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OPTIMAL FEEDBACK CONTROL OF A CLASS 
OF DISTRIBUTED-PARAMETER SYSTEMS 
WITH INCOMPLETE MEASUREMENT 

JAN MIKLES 

Necessary conditions are discussed for a minimization of an integral performance criterion 
for control of a class of counter-current distributed-parameter systems with distributed control 
variable and with boundary control. The system dynamics are described by hyperbolic system 
of first-order partial differential equations. For the system with a quadratic performance criterion 
to drive it from one steady state to another a linear feedback control law has been derived. Part 
of state variables cannot be measured and part can be only incompletely measured. 

1. INTRODUCTION 

The optimal control theory of lumped-parameter systems has been well developed. 
This theory has resulted in analytical solution for optimal control of linear systems 
subject to performance criteria such as minimum integral-square-error minimum 
time and minimum fuel [ ] ] . For other lumped-parameter systems and other perfor­
mance criteria, efficient computational algorithms have been devised to obtain 
numerical solutions. For distributed-parameter systems, comparable results are 
available for many cases with complete measurement [2], [3], etc. Gilles [4] present 
a control for a class of distributed-parameter systems with incomplete measurement. 
In this paper, various controls, such as a spatially distributed control and boundary 
control, of a class of counter-current distributed-parameter system with incomplete 
measurement whose system dynamics are described by a hyperbolic system of first-
order partial differential equations are studied. A linear feedback control law has 
been derived. 

Theoretical results can be used for optimal control of tubular heat exchangers, 
tubular chemical reactors, absorption and distillation columns, tunnel kilns, glass 
bath tubs, sequence stirred chemical reactors, etc. A typical application of the 
discussed theory is the optimal control of tubular chemical reactor, because in a che-
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mical reactor the concentration cannot be measured and the temperature can be 
incompletely measured. Illustrative calculations are given for a tubular plug flow 
heat exchanger. 

2. SYSTEM EQUATIONS 

A distributed-parameter system of the following is considered 

(1) ^ - ^ ) = A(z, t) x(z, 0 + AJz, t) ^ - i i ) + BJz, t) w(z, t) 

dt dz 

where 
t is the dimensionless time-like variable, 0 _\ t ^ tx, 
z is the dimensionless spatial coordinate, 0 _l z _\ 1, 

x(z, t) = [xj(z, (), *2(z> t), •••! x„(z' 0 ] T is t n e s t a t e v e c t o r °f " components, 
w(z, t) = (w_(z, t), w2(z, t),..., w,,(z, t)Y is the distributed control vector of h 

components, /; _\ n, 

A(z,t) = 
'aíг(z,t) a12(z,t) ... aln(z,t) 
a2ì(z, i) a22(z, t) ... a2„(z, t) 

A,íz,0-

Bw(z, t) = 

\_aпl(z,t) an2(z,t) 

„(-, 0 ° 
az2(z, t) 

~Ьц(z,t) Ь12(z,t) 
b2l(z, t) b22(z, t) 

am(z,t)_\ 

is an n x n matrix, 

is a n n x n diagonal matrix, 

--,(-,'11 

!>i*(z,.; 

fc2„(z, 0 is an n x /. matrix. 

U i ( - . 0 &«2(z, 0 • • • ^ . OJ 

Eqn. (l) represents a hyperbolic system. Elements of A(z, t) and Bjz, t) matrix 
are continuous. Elements of A.(z, t) matrix are continuously differentiable on z and t. 
Elements of distributed control vector w(z, t) are continuous and w(z, t)eW. W is 
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a simply connected open region in n-dimensional Euclidean space. Boundary control 
is continuous, it can be differentiated and it has a value in n-dimensional Euclidean 
space. 

The initial conditions are 

(2) x(z, 0) = x0(z) . 

