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VALIDITY TEST FOR FLOYD'S OPERATOR-PRECEDENCE 
PARSING ALGORITHMS IS POLYNOMIAL IN TIME 

PETER RŮŽIČKA 

A polynomial time algorithm is developed to decide the equivalence of an operator-precedence 
grammar with the underlying Floyd's operator-precedence parsing algorithm, a result of possible 
practical significance. As a consequence the necessary and sufficient condition for an operator-
precedence grammar to be the valid grammatical characterization of the underlying Floyd's 
operator-precedence parsing algorithm is obtained. 

1. INTRODUCTION 

Recent work on the improvement of both the running time and the size of bottom-
up parsing algorithms has been oriented in several directions. Much effort has been 
devoted to the development of optimizing transformations to reduce the size and/or 
the time of parsing algorithms. In addition modified techniques have been proposed 
to produce parsing algorithms of practical size. The research on the validity of shift-
reduce parsing algorithms is also a contribution in this direction. 

The shift-reduce operator-precedence parsing algorithm is conceptually very 
simple and hereby a very effective technique for syntactical analysis. It is sufficiently 
general to handle the parsing of a variety of the programming language constructs. 
However, the main impediment for using this technique is that Floyd's operator-
precedence parsing algorithm might accept strings not in the language of the under­
lying operator-precedence grammar. This is a consequence of using different means 
in the definitions of both concepts. While operator-precedence grammars use non­
terminal symbols as well as unique operator-precedence relations to derive valid 
strings, Floyd's parsing algorithms use only operator-precedence relations to 
recognize valid input strings. On the other hand, the great advantage of this method 
is the time and size efficiency because only those reductions are made that do not 
involve single productions and in practical cases a copy of the whole grammar 
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usually need not to be kept in order to know which reduction is to be made by Floyd's 
operator-precedence parsing algorithm. 

Other parsing techniques are known in which it is necessary to overcome the same 
problem of invalid strings being recognized. Well known are canonical precedence 
parsing algorithms of Gray [5] or skeletal LR parsing algorithms of ElDjabri [3] 
and Demers [2], or Knuth's [7] top-down parsing algorithms with partial back-up 
used in McClure's TMG translator writing system. Knuth has proved that in the 
case of top-down parsing algorithms with partial back-up it is not algorithmically 
decidable whether a grammar generates the same language as it is accepted by the 
intended parsing algorithm. Demers presented an algorithm to decide whether 
a skeletal LR parsing algorithm accepts exactly the language of the underlying 
grammar. Demers further claimed that his validity test applies to skeletal canonical 
precedence parsing algorithms as well. We consider a similar problem for operator-
precedence parsing algorithms and we solve it by presenting a decision test for the 
equivalence of an operator-precedence grammar and the underlying Floyd's operator-
precedence parsing algorithm. 

2. BACKGROUND 

We present some basic definitions and terminology in the area of context-free 
languages and parsing theory (for more detailed information see i.e. [1]). 

A context-free grammar G is a quadruple <iV, T, P, S), where JV is the finite set 
of nonterminal symbols, Tis the finite set of terminal symbols, S is the start symbol 
from N, and P £ JV x V* is a set of productions. Instead of (A, a) we write A -> a. 
A single production is one of the form A -> B, where A and B are both nonterminal 
symbols. A grammar is backwards-deterministic if no two productions have the same 
right-hand side. 

Unless specified we use Roman capitals (A, B, C, ..., X, Y Z) to denote nontermi­
nal symbols, lower-case Roman letters at the beginning of the alphabet (a, b, c, ..) 
to denote terminal symbols, lower-case Roman letters near the end of the alphabet 
(x, y, z, w,...) to denote terminal strings, lower-case Greek letters (a, /?, y, ...) to 
denote strings of terminal and nonterminal symbols. We use e for the empty string. 

