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ON DISCRETE CONTROL PROBLEMS HAVING 
A MINMAX TYPE OBJECTIVE FUNCTIONAL* 

JAROSLAV DOLEZAL, RONALD R. MOHLER 

Based on recent results for static minmax problems with constraints, a set of necessary con
ditions is presented for a class of discrete control problems with an objective functional of the 
minmax type. Two cases are considered which have either a finite or an infinite set of possible 
objective functionals. In both cases, usual constraints on control and/or state may be present. 

1. INTRODUCTION 

Recently, several results appeared in the area of mathematical programming which 
took into the account the minmax type objective function and also various constraints, 
especially those of equality and inequality type [ l ] - [ 4 ] . On the other hand, the pres
ent formulation of necessary optimality conditions for these so-called static minmax 
problems also enables one to include such constraints as are given implicitly by their 
"conical approximation" [5] —[7]. However, such general formulation will not be 
pursued in this contribution. The corresponding type of mathematical programming 
problems was studied earlier in [8] in fairly general setting, but the given conditions 
were not worked out in such detail as in [1] - [4]. 

If now the problem is to study discrete optimal control systems with a minmax 
type objective functional one can easily envision that the above mentioned results 
make it possible to deal with this type of optimization problem in a straightforward 
way. Namely, any discrete control problem is, after all, a mathematical programming 
one, as often used in [5] - [7] when studying classical discrete control problems. And 
this is also the case of a minmax type objective functional. 

For convenience, the basic results for static minmax problems are summarized 
in the next section. These results are then applied to a discrete control problem with 

* This research was done, in part, when the first author was with Department of Electrical 
and Computer Engineering, Oregon State University, supported by the National Academy of 
Sciences under Exchange Visitor Program No. P-l-4174. 
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a minmax type objective functional. For the sake of simplicity only the so-called 
explicit case [7] of state and state-dependent control constraints, given as a system 
of equalities and inequalities, is studied in detail. More involved case having the con
straining sets of a general structure will be described elsewhere. To make a comparison 
with the case of a classical objective functional simpler, the notation of [7] is preserved 
when convenient. If not otherwise stated all vectors are considered as column-vectors, 
however, gradients of various functions are treated always as row-vectors to be able 
to use a more efficient matrix notation. Subscripts will be occasionally used to in
dicate the respective partial derivative. 

2. STATIC MINMAX PROBLEMS 

The aim is to minimize the function 

(1) F(z) = sup <P(z, y) 
yet 

subject to the constraints 

(2) /V(z) = 0 , i = l , . . . , p , gl(z)£0, i=l,...,q, 

where & : E" x Y-> E1, h' and g' are the real functions on E", and Yis a compact 
metric space, in general, representing an index set. All functions are assumed to be 
continuously differentiable. Then one can alternatively replace "sup" by "max" 
in (1). 

The inclusion of equality type constraints into our formulation of a static minmax 
problem is important having in mind later application to discrete control problems. 
In fact, the system dynamics are almost exclusively given as a set of equations which, 
in turn, must be treated as constraints in the resulting mathematical programming 
problem. One has the following result [3] —[4]. 

Theorem 1. Let z be a solution to the static minmax problem ( l ) - (2 ) . Then there 
exist multipliers Xx>--->XP> ai,---^aq, with i ^ O , i=l,...,q, and vectors 
y1, ..., / e Y(z) = {y e Y| $(z, y) = supw6y <P(z, w)}, 1 ^ r g n + 1, together with 
multipliers pu ..., fir, with n-t ^ 0 , i = 1, . . . , r, such that 

(3) i fl, *.(*, y') + I 'At K(t) + i a, g!
z(z) = 0 , 

;=i ;=i ; = i 

(4) aig
i(z) = 0, i = \,...,q. 

Furthermore, if p' is the number of nonzero %t, q' the number of nonzero at, and r' 
the number of nonzero j.i{, then 

(5) 1 ^ p' + q' + r' S n + 1 . 

For practical reasons, it is sometimes convenient to specify this theorem for the 
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case of a finite index set Y. To do this assume that 

(6) F(z) = max <P'(z). 
l g i g r 

Similar to the inclusion of a finite number of inequality constraints in mathematical 
programming (complementary slackness condition), one obtains from Theorem 1 the 
following corollary. 

Corollary 1. Let z be a solution to the static minmax problem (2) and (6). Then 
there exist multipliers Xi, • • •> XP> ai> • • •> ffq> w i t n ai = 0> i ~ 1> • • •> 1, a n d rti> • • •> /V> 
with /(; ^ 0. / = 1, ..., r, such that not all of them are zero and 

(7) t / i , . ^ ( z ) + f Z i / 1 l ( z ) + I a , . ^ ( z ) = 0 , 
i = i ; = i i = i 

(8) aig
i(z) = 0, , = l , . . . ,a , 

(9) nM*) ~ I (-)) = 0 , /=!,... ,'•. 