The boundary conditions are 

(3) xf(0,t) = u%t) / = l , 2 , . . . , c , 

(4) x ;(0, 0 = x°t(t) = 0 , i = c + 1 , c + 2,..., d , 

(5) xj(\,t) =u){t), j = d + \, d + 2,...,e, 

(6) xk(l, t) = x\(t) = 0 , k = e + 1, e + 2,..., n . 

Let us consider vectors given by 

u°(t) = \u%t),u%t),...,u0
c(t)Y, 

«1(0 = W + i (0, t ' i + 2 (0.--,« i(0] r . 

*°(0 = 0«+i(o, 0, *d+2(o, 0. •••. *«(o, 0, xe+1(o, t),..., x„(o, 0 7 , 

x ' ( 0 = [Xl(l, t), x 2 (l, 0, - . , xc(h t), xc+1(l, t), ..., xd(l, t)f. 

u°(t), u'(i) are boundary control vectors. We have assumed that if control w(z, t) 
and initial and boundary conditions (2), (3), (4), (5), (6) are given then Eqn. (l)has 
a single solution. 

We shall assume that measurements are available as follows [4] 

(7) >V(0= ^Prp(z)xp(z,t)âz, ( r = l , 2 , . . . , s ) , 
J O P = I 

y ( ř ) = f p ( z ) x ( z , ř ) d z , 

where 

y(0 = [>i(0,y 2 (0,- ,> s (0] r , 

> u ( z ) Pu(z) ••• Pu(z) 
P(z) = P2l(z) p22(z) •• Ы z ) is an s x n matrix. 

J>Sl(-) P s 2 ( z ) ••• Psn(zY 

Elements of matrix P(z) are given by the measurements performed. 
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3. NECESSARY CONDITIONS FOR OPTIMAL CONTROL 

The problem is to find optimal control law which minimizes the integral per­
formance criterion 

(9) 

i = [ V ( t ) K<) y(0d ' + f" i w % 0 <?w(-> 0 w(z, o dz dt + 
Jo J0 . 0 

+ r'xoT(0/«o(0xo(0dr + Px l T(0 ^ (0 x*(0 dt + f u 0 ^ ) Q°(t)u°(t)dt + 
Jo Jo Jo 

+ H«- r(0 Q\t)u\t)dt, 

where fi(t), fi°(t), ̂ (t) are positive semi-definite weighting factors and gw(z, 0> <?°(0> 
g'(0 are positive weighting factors. 

Substituting Eqn. (8) into Eqn. (9) one obtains 

' í l Г"l ľl 

(10) / = [P(«) x(Z, t)Y H(t) P(z) x(z, 0 d£ dz d. + 
J o J oj 0 

+ f" P wr(z, t) QW(Z, t) w(z, t) dz dt+ px°T(0 H°(0 x°(0 dt + 
J oJ o Jo 

+ px lT(0M1(t)x1(0dt+ r'uoT(0eo(t)«o(t)dt+ \,l»lT(t)Q\t)u\t)dt, 
Jo Jo Jo 

where £ - the dimensionless spatial coordinate, 0 <£ £ g 1. 
We consider the case where the final time *j is fixed, the final state x(z, tj.) is free. 
The Hamiltonian functions are defined as 

(11) H[z, t, x(z, t), X(z, t), w(z, 0] = f W ) *(€. 0 7 MO P(-) *(-, 0 ^ + 
Jo 

+ v/T(z, 0 ew(z, 0 w(z, t) + AT(z, 0 [A(z, 0 x(z, 0 + Bw(z, 0 w(z, 0] , 

(12) JJ°[UO(0, u^O. x°(0> xl(0> A°(0> A*(0] = «°T(0 ff°(0 u°(0 + 

+ ^' (o^W'W + xOT(0/At)x°(0 + x^w^Wx^O -

- I «,/(o, t) A/o, 0 u°(t) + t --XL 0 A/i, 0 «3(0. 
/ = 1 j = d + l 

where 

A(z, 0 is the adjoint vector on n components, 

A°(0 = m), A°(0,..., ?°c(t)Y = [Ai(0, 0. *a(0. 0. • • •' 4(0= 0]T . 
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l\t) = pd+1(f), ld+2(t),.-, A W = [A„+1(l, 0> A,+2(l, 0, •••> A.(l, f)]T , 
azf, (/ = 1, 2,..., c), aZJ, (;' = d + 1, d + 2, ..., e) are the elements of matrix Az. 

