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SOME NONLINEAR STATISTICAL PROBLEMS 
OF A POISSON PROCESS 

FRANTISEK STULAJTER 

Some results of the theory of random vectors with values in linear spaces are used to study 
the structure of a space of random variables with finite dispersion generated by a Poisson process 
and the problem of estimation of nonlinear functionals of an intensity measure of a Poisson 
process. 

1. INTRODUCTION 

The aim of this paper is to study some nonlinear statistical problems of a Poisson 
random process. Similar problems are considered for example in [1] or in [3] for 
double stochastic Poisson processes. We shall study in more details the structure 
of the space L2(P(X)) of random variables with finite dispersion generated by a Poisson 
process with an intensity measure X and the problem of estimation of nonlinear 
functionals of an unknown intensity measure A of a Poisson process. It is shown that 
L2(P(X)) is equal to the orthogonal sum of L2„(P(X)); n 2t 0, where L2„(P(X)); n ^ 0 
are (mutually orthogonal) subspaces of L2(P(X)). L\ is the space of constants, L\ is 
"the linear subspace" of L2(P(X)), generated by the centered Poisson process, L2

2 

is "the quadratic subspace" of L2(P(1)), and so on. Generating sets of L2„(P(X)) for 
n = 1, 2, 3 and 4 are given. The same result is true for the space of random variables 
with a finite dispersion generated by a Gaussian process with zero mean value and a 
given covariance function as it is shown in [8]. But the rule according to which we 
form the generating sets of L2„; n Si 0 for a Gaussian process is different from that 
derived here for the generating sets of a Poisson process. 

In the Part 4 of this paper it is shown that every "polynomial" of a measure Xj-
(given by Xf(A) = §AfdX0) has an unbiased estimate. It is shown that a dispersion 
of the best unbiased estimate can be calculated by the same way as it is given in [9]. 
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2. PRELIMINARIES REGARDING POISSON PROCESS 

There are many possibilities to define a Poisson process. The best way, for our 
objective, is to define a Poisson process as a random point measure valued vector 
as it is done in [7], where the following statements can be found. 

Let (T, F) be a measurable space; denote by Ji(T, ST) the vector space of finite 
measures defined on (T, ST) and by -Sf^T, &") the space of bounded measurable 
functions defined on (T ST). Let ^(Ji, £6'«,) be a a-algebra of subsets of Ji(T, ST), 
generated by linear transformations \i -* /((A); AsST. Then we have: for every fixed 
finite measure X e Ji{T, ST) there exists a unique probability measure P(X) defined 
on (Ji(T, ST), <$(Ji, £ew)) called the Poisson law with intensity X on „#(T, ST). 
This measure is a distribution of a Poisson process X transforming a probability 
space (Q, SF, Px) into (Ji, <€). Realizations of the random process X have the form 

n(e>) 

X(co) = £ <5i,(aj)> where {t^co),... ,tH<0)(co)} is a finite set of points of Tand<5 is a Dirac 
J = I 

measure. The random process X has the following properties: for every Ae ST 
the random variable 

J* n(co) 

<X(<»), XA> = d( £ d,m) = NA(co) = the number of points 
J A ; = i 

•̂(co) in the set A , 

has a Poisson distribution with the parameter X(A). Ifft, •••,fn belong to S£' J(T, ST) 
and have disjoint supports, then (X,ft), ..., <Z,/„> are independent random 
variables, where 

(X,f> (co) - a(«),L> = [/, d(|f.5.,(<8)) ; i = 1, ..., n . 

The real Laplace transform of the probability space (Ji, <€, P(X)) is given by LP(X)(f) = 
= Je*'-0 dP(/l), where i/' is an isomorphism between the vector space L0(T ST, X), 
consisting of classes of equivalence of real measurable functions defined on (T ST) 
and the space L(Ji, (£, P(X)), given by 

mil^-ffM*))-
j = i J = I 

We can write LPW(f) = exp {J r (ef - 1) dX}. The Laplace transform is finite, 

and so defined, for those functions feL0(T^,X) for which a function g = eJ 

belongs to L*(T, ST, X); it is the set 
Z, = { j £ L 0 : j = l n a ; a ^ O , g s L\T, ST, X)\ . 

