkappa\left(R\left[\cdot, t_{1}\right) \odot \ldots \odot R\left(\cdot, t_{n}\right)\right) \frac{\mathrm{d} P\left(\lambda_{f}\right)}{\mathrm{d} P\left(\lambda_{0}\right)}\right]= \\
=\int_{T^{n}} \chi_{\left[0, t_{1}\right]} \odot \ldots \odot \chi_{\left[0, t_{n}\right]}(f-1)^{n \odot} \mathrm{~d} \lambda_{0}^{n \otimes}= \\
=\prod_{i=1}^{n} \int_{T} \chi_{\left[0, t_{i}\right]}(f-1) \mathrm{d} \lambda_{0}=\prod_{i=1}^{n}\left[\lambda_{f}\left(\left[0, t_{i}\right]\right)-\lambda_{0}\left(\left[0, t_{i}\right]\right)\right]
\end{gathered}
$$

for any $f \in L_{+}^{2}\left(\lambda_{0}\right)$ and we see that a random variable $\varkappa\left(R\left(., t_{1}\right) \odot \ldots \odot R\left(., t_{n}\right)\right)$ is an unbiased estimate of a functional $F_{g}(f)=\prod_{i=1}^{n}\left[\lambda_{f}\left(\left[0, t_{i}\right]\right)-\lambda_{0}\left(\left[0, t_{i}\right]\right)\right]$ depending on λ_{0}.

We are interested in functionals independent of λ_{0}. Analogically with results given in [9] we can show that any "polynomial" of a measure λ_{f} has an unbiased estimate. By a "polynomial of a degree p " we mean a functional $P_{p}(\cdot)$ given by

$$
P_{p}(f)=\sum_{n=0}^{p} \int_{T^{n}} h_{n} \cdot f^{n \odot} \mathrm{~d} \lambda_{0}^{n \otimes} ; \quad f \in L_{+}^{2}\left(\lambda_{0}\right), h_{n} \in L^{2}\left(\lambda_{0}\right)^{n \odot} .
$$

According to the proof of Lemma 5.1 in [9] we have

$$
\int_{T^{n}} h_{n} \cdot f^{n \otimes} \mathrm{~d} \lambda_{0}^{n \otimes}=\sum_{i=0}^{n}\binom{n}{i} \int_{T^{i}}\left(\int_{T^{n-i}} h_{n} \mathrm{~d} \lambda_{0}^{(n-i) \otimes}\right)(f-1)^{i \otimes} \mathrm{~d} \lambda_{0}^{i \otimes}
$$

for any $n \geqq 0$, from which we can derive that any polynomial has an unbiased estimate. For a dispersion of the best unbiased estimate \widetilde{P}_{p} of a polynomial $P_{p}(f)=$ $=\sum_{n=0}^{p} \int_{T^{n}} h_{n} f^{n \otimes} \mathrm{~d} \lambda_{0}^{n \otimes}$, where $h_{n} \in L^{2}\left(\lambda_{0}\right)^{n \odot}$ we have from Lemma 5.1. of [9]:

$$
\operatorname{Var}_{\lambda_{0}}\left[\widetilde{P}_{p}\right]=\sum_{n=1}^{p} \sum_{m=1}^{p} \sum_{i=1}^{\min [m, n]}\binom{n}{i}\binom{m}{i} i!\int_{T^{i}}\left(\int_{T^{n-i}} h_{n} \mathrm{~d} \lambda_{0}^{(n-i) \otimes}\right)\left(\int_{T^{m-i}} h_{m} \mathrm{~d} \lambda_{0}^{(m-i) \otimes}\right) \mathrm{d} \lambda_{0}^{i \otimes} .
$$

Let us investigate a special case when

$$
h_{n}=g_{1} \odot \ldots \odot g_{n}, \quad=\frac{1}{\sqrt{ } n!} \sum_{\sigma} g_{\sigma_{1}} \otimes \ldots \otimes g_{\sigma_{n}} .
$$