The adjoint vector satisfies the adjoint partial differential equation 

(13) ^ i ) = f [ 4 j ( z , 0 A ( z , 0 ] - ^ 
8t dz dx 

with final and boundary conditions 

(14) l(z, f,) = 0 , 

(15) ^.(0,01/0,0 = 

(16) azk(0,t)Xk(0,t) = 

(17) azf(l,t)lf(í,t)= - -

(18) az;(l,ř)Л ;(l,0= -

дxj(0,t)' 

ÔH° 

õxк(0, t)' 

ÕH° 

dxf(í, t)' 

dH° 
ÕXi(í, t) 

The performance criterion, Eqn. (10), can be rewritten as 

/ = [" I [H - lT(Ax + Bww)] dz df + [" [H° + £ azf(0, t) lf(0, t) u°f(t) -
Jojo Jo /=1 

- t a2j(l,t)lj(l,t)u)(t)-]dt. 
j = d + l 

After taking the first variation of Eqn. (19), integrating by parts, and then setting 
81 = 0 for arbitrary variations in the state and control variables, we obtain the 
following necessary conditions [5], [6]: 

(20) _ ^ / _ = 0 , 
V ' dw(z,t) 

(21) -^— = 0 , j= 1,2, ..., c , 

BH° 
(22) m = 0 , i - * + K* + 2,...,t. 
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4. LINEAR FEEDBACK CONTROL LAW FOR DISTRIBUTED 
CONTROL 

We consider the case where p°(t) = pl(t) = 0, xf(0, t) = x/1, t) = 0. The optimal 
control function is 

(23) w(z,t)=-W'-1(z,t)Bl(z,t)^,t). 

For the lumped system the adjoint vector k(z, t) can be expressed as a homogeneous 
linear function of the state [l]. Since the distributed system in Eqn. (l) may be 
considered as the limit of large approximating lumped system in which spatial 
derivatives are replaced by differences, it follows that an equivalent result must hold 
for the function X(z, t) in the distributed system. The proper representation in which 
to seek a solution is then 

(24) k(z,t) = {1N(z,Z,t)x(Z,t)dZ. 

It follows from the lumped system result, and is proved independently that N is 
symetric in its indices and spatial arguments 

(25) N(z, <?, 0 = NT(Z, z, t). 

Eqn. (13) can be rewritten as 

(26) £ - f [Al(z, t) A(z, 0] - Ar(z, t) l(z, t) - fV(z) „(t) P(0 xtf, t) d£ . 

St dz J 0 

Substituting Eqn. (24) into Eqn. (25) and using Eqn. (l), one obtains 

(27) 
f SN^ *fc 0 « - - ( V L t) W, t) 4S, t) + Atf, t)^M + 
Jo St Jo d£ 

+ BW(Z, t) w(t, 0] di; + f' f [/£(z, 0 N(z, £, 0] xtf, r) d£ -
J o ^ z 

- fV(z , 0 N(z, c,, 0 Xtf, 0 d̂  - fV(z) „(.) P(5) x(£, 0 d{ . 

Substitution of Eqn. (23) and Eqn. (24) into Eqn. (27) yields 

(28) f* d f ^ t l x(£, 0 d{ - f f [4j(z, 0 N(z, «, 0] *(£, 0 d^ -

Jo di )0dz 

~\\k[N(z> *• ° ^ °3 x('B' ° d ? + 1 *r(z'f) N(z> *• °xfc °d^+ 
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+ CN(Z, C, 0 A(Z, t) x(£, t) dl; - h \ \[ N(z, r, t) Bw(r, t) Q^\r, t) BT
w(r, t) x 

Jo J0 U o 

x N(r, <_, t) x(?, t) d r l d£ + CPT(z) n(t) P(£) x(<_, t) d£ = 
J Jo 

= -[N(zA,t)A^,t)x(^,t)\l. 