We write a => /? in G if a = a!Aa3, /? = a ^ ^ , and A -> a2 is a production in P. 
The relation =>* is the reflexive and the transitive closure of =>, and =>+ is the transi­
tive closure of =>. The context-free language for the grammar G is L(G) = {w E T* | 
| S =>* w}. A derivation ocl => a2 =>...=> ock in G is called rightmost derivation 
(denoted as =>R) if at the i-th step (1 ^ i < k) of the derivation the rightmost non­
terminal symbol of a; is replaced according to some production of G to yield a.+1. 

Let <§ = < V, E) be a graph with a set of vertices V and a set of edges E, and / = 
= (vl) v2) be an edge from E. We define a graph <&' = <Vu {v}, E') such that 
£ ' = (£ — {/}) u {(i\, v), (v, v2)}, v£ V. The graph ^ ' is called an elementary 
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division of the graph <§. A graph <§ is called the division of the graph <§ if there exists 
a sequence of graphs <§ = <§0, <§u ...,<§„ = <§ such that <§i+x is an elementary 
division of <§{ for i e <0, n — 1>. Two graphs <§ and <§' are called homeomorphic 
if there is a graph <§ such that <§ is a division of ^ and ^ ' . Two derivations are similar 
if the corresponding derivation trees are homeomorphic up to relabeling of interior 
nodes. We say that a grammar G is ambiguous if there is some string in L(G) for 
which there are two distinct non-similar rightmost derivations. G is otherwise called 
unambiguous. We say that GY is structurally equivalent to G2 if every derivation in Gy 

is similar to some derivation in G2 and vice versa. We say that Gt is equivalent to G2 

if 1(0.) = L(G2). 

An e-free grammar is a context-free grammar in which no right-hand side of 
production is e. An operator grammar is a context-free grammar in which no 
production has a pair of adjacent nonterminal symbols on its right-hand side. 
Operator-precedence relations < , = , > are defined on Tin the following manner: 

For a, b e T: 

(i) a = b if there is A -> aaBbfi in P for B = e or B e N. 

(ii) a < b if A -• aaJ5^ in P and B =>+ Cfry for C = e or C e JV. 

(iii) o ?> b if A -> afltyS in P and JB =>+ yaC for C = e or Ce7V\ 

An operator-precedence grammar is an e-free operator grammar in which operator-
precedence relations < , ==, 5> are disjoint. 

Assume M to be operator-precedence relations over the terminal alphabet T and 
R = {(a, b) | a = b is in M} £ T x T. Then (a, fr) from R can be graphically 
represented as an oriented edge from the node a to the node b. Thus, R can be viewed 
as a directed graph <§R. A path in <§R is a sequence of consecutive nodes in <§R. 
A cycle C is the path of the length greater than one in which from any node in C 
one can reach an arbitrary node in C. We say that M contains a = -cycle if there is 
a cycle in <§R. 

Using the parsing stack and the precedence relations derived from some operator-
precedence grammar, the operator-precedence parsing algorithm operates on the 
input string in the following way: 
Initially the input contains a^ ... a„ -\ and the parsing stack contains h-. 

begin 
repeat 

if topstack = (- and current-input-symbol = - | 
then ACCEPT 
else 

if topstack = a and current-input-symbol = b 
then 

select 
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(1) a <° b or a = b : shift b from the input onto the stack; 
(2) a »> b : repeat pop the stack and put this most recently popped 

symbol to X 
(3) until the topstack <° X; 

otherwise : ERROR 
end <select> 

fi 
fi 

until forever 
end 

In order to construct a parse tree, the operator-precedence parsing algorithm must 
create a node for each terminal symbol shifted onto the stack during the statement at 
line (1). When the loop of line (2) reduces by some production, the parsing algorithm 
creates a node whose children are the nodes corresponding to whatever is popped 
off the stack. After the loop at line (2) the parsing algorithm places on the stack 
a pointer to the node created. This means that some of the "symbols" popped by 
line (2) will be pointers to nodes. The comparison of line (3) continuous to be made 
between terminal symbols only; pointers are popped with no comparison being 
made. 

Floyd's operator-precedence parsing algorithm s/M is an operator-precedence 
parsing algorithm driven by precedence relations M derived from some operator-
precedence grammar. 