The function j = 0 mod X is an inner point of the set D, from which we have that 

a transformation %P defined by 

[xP(y)] (j) = BPlY. e W ) / 2 ] ; Ye -*(•*• %,PX), feD 
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is an isomorphism between the Hilbert spaces L2(J4, <€, P(X)) and a reproducing 
kernel Hilbert space H(KX) with the kernel 

,7 + T> Kx(f,f') = LPW(l , f.feD. 

= expL(In/A)-f(/A-l)d/l0 |, 

The problem of equivalence of two Poisson laws P(X) and P(X0) is solved by the 
next assertion: let X and X0 be two positive finite measures on (T, 3T). Then P(X) and 
P(X0) are equivalent iff X and X0 are equivalent. In the last case denote by L = dA/dA0. 
Then 

<-*»(*) _ 
dR(A0) 

where ^ is the above mentioned isomorphism restricted to L'(T 5", A0). 
Now let T = [0, To], To > 0 be an interval on the real line. Then N(t) = 

= C^. Z[o,«]>; 0 - t = Io i s a Poisson process with an intensity measure A, for 
which we have: 

E,[JV(0] = X([0, t]); 0 S" » = T0 

and 
R,.(s, J) = Cov,[iV(s),iV(0] = A([0,min(s, f)]) = fo0.* fto.oW) • 

In a special case when A is Lebesgue measure we get R,(s, t) = min (s, *), what is the 
covariance function of the Gaussian Wiener process, too. In the following section 
we show how these results can be used to solve some nonlinear statistical problems 
of a Poisson process. The results obtained, are similar to those valid for a Gaussian 
random process, described in [8] and [9]. 

3. THE STRUCTURE OF THE SPACE L2(J/, <€ P(X)) 

Let (T, $T) be a measurable space, X a finite measure on it and P(X) a distribution 
of a Poisson process X with values in (Jt, <tf). To solve statistical problems of non
linear estimation of random variables (for example problems of nonlinear filtration) 
based on a Poisson process it is necessary to know the structure of the space L2(Ji, <€, 
P(X)) = L\P(X)). 

It was mentioned in the Section 1 that the Hilbert space L\JC, <€, P(X)) is iso
morphic with the reproducing kernel Hilbert space H(KX) with a kernel 

Kx(f, g) = LPW U±£\ = exp JT (e" 2 . e"2 - 1) dx\ , 

where this kernel is defined on a set E x E with 

E = { je L0 : e / / 2 e L\T, F, X)} = { / : / = In ft; h _ 0, h e L2(X)} . 

According to this isomorphism, the system of random variables {exp $(f);fe £} 
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generates L2(Ji, <€, P(X)). Since it is difficult to characterise the space H(KX), we use 
the fact that the set of random variables {exp {ij/(f) - J r (t

f - 1) dX};feE} 
generates L2(P(X)) too, and according to Lemma 2 of [8] we have the following 
assertion: the Hilbert space L2(P(X)) is isomorphic with a reproducing kernel Hilbert 
space H(MX) of functional defined on E, with a kernel 

Mx(f, g) = EP(X) | exp L(f) - f (</ - 1) dl j exp U>(g) - f (e« - 1) d^Jl = 

= expjf (ts- l ) ( e 9 - l ) d l j , f,geE. 

Now let H(NX) be a reproducing kernel Hilbert space with a kernel 

Nx(h, h') = exp | f h.h' AH ; h, W e E , 

where 
E = {h e L2(T, r,X):h= - 1 mod 1} . 

Define a transformation 9 on a set of-generating elements of H(NX) onto a set of 
generating elements of H(MX) by B(NX(., h)) = Mx(., In (h + 1)); he F. 9 can be 
naturally extended to an isomorphism between H(NX) and H(MX), because we have: 

(Nx(., h),Nx(., h'))H(Nx) = (9(N,(., h)), S(NX(., h')))H{Mx) = 

= <MA(., In (h + 1)), Mx(.,\n (h' + 1 ) )> T O = exp {(h, h%w} ; 

h, h' e F. Thus we have proved the following lemma: 

Lemma 3.1. The Hilbert space L2(J(, (€, P(X)) is isomorphic with the reproducing 
kernel Hilbert space H(NX) with the kernel Nx(h, h') = exp {Jr hh' dX}; h, h' e F. 

Now we are able to give the following theorem. 