If the following boundary condition on the gain matrix 

(29) - N(z, 1, .) A_(l, t) x(l, .) + N(z, 0, .) Az(0,.) x(0, t) = 0 

holds then satisfaction of Eqn. (28) will be obtained if 

(30) _ _ & - _ - - A [ A i (z, r) N(z, c, 0] - ~ [N(z, ft t) Az(£, .)] + 
c. 5z d<_ 

+ AT(z, 0 N(z, & t) + N(z, I, t) A(l, t) -

- i f N(z, r, .) BM,(r, .) e
w " ( r , f) B^r, f) N(r, & .) dr + 

+ P r(z)/ i( t)P^) = 0 . 

Using relations in Eqns. (14), (24) and (25) for A;(0, t) = 4(0, t) = A/(l, f) = 
= )H(\, t) = 0 we get final and boundary conditions of matrix N(z, <_, t) as 

(31) N(_, <_,._) = 0 , 

(32) AT/p(l, g, t) - 0 , / = l , 2 , . . . , c , 
_. = 1,2,..., c, c + 1,. . . , .., d + 1, ..., e, e + 1, ..., и, 

.., e, e + 1, ..., и, 
(33) Nip(í,č, t) = 0, í = c + 1, c + 2, .. .,t ., 

_. = 1, 2,..., c, c + 1, ...,d, d + 1, 

(34) Л p(0, {, ř) = 0 , j = d + 1, d + 2,..., e, 
_. = 1,2,..., c, c + 1,..., _., d + 1, 

(35) JVip(0, í , ř) = 0 , fc = e + 1, e + 2,..., n, 
p = 1, 2,..., c, c + 1,..., d, d + 1, 

(36) _V_,(z, l , t ) * 0 , p = 1,2, ...,c, c + 1, . . . , „ , c. + 1, 
/ = 1,2, ...,c, 

(37) Npi(z, 1,.) = 0, _> = 1, 2,..., c, c + 1,..., d, d + 1, 
i = c + 1, c + 2,..., d, 

(38) _V_.(z, 0, í) = 0 , p = 1,2, . . . ,c , c + 1,..., d, d + í, 
j = d + 1, d + 2,..., e, 

.., e, e + 1,..., и, 

.., e, e + 1,..., и, 

.., e, e + 1, ..., и, 

.., e, e + 1, ..., и, 

.., e, e + 1, ..., и, 
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(39) Npk(z, 0, t) = 0 , p = 1,2,..., c, c + 1,. . . , d, d + \,...,e, e + 1, . . . , n, 
k = e + 1, e + 2, ..., n. 

Using conditions (3)-(6) [u°(«) = uj (f) = 0] and conditions (36)-(39) Eqn. (29) 
is satisfied. 

In the present case, matrix N(z, £, t) takes the form 

(40) N(z,Z,t) = PT(z)K(t)P(t). 

The form of matrix N(z, £,, t) can be obtained by using the dynamic programming 
when Lyapunov function is 

(41) J* = yT(t)K(t)y(t). 

Substituting Eqn. (8) and Eqn. (40) into Eqn. (41) we obtain 

(42) J * = [ [ xT(z, t) N(z, q, t) x(Z, t)dzdt. 

Using Eqns. (8), (24) and (40), the optimal control (23) can be written in the feedback 
form 

(43) w(z, t) = y \ z , t) BT
w(z, t) PT(z) K(t) y(t), 

where K(t) is s x s matrix. It follows from the Eqn. (40) that K(t) = KT(t). 