3. VALIDITY TEST 

It has been already remarked by Fischer [4] that operator-precedence grammars 
suffer one serious drawback, namely that though Floyd's shift-reduce operator-
precedence parsing algorithm accepts all input strings of the operator-precedence 
grammar, there is no guarantee that such a parsing algorithm will also accept invalid 
input strings of that grammar. To illustrate this disadvantage a simple grammar G 
with the following set of productions can be chosen: S0 -» h- S —I, S -» BaB, 
B —> b. We see that L{G) = {h- bab —|}. However, if one parses the string h- b —), 
one finds that it holds h- <§ b and b > -\ and so the input string h- b -\ is reduced 
to h- B H. This sentential form has (- = -H now and if no check is performed to 
ensure that both terminal and nonterminal symbols match the right-hand side of 
some production, \- b -\ will be accepted as a valid string of the language. 

The construction repeat S until p means that statements S are repeated until the condition p is 
fulfilled (the case until forever is equal to until false) and the construction select px: Sv; ...; 
pn : Sn; otherwise : Sn + 1 end means that the statement St for 1 g ;' gj n is performed when the 
condition p; is true and all pj for 1 ̂  j sS ; — 1 are false. If all pl, ..., p„ are false, then the state­
ment Sn + i is performed. 
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We present an algorithm to decide whether an operator-precedence parsing 
algorithm accepts exactly the language generated by the underlying grammar. The 
principal idea behind this decision algorithm is the grammatical characterization 
of the operator-precedence parsing algorithm and the reduction of our test to the 
equivalence problem for two backwards-deterministic operator-precedence grammars 
with the same operator-precedence relations. The latter problem is shown to be algo-
rithmically decidable. 

We begin with a technical assertion that a single production removal does not 
affect the operator-precedence property. 

Lemma 3.1. Given an arbitrary operator-precedence grammar, one can find 
a structurally equivalent operator-precedence grammar without single production. 

Proof. Let G = <JV, T P, S> be an operator-precedence grammar. Let G = 
= (N, T P, Sy, where P = (A -> a | a $ N and for some BeN, A =>* B in G 
and B -> a in P). It is readily verified that L(G) = L(G) and that G is an operator-
precedence grammar without single productions and that every derivation in G is 
similar to some derivation in G and vice versa. • 

The key idea of our validity test is obtained in the following assertion. 

Lemma 3.2. Given two backwards-deterministic operator-precedence grammars Gx 

and G2 with equal operator-precedence relations, there is an algorithm to decide 
whether it holds L(GV) = L(G2). 

Proof. Let Gt = (Nu T, Pu St> and G2 = (N2, T, P2, S2> be two backwards-
deterministic operator-precedence grammars with equal operator-precedence rela­
tions. We first show that L(G,) = L(G2) if and only if Gx is structurally equivalent 
to G2. Then we show that structural equivalency of two context-free grammars is 
decidable. 

1. Assume that L(GX) = L(G2) = L. Following Lemma 3.1 there are backwards-
deterministic structurally equivalent operator-precedence grammars G\ = (N\, T 
P\, S\y and G2 = <W"2, T P'2, S2>, respectively, without single productions. We 
show that an arbitrary input string w = at ... a„ from Lhas (up to relabling of 
interior nodes) the same derivation tree according to G[ as according to G2. We 
first note that 

Proposition 1. The string w has a unique derivation in G\. 
This is true because G\ is a backwards-deterministic operator-precedence 

grammar without single productions. To see it in more detail we have to distinguish 
two cases. In the first case there are two various rightmost derivations of w in G\ 
of the form 

S; =>* fiAu =>R ^BUi =>* ax ... an 

S\^*RpAu^Rp2Cu2=>*Ra,...an 
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where B eN[, u, «,, u2 e T*, |u2| > |i*i(. In this case a contradiction with uni­
queness of operator-precedence relations is obtained by the same argument as the 
one described in the proof of the Proposition 2 for the case k = i. In the second 
case there are two various rightmost derivations of w in G[ of the form 

S[ =>* ~Au =>R 0.BW, =>lai...a„ 

S[ =>*, fiAu =>R p2Cux =>*Ra_...a„ 

where B, CeN[,B 4= C, u, ut e T*. In this case a contradiction either with back­
wards-deterministic property or as in the previous case with uniqueness property 
of operator-precedence relations is obtained. 