Then we get:

$$
\begin{aligned}
P_{n}(f) & =\prod_{j=1}^{n} \int_{T} g_{j} f \mathrm{~d} \lambda_{0}=\int_{T} h_{n} f^{n \odot} \mathrm{~d} \lambda_{0}^{n \otimes}=\sum_{i=0}^{n}\binom{n}{i} \int_{T^{i}}\left(\int_{T^{n-i}} \frac{1}{n!} \sum_{\sigma} g_{\sigma_{1}} \otimes \ldots\right. \\
& \left.\ldots \otimes g_{\sigma_{n-i}} \mathrm{~d} \lambda_{0}^{(n-i) \otimes}\right) g_{\sigma_{n-i+1}} \otimes \ldots \otimes g_{\sigma_{n}} \cdot(f-1)^{i \otimes} \mathrm{~d} \lambda_{0}^{i \otimes}= \\
& =\sum_{i=0}^{n}\binom{n}{i} \frac{1}{n!} \sum_{\sigma}\left(\prod_{j=1}^{n-i} \int_{T} g_{\sigma_{j}} \mathrm{~d} \lambda_{0}\right)\left(\prod_{i=n-i+1}^{n} \int_{T} g_{\sigma_{j}}(f-1) \mathrm{d} \lambda_{0}\right)
\end{aligned}
$$

and

$$
\left\|P_{n}\right\|_{H\left(K_{\lambda, 0}\right)}^{2}=\mathrm{E}_{\lambda_{0}}\left[\widetilde{P}_{n}^{2}\right]=\sum_{i=0}^{n}\binom{n}{i}^{2} i!\left\|\frac{1}{n!} \sum_{\sigma} \prod_{j=1}^{n-i} \int_{T} g_{\sigma_{j}} \mathrm{~d}_{\lambda_{0}} \stackrel{n}{j=n-i+1}_{\otimes}^{\otimes} g_{\sigma_{j}}\right\|_{\left.L^{2}\left(\lambda_{0}\right)\right)}^{2} \otimes
$$

Example 4.1. Let $n=2$. Then we get:

$$
\begin{gathered}
P_{2}(f)=\prod_{j=1}^{2} \int_{T} g_{j} f \mathrm{~d} \lambda_{0}=\int_{T} g_{1} \mathrm{~d} \lambda_{0} \int_{T} g_{2} \mathrm{~d} \lambda_{0}+\int_{T} g_{1} \mathrm{~d} \lambda_{0} \int_{T} g_{2}(f-1) \mathrm{d} \lambda_{0}+ \\
+\int_{T} g_{2} \mathrm{~d} \lambda_{0} \int_{T} g_{1}(f-1) \mathrm{d} \lambda_{0}+\int_{T} g_{1}(f-1) \mathrm{d} \lambda_{0}+\int_{T} g_{2}(f-1) \mathrm{d} \lambda_{0} .
\end{gathered}
$$

The locally best unbiased estimate \widetilde{P}_{2} of P_{2} is given

$$
\tilde{P}_{2}=\prod_{i=1}^{2} \int g_{i} \mathrm{~d} \lambda_{0}+\int_{T} g_{1} \mathrm{~d} \lambda_{0} \cdot \varphi\left(g_{2}\right)+\int_{T} g_{2} \mathrm{~d} \lambda_{0} \cdot \varphi\left(g_{1}\right)+\varphi\left(g_{1} \odot g_{2}\right) .
$$

Setting $g_{i}=\chi_{\left[0, t_{i} ;\right.} ; i=1,2$ we get that the random variable $\widetilde{P}_{2}=N\left(t_{1}\right) \cdot N\left(t_{2}\right)-$ $-N\left(\min \left\{t_{1}, t_{2}\right\}\right)$ is the best unbiased estimate of the functional

$$
P_{2}(f)=\lambda_{f}\left(\left[0, t_{1}\right]\right) \cdot \lambda_{f}\left(\left[0, t_{2}\right]\right) ; \quad t_{1}, t_{2} \in T ; \quad f \in L_{+}^{2}\left(\lambda_{0}\right)
$$

with

$$
\begin{gathered}
\operatorname{Var}_{\lambda_{0}}\left[\tilde{P}_{2}\right]=\left\|P_{2}\right\|_{H\left(K \lambda_{0}\right)}^{2}-P_{2}^{2}(1)=\int_{T} g_{1}^{2} \mathrm{~d} \lambda_{0} \int_{T} g_{2}^{2} \mathrm{~d} \lambda_{0}+\left(\int_{T} g_{1} g_{2} \mathrm{~d} \lambda_{0}\right)^{2}+ \\
+\int_{T}\left[g_{1} \int_{T} g_{2} \mathrm{~d} \lambda_{0}+g_{2} \int_{T} g_{1} \mathrm{~d} \lambda_{0}\right]^{2} \mathrm{~d} \lambda_{0}
\end{gathered}
$$