The matrix P(z) cannot be arbitrary. 

Assuming the same as in the lumped-parameter system, the optimal gain becomes 
stationary as rt approach infinity, Eqn. (30) becomes [A,, A, Bw, QW, fi are time 
independent, N(z, £, f) -* Ns(z, £), K(t) -+ K j 

(44) 

- ± [AT(z) Ns(z, £)] - I [Ns(z, t) AM + AT(z) Ns(z, {) + Ns(z, I) A(£) -
cz oc, 

- i [ V (z, r) Bjr) Qw'\r) BT
w(r) Ns(r, {) dr + PT(z) |i P(^) = 0 

Jo 

with boundary conditions 

(45) Nsfp(l,Z) = 0, / = l , 2 , . . . , c , 
p = 1, 2, ..., c, c + 1,. . . , d, d + 1, ..., e, e + 1, ..., n, 

(46) Nsip(l, c) = 0 . i = c + 1, c + 2,...,d, 
p = 1,2, ..., c, c + 1,. . . , d, d + 1, ..., e, e + 1, ..., n, 

(47) JVSJ>(0, {) = 0 , j = d + 1, d + 2,..., e, 
p = 1, 2, ..., c, c + 1, ..., d, d + 1, ..., e, e + 1, ..., «, 
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(48) Nskp(0,í) = 0 , fc = e + 1, e + 2,...,n, 
p = 1, 2,..., c, c + 1,..., d, d + 1,..., e, e + 1,..., n, 

(49) Nspf(z, 1) = 0, p = 1,2, ...,c, c + 1, ..., d, ti + 1, ..., e, e + 1, ...,n, 
f = 1,2, ..., c, 

(50) 2VSJ)i(z, 1) = 0 , p = 1,2, ... ,c, c + 1,..., d, d + 1, ...,e, e + 1, ^.., n, 
i = c + 1, c + 2,..., d, 

(51) NspJ(z, 0) = 0 , p = 1,2,..., c, c + 1, ..., d, d + 1, ..., e, e + 1,..., n, 
j = d + 1, d + 2,..., e, 

(52) /VspS(z, 0) = 0 , p = 1,2,...,c, c + 1,..., d, d + 1,..., e, e + 1,..., n, 
fc =* e + 1, e + 2,..., n. 

5. LINEAR FEEDBACK CONTROL LAW FOR BOUNDARY CONTROL 

We consider the case where n°(t) = «x(0 = 0, w = 0. 
The boundary control functions are 

(53) „°(0 = V ' ( 0 /o- [ t -v^o, 0 /̂(o> 0 «X0]. 

(54) «4(0 = - V ' ( t ) ± [ I «,,(!, 0 A/1, 0 u](t)] . 
2 tfir j=d+i 

In order to obtain optima] feedback control, relation (24) is employed. Substituting 
Eqn. (24) into Eqn. (26), using relations of Eqn. (1), one obtains 

(55) 

I ^ T * 1 *• 0 ̂  - - J V «• 0 [«-• 0 ̂  0 + *fc 0 ^ ] ^ + 
+ f f !X(-> t) N(z, {, 0] x({, 0 d£ - f V ( z . 0 N(z, S, 0x({, t) d£ -

Jo^z Jo 

-JVWKO^O^.O^. 
After rearrangement we can write 

(56) £ « ^ L 0 X ( £ .) d{ - £ £ [Aj(z, 0 N(z, C, 0] *(«, 0 d̂  -

- f 1 [N(-, {, 0 -U«, 0] xtt> 0 d^ + f V ( z , 0 N(z, 5, 0 x(£, 0 d£ + 
J o ^ Jo 
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+ f N(z, ., 0 A(_, t) x(., 0 ^ + j V ( 2 ) /<0 P(a xtf, 0 dc + 

+ [N (z , ^ ,0^ ,0x (c ,0 ]?=O. 