Furthermore, we prove 

Proposition 2. The righmost derivation of w in G[ is similar to the rightmost 
derivation of w in G2. 

The proof of this proposition is by induction on the length /; of derivations. 
The proposition is trivial for h = 0. Assume that the proposition holds for 
initial parts of derivations of the length shorter than h. We then prove the proposi­
tion for h (i.e. when initial parts of derivations of w in G[ and in G2 are of the 
length h). Indirectly assume that there are two rightmost derivations of the form 

(3.1) S[ -*.<*-J) M i - . ••• a« =*_ ViBtOt ••• a„ =>*R a, ... a„ 

(3.2) S2 =>(
R~l) P2A2at... a„ =>Ry2B2as ... a„ =>R ax ... an 

where l<.s<h<:iSn and Px equals to /. 2 up to the renaming of nonterminal 
symbols. In case k < i, from the derivation (3.1) it holds a t _ : °> ak, but from the 
derivation (3.2) it must be ak_x = ak, a contradiction with the assumption that G[ 
and G2 have equal operator-precedence relations. 

In case k = i, the rightmost symbol of the string yx must be the terminal symbol, 
because G[ is the operator grammar. Let yt = ya, for some t e <1, k - 1), 
ye(N[ u T)*. Assume that in the derivation (3.1) the first occurrence of ak 

will be in a rightmost sentential form a,, the first occurence of at will be in a2 and 
the first occurrence of ak^l will be in a3. Then the derivation (3.1) can be written 
either in the form 

S[ =>+ a. =>*. a2 =>^ a3 =>% ax . . . a„ 

or in the form 

S[ =>+ a2 =>* a i =>s a3 =>* a. ... a„. 

Assume that in the derivation (3.2) the first occurrence of ak will be in a rightmost 
sentential form a4, the first occurrence of ak-i will be in a5 and the first occurrence 
of a, will be in a6. Then the derivation (3.2) can be written in the form 

S'2 =>+ a4 =>R a5 =>^ a6 =>| a, . . . a„ . 
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There must be some pe(t, k — 1> such that from (3.1) it holds ap+i <§ ap, but 
from (3.2) it holds either a p + i = ap or ap+1 > ap, a contradiction with the as­
sumption that G[ and G2 have equal operator-precedence relations. This ends the 
proof of the Proposition 2. 
Hence, we have proved that if L(GX) = L(G2), then Gx is structurally equivalent 
to G2. 

2. If Gj is structurally equivalent to G2, then by the definition it holds L(GX) = L(G2). 
Now it is sufficient to construct an algorithm to decide whether Gj is structurally 

equivalent to G2. Paull and Unger [10] showed that it is decidable whether two con­
text-free grammars are "structurally equivalent" in the sense that they generate the 
same strings, and that their derivation trees are the same except for labels in interior 
nodes. Independently, McNaughton [9] showed that equivalence is decidable for 
paranthesis grammars, which are grammars in which the right-hand side of each 
production is surrounded by a pair of parantheses, which do not appear elsewhere 
within any production. Two grammars are "structurally equivalent" in the sense of 
Paull and Unger if and only if the paranthesis grammars constructed from them are 
equivalent. 

It is immediately seen that an algorithm due to Paull und Unger can be used to 
decide whether G[ is structurally equivalent to G2, where G\(G'2) is an operator-
precedence grammar without single productions constructed following Lemma 3.1. 

• 
In order to characterize Floyd's operator-precedence parsing algorithm gram­

matically it is possible to apply only such constructions which preserve operator-
precedence relations. We show how for the Floyd's parsing algorithm a grammar 
can be constructed which will generate the same language as it is accepted by Floyd's 
parsing algorithm and in what cases the operator-precedence grammar will be back­
wards-deterministic. We make the following claim. 