Theorem 3.1. There exist an isomorphism say q>, between the Hilbert space 
L2(Jt, V, P(Xj) and exp © L2(T, ST, X) = © L2(T, 2T, XfQ, where L2())nQ is the 

n & 0 

n-th symmetric tensor power of the space L2(X). 

Proof. It was proved in Lemma 3.1. that L2(P(X)) is isomorphic with H(NX;F) 
where Nx(h, h') = exp {(h, h')Li(X)} is defined on E x E, E being a subset of L2(X). 
It is known from the properties of RKHS (see [5]) that H(NX; E) is isomorphic 
with a subspace of RKHS H(NX; L2(?,)) of functionals defined on L2(X) generated 
by a set of functionals {Nx(., h); heF}. Since H(NX;L2(X)) is isomorphic with 
exp © L2(X), it is enough to show that the set {Nx(. ,h);he F} generates H(NX; L2(X)). 
Let feH(Nx;L

2(X)) and let (f,Nx(., h))H(N,.LHX)) = 0 for all heF. We have 
to show thatj = 0. In our case it holds thatj(a) = J^(f„, g ® ... 0 g)LHX)*®, where 

400 



/„ e L2(X)n®. Further we have: Nx(g, h) = £ ((1/n!) ft ® ... ® /i, o ® ... ® g)LHX)„® 
J S O 

and thus 0 = </, Nx(., h)}H(N^ = J (a,„ h ® ... ® h)t2(A)„® for all /i e E, where gn 
nSO 

is a projection of/„ onto the subspace L2(X)"° of L2(X)"®. From the last equality 
we get that £ f (a„, / i" 0)^)-© = 0 for all t = 0 and for all h e L2

+(X) = {h e L2(X) : 
n&0 

: h }= 0 mod A}, what is possible only in the case when (g„, h"°) = 0 for all h e L2
+(i). 

If we set h = Y,cjhj> where c l 5 . . . , c„ are any nonnegative real numbers and ht, ... 
J = l « 

..., h„ e L2
+(X), then we get that (gn, ( £

 cjhj) J^w"® - a polynomial in nonnegative 
J = I 

variables cu ...,c„ is identically equal to zero, from which we get that (gn, hxQ ... 
• • • O hn)L2(Xy,Q; ht,..., h„eL2

+(X) - a coefficient of polynomial by a variable 
cx ... cn, is equal to zero. Since the set L2

+(A) generates L2(X), the set {/̂  O • • • O h„; 
/ i j , . . . , h„ e L2

+(X)} generates L2(X)"° for all n = 0, and thus gr„ must be zero element 
for all n = 0. D 

Now we shall study in more details the special case when T= [0, T0]; T0 > 0, 
3~ = SS(T) and X is a finite measure on (T ST). From Theorem 3.1. we have 

Corollary 3.1. The Hilbert space L2(Ji, <$, P(X)) is isomorphic with the Hilbert 
space exp O H(RX), where Rx(s, t); s, t e T is the covariance function of a Poisson 
process N(t) = <Z, Z [ 0 | t ]>; 0 = t = T0. 

Proof. It was mentioned in Part 1 that <#,,(., s), Rx(., t)>W(fiA) = Rx(s, t) = 
= (Z[o,S]> Z[o,o)t2(/i)- S i n c e t n e system of functions {x^.tv te^} generates L2(X) 
and the set {Rx(-, t); t e T} generates H(RX), L2(X) and H(RX) are isomorphic. D 

It follows from the definition of exp O H(RX) as a direct sum of Hilbert spaces 
H(Rx)"

e; n = 0 and from the isomorphism between L2(P(X)) and exp O H(RX), 
that the same partition to orthogonal components must hold for the space L2(P(X)), 
too. According to this we can write: L2(J{, %, P(X)) = © L2„(J{, c€, P(X)) where 

n&0 

L2
n(P(X)) are orthogonal subspaces of L2(X). For problems of nonlinear estimation 

of random variables the following theorems is useful. 

Theorem 3.2. Let T = [0, T0], T0 > 0 and let A be a finite positive measure on 
(T <M(T)). Then for any random variable U e L2(Ji, V, P(X)) we have U = ® U„, 
where " - 0 

U„ = xfoftf . x(Rx(., tt) O ••• O Rx(., t„))]; h, ...,t„sT); 

n = 0, and % is an isomorphism described in Corollary 3.1. 