Using relations in Eqns. (14), (24) and (25) when A/0, 0 = Xk(0, t) = kf(\, t) = 
= Aj(l, 0 = 0 we get final and boundary conditions of matrix N(z, _, t) as in Eqns. 
(31)-(39). 

Using conditions (3)-(6) and conditions (36)-(39) we can write 

(57) 

(58) 

where 

A.(i,t) = 

[N(z,.,t)Az(.,t)x(.,t)]_ = 

= N(z, 1, 0 Az(í, t) x(l, 0 - N(z, 0, 0 4 ( 0 , 0 x(0, 0 , 

[N(z,?,0Л г({,0x(í,0]î = 

= NҚz, 1, 0 Al
2(ì, t) uҚt) - N°(z, 0, 0 A°z(0, t) u°(t), 

"«-i(f, 0 o 
o az2(_, 0 

0 0 aЛШ 

is an c x c maírix, 

m, o = 
"«-(.+D(«,0 ° ••• ° 

0 fl,«<+a)(£, 0 ••• 0 is an (e — d) x (e — d) 
matrix, 

0 0 . . . ate(.,t)_\ 

•Nn(z,.,t)N12(z,.,t) . . . !Vle(2,^,0" 
N°(z, _,t)=\ N21(z, ., t) N22(z, ., 0 ••• !V2,(z, £, 0 I is an n x c matrix, 

L.vBl(z, L o ^ ( 2 > & o • • • ^»c(z,«. oJ 

"!V1(d+1)(z, {, 0 N1 ( 0 + J )(z, C, 0 • • • !Vle(z, §, 0* 
N ^ z , £, 0 = N2(d+ X)(z, ., 0 N2(d+2)(z, _,t) . . . ^V2e(z, «, 0 is an « x („ - d) 

matrix. 

lNn(.+ l)(z, ., 0 !VB(d+2)(z, _,t) . . . JV„e(2, {, OJ 
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Substituting Eqns. (53) and (54) into Eqn. (58), one obtains 

(59) [N(z,{,04( . , t)x({,0]1 = 

= N\z, i, o 4(i, o [-i-i_,(o Aid o mi -
- N°(Z, o, o 4(o, 0 i_o"'(0 4°(o, 0 AO • 

Substituting Eqn. (24) into Eqn. (59), one obtains 

(60) [N(z, { , 0 4 ( . , t ) * ( . , t ) ] - = 

= - i fV(z, 1, o 4( i , 0 Ql'\t) 4(1, o N»(l, ,, 0 *({, 0 d{ -

-I- f1N°(z, o, 0 4(0,0 Q°'\t) 4(0,0 N°°(o, -, 0 x({, 0 d^, 

where 

(61) N00(z, {, 0 = Po o r(-) K(0 P({), 

P00(z) = 
P l l ( - ) _'12(Z) • • • Plc(z)" 

P 2 l ( Z ) P22(Z) • • • Vlc(Z) is an s x c matrix, 

U l ( - ) A2(Z) ... ps,(-)J 

(62) N » ( z , { , 0 = P 1 1 T ( - )K (0P ( . ) , 

p l , (z ) = 
>l(_ + l)( z) P « - + 2)(z) ••• Pu(z)~ 

P2(d+l)(z) P2(d+2)(z) ••• P2e(z) is an s x (_ - d) matrix. 

LPS(d+l)(Z) Ps(d + 2)(z) ••• p s e( z)J 

Eqn. (56) can be written 

(63) d t 4 ^ - -f [Al(z, t) N(z, ,, 0] - I [N(z, ., 0 4(., 0] + 
at oz oc, 

+ AT(z, t) N(z, {, 0 + N(_, ,, 0 >»(-. 0 + pT(z) KO P © -

- IN^Z, i, o 4( i , 0 _1_I(0 *_(-. 0 *"(- . .. 0 -
- iN?(z, o, o 4(0,0,°" '(0 4°(°, 0 N°0(o,., 0 = ° • 