Lemma 3.3. Given any Floyd's operator-precedence parsing algorithm j</M ruled 
by operator-precedence relations M without =-cycle, we can find an equivalent 
backwards-deterministic operator-precedence grammar G with the same operator-
precedence relations M. 

Proof. Let M be a set of disjoint precedence relations over the set Tof terminal 
symbols not containing a special symbol # . We construct the grammar 

G = <W, Tu { # } , P, S0> , where S0 is the start symbol, 

N = {[aS6] | a, b e Tu {#}} u {S0} is the set of nonterminal symbols, 

P = {[aSb] -* [aSa^ a1 [axSa^\ a2...ak [akSb] | there exist a, be Tu { # } such 
that in M it holds a < ax, ak > b, at = ai+1 for a ; e T, 1 ^ i < k] u {S0 -* 
~» # [ # S # ] # } u {[aSb] -> e | there exist a, b e Tu {#} such that in M it 

holds a <s b or a = b or a > b} 
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is the set of productions. G is not in the reduced and e-free form, but using the 
standard transformation of a context-free grammar into reduced e-free form one can 
obtain G to be in reduced e-free form. We can see that this transformation preserves 
operator-precedence relations and it does not violate the backwards-deterministic 
property. Hence, we can assume that G = <J\*, t, P, S> is reduced and e-free, and 
backwards-deterministic operator-precedence grammar with precedence relations M. 
To prove the proposition it suffices to show that L(G) = # L(s/M) # . 
(i) # L(s/M) # c L(G). Let w e L(s/M) and let w is accepted by s/M in /c reduction 

steps. It can be easily proved by the induction on the number of reduction steps 
done by s4M in accepting w that: "If in s/M, the i-th reduction of w transforms 
txaub/} into the form otabp for u = uxu2 ... us, then in G, there exists a production 
of the form [aSb] -* [aSuJ® u^u.Su^® u2 ... us[usSb]®, where [cSd]® 
means either e or [cScf], such that there is a derivation of # w # in G of the form 
S=>1 #<xa[aSb] bp# =><£> # w # , £ e f*". Hence, it holds *w*eL(G). 

(ii) L(G) £ # L(stfM) # . Assume # w # e L(G). Then there is a derivation of the 
formS=> w # w # in Gfor some k = 1. Again, it can be easily proved by the 
induction on the length of derivation of # w # in G that "If the (k - i)-th 
derivation step of # w # in G is of the form #v.aAbfi # =>R # ctaB^^^^,... 
... BsusBs+1b[S#, then s/M in the i-th step reduces aaB1u1B2 ... usBs+1bfi, 
P e f *, into the form aab/T. Thus, w e L(s4M). • 

Now we are prepared to formulate the main result if this section. 

Theorem 3.1. For any backwards-determinitic operator-precedence grammar G 
with operator-precedence relations M and for the Floyd's operator-precedence parsing 
algorithm s/M ruled by operator-precedence relations M there is an algorithm to 
decide whether it holds L(G) = L(s/M). 

Proof. For any Floyd's operator-precedence parsing algorithm ruled by operator-
precedence relations M containing = -cycle there does not exist an equivalent opera­
tor-precedence grammar with equal operator-precedence relations. This follows 
from the following argument. Suppose that in M it holds at = a2 = ... = a„ = ax. 
Then (at ... a„)k, k = 1, are substrings of some valid input strings in L(s/M). In 
order to derive substrings (at ... a„)k, k =t 1, of valid input strings in L(G), it must 
hold either a„ s> a1 or a„ < ax in M, a contradiction. Thus, if M contains =-cycle, 
then L(G) 4= L(sSM). 