If $g_{i}=\chi_{\left[0, t_{i} ;\right.} ; i=1,2$, then

$$
\begin{gathered}
\operatorname{Var}_{\lambda_{0}}\left[\tilde{P}_{2}\right]=\lambda_{0}\left(\left[0, t_{1}\right]\right) \cdot \lambda_{0}\left(\left[0, t_{2}\right]\right)+\lambda_{0}^{2}\left(\left[0, \min \left\{t_{1}, t_{2}\right\}\right]\right)+ \\
+\lambda_{0}^{2}\left(\left[0, t_{2}\right]\right) \lambda_{0}\left[\left(0, t_{1}\right]\right)+2 \lambda_{0}^{2}\left(\left[0, t_{1}\right]\right) \lambda_{0}\left[\left(0, \min \left\{t_{1}, t_{2}\right\}\right]\right)+ \\
+\lambda_{0}^{2}\left(\left[0, t_{1}\right]\right) \lambda_{0}\left(\left[0, t_{2}\right]\right) .
\end{gathered}
$$

Setting $t_{1}=t_{2}=t$, we get

$$
\operatorname{Var}_{\lambda_{0}}\left[\tilde{P}_{2}\right]=2 \lambda_{0}([0, t])+4 \lambda_{0}^{3}([0, t])-\text { the classical result. }
$$

Example 4.2. Let $P_{3}(f)=\left(\int g . f \mathrm{~d} \lambda_{0}\right)^{3}$: Then

$$
P_{3}(f)=\sum_{i=0}^{3}\binom{3}{i}\left(\int g(f-1) \mathrm{d} \lambda_{0}\right)^{i}\left(\int_{T} g \mathrm{~d} \lambda_{0}\right)^{3-i}
$$

\tilde{P}_{3} - the best umbiased estimate of P_{3} is given by:

$$
\begin{gathered}
\widetilde{P}_{3}=\sum_{i=1}^{3}\binom{3}{i}\left(\int g \mathrm{~d} \lambda_{0}\right)^{3-i} \varphi\left(g^{i \odot}\right) \\
\operatorname{Var}_{\lambda_{0}[}\left[\widetilde{P}_{3}\right]=6 \cdot\|g\|_{L^{2}\left(\lambda_{0}\right)}^{6}+18\|g\|_{L^{2}\left(\lambda_{0}\right)}^{4}\left(\int_{T} g \mathrm{~d} \lambda_{0}\right)^{2}+9\|g\|_{L^{2}\left(\lambda_{0}\right)}^{2}\left(\int_{T} g \mathrm{~d} \lambda_{0}\right)^{4} .
\end{gathered}
$$

For $g=\chi_{[0, t]}$ we get $\left.\widetilde{P}_{3}=N(t) N(t)-1\right)(N(t)-2)$ and

$$
\operatorname{Var}_{\lambda_{0}}\left[\widetilde{P}_{3}\right]=6 \lambda_{0}^{3}([0, t])+18 \lambda_{0}^{4}([0, t])+9 \lambda_{0}^{5}([0, t]),
$$

what is again a classical result given in [2].
(Received July 15, 1981.)

REFERENCES

[1] O. Aalen: Nonparametric inference for a family of counting processes. Ann. Statist. 4 (1978), 701-727.
[2] C. L. Chiang: Introduction to Stochastic Processes in Biostatisties. Wiley, New York 1968.
[3] J. Grandell: Doubly Stochastic Poisson Processes. Springer - Verlag, Berlin 1976.
[4] J. Kerstan, K. Matthes, J. Mecke: Unbegrenzt teilbare Punktprozesse. Akademie - Verlag, Berlin 1974.
[5] J. Neveu: Processus Aléatoires Gaussiens. Les Presses de l'Université de Montréal, Montréal 1968.
[6] E. Parzen: Time Series Analysis Papers. Holden-Day, San Francisco 1967.
[7] J. L. Soler: Contribution á l'étude des structures statistiques infinidimensionnelles. Thèse, Grenoble 1978.
[8] F. Štulajter: RKHS Approach to nonlinear estimation of random variables. Transaction of the Eighth Prague Conference, Vol. B, Academia, Prague 1978, 239-246.
[9] F. Stulajter: Nonlinear estimators of polynomials in mean values of a Gaussian stochastic process. Kybernetika 14 (1978), 3, 206-220.

RNDr. Frantiséek Štulajter, CSc., Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK (Faculty of Mathematics and Physics, Department of Probability and Statistics Comenius University), Mlynská dolina, 84215 Bratislava. Czechoslovakia.