Using Eqns. (8), (24) and (61), the optimal control (53) can be written in the feed­
back form 

(64) _°(0 = k H O 4°(o, 0 pOOT(o) *(0 y(0 • 

60 



Using Eqns. (8), (24) and (62), the optimal control (54) can be written in the feedback 
form 

(65) u\t)=-ie
l-\')Ax(l,t)P11T(\)K(t)y(t), 

where K(t) is a symmetric s x s matrix. The solution of Eqns. (63) and (40) with 
initial and boundary conditions (31) —(39) is matrix K(t). Matrix P(z) cannot be 
arbitrary for boundary control. 

Similarly as for distributed control the optimal gain becomes stationary as t, 
approaches infinity, Eqn. (63) becomes [Az, A, g°, g1, u are time independent, 
N(z, I, t) -» Ns(z, .), Nx(z, ., t) -+ Nl(z, _), Nll(z, ., t) -> N ^ z , .), N°(z, _, f) -* 
-> N°(z, 0, N00(z, ., 0 - N00(z, fl, K(0 -> KJ 

(66) 

- 1 [A2
r(z) N5(z,«.)] - 1 [ N ^ , .) A.(.)] + Ar(z) Ns(z, .) + JYs(z, .) A(.) + 

<9z a ^ 

+ P r(z) „ P(.) - iNjfz, 1) Az(l) g1"1 Ai(l) N » ( l , .) -

- |N°(z, 0) A°(0) e°"' A°(0) N00(0, .) = 0 
with boundary conditions (45) —(52). 

As in [3] we can demonstrate that the control system is asymptotically stable. 

6. TUBULAR PLUG FLOW HEAT EXCHANGER WITH WALL 
TEMPERATURE CONTROLLING 

We now apply the theory to obtain optimal control of the tubular plug flow heat 
exchanger by the manipulation of the well temperature. It is assumed that the wall 
temperature can be varied with both position and time. The control is to drive the 
exchanger from an initial undesired steady state to a new steady state, optimizing 
a quadratic performance index. If we also have constant physical properties, perfect 
radial mixing, and no axial dispersion, the dynamics of the heat exchanger can be 
represented by the following scalar linear partial differential equation 

^ ) = _£^ ) + P [ s . ( z , ( ) _ % t ) ] , 
dt dz 

where 
t = vt'JL is the dimensionless time-like variable, 0 _ ( _ (j, 
t' is the time, 
v is the velocity, 
Lis the length of the exchanger, 
z = z'JL is the dimensionless spatial coordinate, 0 s_ z __ 1, 
z' is the distance from exchanger entrance, 

61 



9(z, t) is the temperature of fluid in exchanger, 
9w(z, t) is the wall temperature, 
P = a.FLJvFzQpcp is the ratio of heat exchanger to heat capacity, 
a is the heat transfer coefficient between exchanger wall and fluid, 
F is the perimeter of pipe wall, 
F, is the cross-sectional area for flow in exchanger. 
op is the density, 
cp is the specific heat. 

Let us assume a constant inlet temperature 900 and that the exchanger has been 
operated for a long period of time at the constant wall temperature 3w0. Then we 
determine the initial temperature profile &0(z) from (67) by setting d9(z, t)\dt = 0, 
9„(z, f) = &w0, ,90(0) = 900 and by solving we obtain 

(68) 90(z) = 9w0-(9w0-900)c-p*. 

Let us assume that we now wish to operate the exchanger in a new steady state 
condition with a wall temperature 9wl. The objective will be to determine how 
9w(z, t) should be changed from 3w 0 to 9wl so as to minimize the performance 
criterion, to be defined later. The temperature 9(z, t) cannot be completely measured. 
We define the state variable as a deviation about the final steady state profile 

(69) S i ( z ) - S w i - ( S w l - 3 0 o ) e - i " . 