If M does not contain = -cycle, then using Lemma 3.3 we can find an equivalent 
backwards-deterministic operator-precedence grammar Gv Using Lemma 3.2 given 
two backwards-determinitic operator-precedence grammars G and GL with the same 
operator-precedence relations, there is an algorithm to decide whether it holds 
L(G) -» Ufii). Hence, given any backwards-deterministic operator-precedence 
grammar G with operator-precedence relation M it is algorithmically decidable 
whether it holds L(G) = L(s/M) or not, where s#M is the Floyd's operator-precedence 
parsing algorithm ruled by operator-precedence relations M. • 
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4. COMPLEXITY 

Denote the size of a context-free grammar G = (N, T, P, S> by |G| = V (L I + 2), 
peP 

where p is a production of the form A -» ap and |ap| is the length of the string ap. 
In order to determine the time complexity of the validity test for Floyd's operator-
precedence parsing algorithms we have to consider the following steps and to analyze 
them according to the size of the grammar G 

Fact 1 (Lemma 3A). An algorithm which transforms any operator-precedence 
grammar G = <At, T, P, S> into a structurally equivalent operator-precedence 
grammar without single productions works in time 0(|xY| . \P\ . |G|). 

It is easy to verify the time bound 0(|iV| . |R | . |G|) of the transformation, given in 
Lemma 3.1, on an input grammar G. We note that the set of nonterminal symbols 
of the resulting grammar is a subset of At and that the size of the resulting grammar 
can be asymptotically greater than the size of G. For example, if G is of the form 
G = <{S, Au..., A„, Bu ..., B,,}, (a j , . . . , an, bu ...,bm}, {S -> a.A-,, A-, -> B, B -> 
-» ftj . . . bm | 1 g i S »}, S>, then |G| = 0(n + m), but the size of the resulting 
grammar G = <{S, Au ..., A„}, {au ..., a„, bu ..., b,n}, {S -> atAh At -» bt ... bm\ 

1 ^ i g n}, S> is 0(n . m). But the size of the resulting grammar is bounded by 
N\ . \P\. max(|ap | + 2), which gives the bound of Fact 1. 

peP 

Fact 2 (Lemma 3.2). A test for structural equivalence of two reduced backwards-
deterministic operator-precedence grammars Gx = <Atl5 T, Pu Sj> and G2 = 
= <At2, T, P2, S2> with equal precedence relations and without single productions 
can be performed in time 0(|At| . |G|2), where |G| = max (|Gj|, |G2|) and |At| = 
= max (|Atj|, |At2 |). 

The idea of the test is to group those productions (in both grammars separately) 
which have the same "terminal pattern" on their right-hand sides together with 
nonterminal symbols in the same positions on the right-hand sides (i.e. two produc­
tions of the form A -» A1a1A2 ... AkakAk+1 and B -> B1b1B2 ... BkbkBk+1 of 
a grammar belong to the same group if and only if ar = b{ for 1 ^ i g k and for 
1 :g i ^ k + 1 both A,, Bt are either nonterminal symbols or the empty string e). 
Then a correspondence between nonterminal symbols of both grammars is deter­
mined by their positions on the left-hand and/or the right-hand sides of productions 
in the corresponding groups of productions. For example, consider grammars 
G, = <{Si, A}, {a, b}, {Sj -> aAb, A -> aAb, A -> ab}, S.> and G2 = <{S2}, 
{a, b}, {S2 -> aS2b, S2 -» ab}, S2>. According to the right-hand side terminal 
patterns we obtain two groups {Si -» aAb, A -> aAb} and {A -> ab} for Gx and 
two groups {S2 -» aS2b} and {S2 -> ab} for G2. From corresponding groups 
{A -> ab} and {S2 -> ab} we obtain the correspondence A <-> S2. Moreover, from 
corresponding groups {Sx -» aAb, A -» aAb} and {S2 —> aS2b} we obtain Sj *-> S2 
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and A «-> S2. So G : and G2 are structurally equivalent. The time bound follows from 
the fact that it requires time 0(|G|2) to determine the correspondence between groups 
of Gj and G2. 

Fact 3. A simple test determining whether a set of operator-precedence relations 
contains a = -cycle or not can be performed in time 0(|T |3). 