Proof. Since the set {Rx(., tj O ... O RA(-> 0 ; ti> •••> tn
er} generatesH(RX)"°, 

the system of random variables {x(Rx(., t t) O ••• O #*(•> t„)); ti, •••, t„e T) gene
rates the Hilbert space L2

n(P(X)); n = 0. A symmetric function of n-variables 
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(?,, ..., t„): EX[U . x(RA(., tj) Q . . . O R;.(., t„))] - an element of H(R"°), we can 
identify with that element of the space H(Rx)

nQ,the image of which by the isomorphism 
H is the random variable U„ — a projection of a random variable U on the subspace 
L2„(P(X)). (For more details see [8]). • 

Now we shall try to clarify how the random variables x({Rx(., f,) O ... O Rx(., t„); 
ti,..., t„e T}) — generating elements of L2„(P(X)) can be found for n 2; 0. 

Let cp be the isomorphism from Theorem 3.1. Then we have 

<p(exp © (h - 1)) = exp U(\n h) + f (h - 1) dk\ ; he L\(X), 

where exp O h = J 1/,/n! hn® or 
ngO 

<p(exp O (-j)) - exp |<A(ln (1 - / ) ) + [ jd4 . 

where j is any function from L2(X) such that j <, 1 mod 2. If we set j = £ c.Xto,».]i 
i = l 

where 0 < f. <i t2 S ••• S= t„ are any fixed points from the interval [0, T0], n ^ 0 
and Cj,..-, c„ are any suitable chosen real numbers such that £ c;x[0 ,,j <. 1, then we 
get 

*(exp O (- £ c, R,(.,.-,))) = <p(exp O (- £ c, xro,(l])) = 
i = l i = l 

= exp | i//(ln (1 - £ cifto,..])) + £ c, Xro.r,] d l l . 

From the equality 

ex P o ( - ic ; R , ( . , f i ) ) = £ . . .£^ . . .^ ( -R , ( . , / 1 )r e o . . .o ( -R , ( . , t f c )r G 

i = l n , = 0 nk = o n 1 ! « t ! 

we have that (-1)" Rx(., tj) O ••• O R,i(-, t„) is a coefficient by a variable c t . . . c„. 
Since {RA(-, ti) O ... O R;(-, t„); tu ..., t„ e T} generates H(Rx)

ne, to find 
x(Rx(.,t1) O ... Q Rx(.,t„)), it suffices to find a coefficient by ct...c„ in an 

expansion of the random variable exp {iA(ln (l — £ c.Xro,«(])) + Z cf J r Xto.r.] d ^ } -
i = l ' ' i = l 

To do this, we can proceed as follows: using formally the expression In (1 — x) = 

= - £ x t + 1 / / c + 1 we get 
k = 0 

exp M(m (1 - £ c; Xto.ro)) + £ c» Xto.r,] ̂ l = 
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VŁ+1 { (• ( Z C i * [ 0 , t , ] ) " (> 

_ £ J - i d i V(/) + £ C ; Xt0>(i]dAf = 
Jr 'go k + 1 r-i J r J 

1 /c \ r (SciZ[o,f,]) 

J><(J/ro,.(]dA - N(tt)j - j ^ £ i s l
 k diV(0|. 

Expanding the function exp into an infinite series we get the coefficient by c1 ... cn 

of this expandion. We are not able to derive an general expression for this coefficient 
for any n 3: 0. Here are the first four, derived by this method: 

x(Ri(.,t))-N(t)-[Xl0ttlAi.iteT 
Let us denote by M(t) = N(t) - J"T x [ 0, ( ] dA; t e T Then 

x(Rx(.. f.) O R,(., t2)) = M(tl)M(t2) -N(mm {tu f2}); f,, f2 e T. 

«(RA(., /,) O Rx(-, h) O R,(., t3)) = J ] Af(f,) - iM(f,.)/V(min(T3 - {/,})) + 
i = l i = l 

+ 2/V(min T 3 ) , where T3 = {fls f2, f3} ; tu t2, t3 e [0, T0] = T. 