The state deviation is defined in the dimensionless form 

ywl — #00 

and the manipulated variable deviation is defined as 

(70 . , ( , . , ) - i ^ ^ . 
#wl — #00 

The normalized partial differential equation describing the system is 

/-„\ dxAz, t) dxAz, t) „ r , -. / \-i 
(72) —"1--J = - — i i - i J - P[xt(z, t) - Wl(z, t)] 

ot dz 
with the boundary condition 

(73) Xl(0,0 = 0 . 

Since the initial conditions is also a steady state, we obtain from Eqns. (72) and (73) 
for dxjdt = 0 and wt(z, 0) = w10(0) 

(74) x ] ( z , 0 ) = w 1 0 ( 0 ) ( l - e - ^ ) . 

The factor w10(0) serves only to multiply all the temperature profiles; hence we can 
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make w10(0) = 1 without loss of generality 

(75) xt(z, 0) = 1 - e"Pz . 

The gains will remain unchanged. 
The system is completely controllable. If vvx = 0 is applied to the system, then 

xx(z, t) will be zero when I _ 1, because the normalized time required for all fluid 
(in the head exchanger at t = 0) to leave the heat exchanger is i* = 1. We can therefore 
choose as performance criterion the following 

(76) / = rPll y2(t) dt + T [Vu (z) w2(z, t) dz dt , 
Jo Jo Jo 

where f, may be infinite, /i11 >, y, glt (z) > 0 and where 

(77) n(t)=! Pll(z)Xl(z,t)dz. 

The Hamiltonian, the adjoint system and its boundary conditions are 

(78) H = f Pll(i) Xl(£, t) / ( 1 1 P l l ( z ) Xl(z, 0 dc + 0u(z)w2(z, 0 - PA,(z, t) x 

x [Xl(z, t) - Wl(z, t)] , 

(79) d ^ - - d ^ + Pli(z,t)~[\11(z),llPu(t)Xl(Lt)d^, 

dt dz J 0 

(80) Xx(z, r.) = 0 , 

(81) ^ ( 1 , 0 = 0 . 

Using Eqn. (43) and assuming that t1 approaches infinity, the optimal feedback 
control 

(82) Wl(z,t)=-~^rPPil(z)Kslly1(t), 

-€« ( - ) 

where .KsU will satisfy equations 

(83) Nsll(z,Z) = Pll(z)KsllPli(£), 

дNsll(z_Л) + ÕNsll(zЛ) 

õz Җ 
- 2PNsll(z, 0 - iP2 [ Nsll(z, r)-^~ Nsll(rX)dr + 

Jo Qn(r) 

+ Pu(z) Hu Pu(£) = 0 
with the boundary conditions 

(85) Nsll(l,^) = 0, 

(86) Nsll(z, 1) = 0 . 
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If 

(87) Pli(z) = 1 - e"'<i--> 

and if e n ( z ) = l/4z, P = 100, j t n = 1, P = 1 then K s l l = 0,4142135. 

If /un = 0, then -Ksii = 0 and therefore wt(z, t) ~ 0. Physically, this is quite 

correct. The condition ju n = 0 means no penalty on y^t), so that the system is 

steered to its final desired steady state condition using a minimum of control. 
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Fig. 1. Control variable profiles. 
X, 

[1] 

0,8 

0,6 

0,4 

0,2 

0 

X, 

[1] 

0,8 

0,6 

0,4 

0,2 

0 

t-0 

X, 

[1] 

0,8 

0,6 

0,4 

0,2 

0 

^S 

0 2 ^ 

.,<; 

X, 

[1] 

0,8 

0,6 

0,4 

0,2 

0 

sf 
Q 4 ^ > 

0,8__^ 

1 
0 0 2 0 4 0 6 0 8 z 

[1] 

Fig. 2. State variable profiles. 

Computational results are shown in Figures 1 and 2. The dashed profiles on Figure 

2 are for w. = 0 . 
(Received May 20, 1981.) 
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