The complexity bound follows from the fact that the presence of a = -cycle can 
be determined by the transitive and reflexive closure of the incident matrix in which 
the entry (a, b) equals to i if and only if a = b holds. 

The valid grammatical description of the Floyd's parsing algorithm described 
in Lemma 3.3 is of exponential size. To determine the grammatical description of 
Floyd's parsing algorithm s/ efficiently one can use backwards-deterministic operator-
precedence grammar G without single productions. The "trick" is to "extend" G to 
cover L(stf) (proving L(G) 4= L(sJ)) or to show that it is not possible to "extend" 
G (proving L(G) = L(s#)). We first try to "extend" G. We determine the number of 
different path from a to b, a, b e T, through = relations. This can be determined 
in time 0(|T |3). Consider a pair (a, b) for which there exists at least one =-path 
and for which there is a valid sentential form in G of the form acdfi, where c <s a, 
b > d. If the number of different paths for a pair (a, b) differs from the number of 
productions in G of the form A -> BaabC, B,CeN u {e}, where a contains different 
terminal patterns, then we have to add new productions to G in order to cover L(si), 
thus L(G) 4= L(s/). If the number of different paths is equal to the number of 
productions of the form A -> BaabC, then we try for some productions in G to add 
new productions to G with the same terminal pattern. For each nonterminal symbol D 
we determine quadruples of terminal symbols (a, b, c, d) such that yxaDby2 is a valid 
rightmost derivation in G and it holds aDb =>| acy3db. This can be computed in time 
0(| T|4 . |7V|) using tables of <°, = , §> relations and incidence matrices in which (A, B) 
equals to 1 if and only if A -> aBfi. Now we try to insert a nonterminal symbol D 
on the right-hand side of each production or we try to replace some nonterminal 
symbol on the right-hand side of some production by another nonterminal symbol D, 
where (a, b, c, d) is a quadruple in the list of D, such that D is surrounded by terminal 
symbols a, b in this production. If we succeed, then L(G) 4 L(sf). Otherwise L(G) = 
= L(s£). The latter case can be performed in time 0(JAt| . | T | 4 . |G|). Hence, we 
obtained 

Fact 4. A test determining whether G is the valid grammatical characterization 
for the underlying Floyd's operator-precedence parsing algorithm si can be deter­
mined in time 0(|iV| . | T | 4 . |G|), where G is a reduced backwards-deterministic 
operator-precedence grammar without single productions. 

Fact 5. A simple transformation which reduces a backwards-deterministic operator-
precedence grammar G can be performed in time 0(|G|3). 
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This transformation uses the transitive and reflexive closure of incidence matrices 
in which (A, B) equals to 1 if and only if A -> aBfi, B e N u T, a,fie(NuT)* 
and (A, B) equals to 1 if and only if A -> uBfi, B e N, a, $ e (N u T)* or A -> aB$, 
a, $ e T*, B e T. 

Theorem 4.1. A decision, whether an operator-precedence grammar G is equivalent 
to the underlying Floyd's operator-precedence parsing algorithm, can be performed 
in time polynomial to the size of G. 

4. CONCLUSIONS 

Operator-precedence grammars are suitable for specifying a variety of program­
ming language constructs using an information about the precedence and associativity 
of operators. However, operator-precedence parsing algorithms possess a curious 
property that one can accept inputs that are not in the language of the underlying 
grammars. In the preliminary version of this paper [11] we have answered natural 
questions concerning two classes of languages which are definable using the operator-
precedence grammars and the Floyd's operator-precedence parsing algorithm. In 
this paper we concentrated on proving the decidability of the equivalence problem 
for these two models. The latter result can be reformulated as the necessary and suf­
ficient condition for an operator-precedence grammar to be valid grammatical 
characterization for Floyd's operator-precedence parsing algorithm. This result 
solves the problem stated by Levy [8]. We have not yet looked at a modification of 
operator-precedence relations in order to obtain a valid characterization of Floyd's 
parsing algorithms. A partial solution of this problem has been obtained by Hen­
derson and Levy [6] by defining extended operator-precedence relations. 

(Received February 4, 1981.) 
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