* ( * , ( . , //) © ... © R,(., Z4)) = f l M(f;) - E M(f;) M(0)!V(min (T 4 -{f„ /,})) + 
i = l i<j 

+ 2! X M(/;) /V(min (T4 - {/,})) - 3! 7V(min T4) + X Wfrnin {/., fj) . 
i = 1 i = 2 

. JV(min (T4 - {*., f,})), where T4 = {fl5..., f4} ; tu ..., f 4 e T . 

Remark. Setting f. = ... = f„ = T0 = 1, n = 1,..., 4 and A = / Lebesgue 
measure, where / > 0, we get the first four orthogonal polynomials of a complete 
orthogonal system of a Poisson distribution on integers with a parameter /: 

p0(x) = 1 

Pi(x) = x - 1 

P2(x) = (x-iy-x 

p3(x) = (x - I)3 - 3x(x - /) + 2x 

p4(x) = (x - If - 6x(x - l)2 + 8x(x - I) + 3x2 - 6x , 

where 

Z pl(x)pj(x)-e-l^aJ5ij; 1,2,..., 4. 
x > 0 x\ 
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4. ESTIMATION OF FUNCTIONALS OF AN UNKNOWN INTENSITY 
MEASURE OF A POISSON LAW 

The basis for this part is a general theory of locally best unbiased estimates as 
given in [6] and used for example in [9]. Now we shall apply this theory to the special 
case of the estimation of functional of an unknown intensity measure of a Poisson 
law. 

As we mentioned in Part 2, for two Poisson laws with X <̂  X0 on (T &~), we have 

- ^ = exp h(infx) - f a * - 1)<*4 • where f*-lT' 
dP(X0) I JT J dX0 

As we have shown in the preceding part, the system of random variables 
{exp {iA(lnj) - fr (j - 1) dX0};fe L2

+(X0)} generates L2(Jt, <€, P(X0)). Every random 
variable of a type exp {\p(inf) - j T (f — 1) dX0}; fe L2

+(A0) can be regarded 
as a Radon-Nikodym derivative dP(/iy)/dP(/l0) of a measure P(Xf) with respect 
to the measure P(X0), where Xf is defined on (T 3T) by Xf(A) = $AfdX0; fe L2

+(X0), 
A e ST. Thus there exist a one-to-one correspondence between measures X absolutely 
continuous with respect to X0 and functions (precisely equivalent classes of functions) 
from L2

+(X0). 

From a general theory of locally unbiased estimates [6] we have that a functional 
E(.) defined on a set of measures, which are absolutely continuous with respect to X0, 
or equivalently, on the set L2

+(X0), has an unbiased estimate with a finite dispersion 
at X0, if and only if, F(.) belongs to a reproducing kernel Hilber space H(KXo) of 
functionals defined on L2

+(X0) with a kernel 

*#•*• 4^5^-«•>{!>- w - iH- f-feL%M-
It was shown in Theorem 3.1 that H(KXo) and exp O L2(X0) are isomorphic, from 
which we get the following characterization of the space H(KXo), suitable for a case 
of estimation of functionals. 

Theorem 4.1. The reproducing kernel Hilbert space H(KXo) consists of functionals 
of a type Tg(-); ff

 G exp O L2(20) defined on the space L2
+(X0) and such that 

F„(f) = I (gn, (f - i r ^ u o r o , where g = ® gn e exp © L2(X0) 
n & 0 . S O 

and 

llnlfl(^o) - M I C I P O ^ O ) ; h"Q^~h^ for heL2(X0). 

Proof. Setting gn = (g - l)"Q ; g eL2
+(X0) we get, that Fg(.) = KXo(., g) is 

an element of H(KXo). Using the definition of the norm for the class of functionals 
^9(0 we get that 

<F»KAo(.,f)yHiKM) ~Z(gn)(f- i r W o ) „ 0 = Fg(f) 
»go 
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for every g e exp © L2(X0),fe L2
+(X0) and the second property of reproducing kernel 

Hilbert space H(KXo) is proved. • 

It was shown in Part 3 that in the case when T = [0, T0], T0 > 0, the system 
{x(R(., f,.) O ... O R(., t„)); tu ..., t„e T} of random variables generates L2„(P(X0)) 
for every n S; 0. From this we have 

E„[*(*(•, ti) © - O * ( . , t„))] = E ^ * ( R [ . , ».) 0 . . . 0 R(., 0 ) ~ | £ ] = 

= n xio.,a (f -1) d^o = n I M O , t.j) - A0([o, tj)] 
i = i j r f=i 

for any feL2
+(X0) and we see that a random variable x(R(., tx) Q ... O R(-, t„)) 

is an unbiased estimate of a functional Eg(j) = [7 [Ay([0, f,]) - Ao([0, «f])] depend
ing on X0.