3. DISCRETE MINMAX CONTROL PROBLEM 

Let a discrete dynamical system be described by the equations 

(10) xk+l =-f(xk,uk), k = 0,l,...,K-l, 

where xk e E" is the state, uk e E" is the control, and fk : E" x Em -> E". The aim is to 
find a control sequence w0, uu ..., uK-x and a corresponding trajectory x0, xi, ..., xK, 
determined by (10), satisfying the constraints 

(11) xkeAk<=E", k = 0, 1, ..., K, 

(12) ukeUk(xk)czE", fc = 0, 1 , . . . , X - 1, 

and minimizing the objective functional 
K - l 

(13) J = sup ./(>>) = sup X lil(^> «it> y) > 
}>ey yeV fc = 0 

where hk : E" x Em x Y-» E1. y is a compact metric space, and the constraints 
(11)-(12) are given in an explicit way as 

(14) 4 = {xe E" I Sk(x) = 0, sk(x) g 0 } , k = 0 , 1 , . . . , K , 

(15) Uk(x) = {(x, M) e E" x E" | <2*(x, u) = 0, gfc(x, a) g 0} , 

fc = 0, 1, . . . , X - 1 . 

Here S* : E" -> Ee, sk : E" -> En, g" : E" x Em -> Ey and g* : E" x E" -> E". The 
inequality sign for vectors is to be taken componentwise. 
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It will be assumed that all of the above functions are continuously dififerentiable. 
In fact, there are no particular difficulties to handle a general case of constraints 
(11) —(12) when they are described in an implicit way by conical approximations 
[ 5 ] - [ 7 ] . However, then a more lengthy exposition would be necessary to give 
a satisfactory treatment. 

To avoid a trivial satisfaction of further stated results let us assume that for any 
x e E", the gradients of the corresponding active constraints in (14) are linearly 
independent. Similarly, for any (x, w) e E" x Em let also the partial gradients of the 
corresponding active constraints in (15), with respect to u, be linearly independent. 
Some consequences in this respect can be found in the mentioned references [5] - [7]. 

4. NECESSARY OPTIMALITY CONDITIONS 

It is not difficult to realize that the formulated discrete control problem with 
a minmax type objective functional (10) —(15) is of the form required in Theorem 1. 
Namely, if one introduces a vector z = (x0, xx, ..., xK, u0, ux, ..., «K_i), one can 
see that a static minmax problem in the variable z results. Due to a special structure 
of constraints (10) —(12) it is possible, similar to a classical objective functional, to 
express the respective necessary conditions in a more familiar form. As the pertinent 
calculations are fairly straightforward following [7], they are omitted here. Let us 
only formulate the final result. 

Theorem 2. Consider a discrete optimal control problem (10) — (15). If u0, uu ... 
. . . , % _ ! is an optimal control sequence and x0, xx, ..., xK a corresponding trajectory, 
then there exist vectors y\ ..., yre Y = [ye Y| J(y) = supwey J(w) along the 
optimal solution}, 1 ^ . :£ K(n + 1) + Km + 1, together with a vector multiplier 
fj. = (rix, ..., nr)e Er, with Hi g O , i = 1, . . . , r, and row-vector multipliers 

(16) XkeE", \j/k e Ee, vk e E* , k = 0, 1, ..., K , 

( t e P , ikeEx , k = 0, 1 , . . . ,__•- 1, 

such that (all expressions are to be evaluated along the optimal solution) 

(i) if n = 0, then at least one of the vectors Xk, i]/k is nonzero; 

(ii) the costate row-vectors Xk satisfy the adjoint equation 

Xk = Hk
x
+1 + ZkQ

k
x + ikq

k
x + ^kS

k
x + vks

k
x , k = 0, 1, ..., K - 1 , 

where 

Hk+l(x, u) = £Hthk(x, u, y') + Xk+Xfk(x, u), k = 0, 1, ..., K - 1 , 
i = l 

and X0 = 0, XK = \j/KSx + vKsx; 

(hi) the optimal control sequence ti0, ti» •••> UK-I satisfies the relations 

Hk+1 + (kQ
k + tkq

k
u =- 0 , k = 0, 1, ..., K - 1 ; 
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(iv) vk S 0, vks
k = 0, k = 0, ],..., K; 

(v) Qk <: 0, ckq
k = 0, fc = 0, 1, ..., K - 1. 

If the maximum principle form of condition (iii) is required, the additional assump
tion of the so-called directional convexity has to be imposed, see [5] and [7]. One 
can now see that the possible number of indices from Y can be rather high, being 
limited only by the dimension of the corresponding mathematical programming 
problem. However, in practical cases this drawback is often eliminated by the fact 
that Y contains only several elements. 

Now let Ybe a finite set. Then owing to Corollary 1 the following result is easily 
established. 

Corollary 2. If u0, «,, ..., MK_, is an optimal control sequence and x0, xu ...,xK 

a corresponding trajectory in (10) —(15), with Y= {1,2, . . . , / -}, then there exists 
a vector multiplier fi = (/.,, ...,fir)eEr and row-vector multipliers (16) such that 
the conditions (i) — (v) of Theorem 2 are satisfied for 

Hk+i(x, u) = j^Hihk(x, u, i) + Ak+Jk(x, u), k = 0, 1, . . . , K - 1, 
;= I 

and, moreover, 
Hi < 0 , fii(j - J(i)) = 0 , / = 1, ..., r, 

where J denotes the corresponding optimal value of (13). 

5. CONCLUSIONS 

It was shown that the existing results for static minmax problems can be applied 
when dealing with discrete control problems having a max-type objective functional. 
For this reason it is necessary to treat in the first row static minmax problems with 
equality side constraints. Then the system dynamics, described by a set of equations, 
are easily included in the respective static minmax problem. For the sake of simplicity 
only the case of explicit constraints was studied more in detail. However, the same 
approach can be used when dealing with a more general type of constraints along the 
lines of [7]. 

(Received May 7, 1981.) 
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