 ; = 1 

We are interested in functional independent of X0. Analogically with results given 
in [9] we can show that any "polynomial" of a measure Xf has an unbiased estimate. 
By a "polynomial of a degree p" we mean a functional Pp(.) given by 

PP(f) = t \ K-fGdXf; feL2
+(X0),h„eL2(Xoy°. 

n = oJr» 
According to the proof of Lemma 5.1 in [9] we have 

Í, h„.j-«dAf -£o(f)jTltfj.4#~™)(f-y9u!>* 
for any n 2: 0, from which we can derive that any polynomial has an unbiased 
estimate. For a dispersion of the best unbiased estimate Pp of a polynomial Ep(j) = 

= I .IY» h„j"® dXf, where h„ e L2(X0)"
G we have from Lemma 5.1. of [9]: 

Let us investigate a special case when 

Then we get: 

!.„= t7iO . . . flf-. - — Z л 
Vn ! -

w) -n Jydi, - Ĵ y-d-r -,i QJX.á ?'• 
- ® S f f„.M""°®) *- . - . • . ® ••• ® 9a„ • (f - - ) " dAf = 

= Ž (") A £ ("ň f fc. ̂ o ) ( fl f 9., (j - 1) dA0 i=o \ ř / n! «T V = I J T / \ y = „ - í + i j r 

405 



and 

mi™ - E,0[P„2]= i « ~ i n *„ d-. ® *., 
. - o \ v | » J « 7 - I J T /««-i+i ||L2(Ao)i® 

Example 4.1. Let n = 2. Then we get: 

P»(f) = II I 5;jd/0 = I a, d^0 I ff2 di0 + I gt dX0 | a2(j - l)tU0 + 
j = i j r J r J r J r J r 

+ f 02 dXo [ </.(/ - 1) d/0 + [ 9l(f - 1) dk0 + f a2(j - 1) dA0 . 

The locally best unbiased estimate P2 of P2 is given 

Pz = EI U ' d^o + 0i dA0 • <p(a2) + a2 cU0 . <p(<?i) + <p(0i O a2). 
i= i j Jr Jr 

Setting gt = Xro,.,]; i = L 2 we get that the random variable P2 = N(fx). ,/V(f2) — 
— JV(min {f,, r2}) is the best unbiased estimate of the functional 

Piif) = ^ ( [ 0 , tj) • i/tO, tj); t,, t2 e T; je L2
+(A0) 

with 

Var,0[P2] = ||P2||„(K,0) - P2
2(l) = [g\ <Wof» l d 4 + ( f ^ dA0Y + 

+ 0i 02 dA0 + g2\ gt dk0 dl0 . 

If 9t = Xio.uv • = !> 2 , t h e n 

Var,0[P2] = 10([0, .J) ,A0([0, *J) + A2([0, min {*., t2}]) + 

+ A2([0, fJ) Ao[(0, tj) + 2i2([0, i j ) Ao[(0, min {»., f2}]) + 

+ Aot[0,.J)Ao([0,.J). 

Setting t1 = t2 = 7, we get 

Var,0[P2] = 2A0([0, J) + 4A3([0, r]) - the classical result. 

Example 4.2. Let P3(f) = (Jo .jdA0)3: Then 

IW) = £ (?) ( [0( j - 1) dAo)' ( [ r 0 dA0)3"'; 

P3 — the best umbiased estimate of P3 is given by: 

I33=|i(?)(|0dAo)"
,<p(0i0); 

Var,0[Pj = 6. \\g\\iHXo) + l S l ^ ^ a (U0J + 9||a||22(Ao)(J^ dA0)
4. 
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For g = Z[0><] we get P3 = N(t) N(t) - 1) (N(t) - 2) and 

VarJEs] = M§([0, ř]) + 18Á*([0, ř]) + 9^([0, ř]), 

what is again a classical result given in [2]. 
(Received July 15, 1981.) 
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