
KYBERNETIKA- VOLUME 17 (1981), NUMBER 5

VALIDITY TEST FOR FLOYD'S OPERATOR-PRECEDENCE
PARSING ALGORITHMS IS POLYNOMIAL IN TIME

PETER RŮŽIČKA

A polynomial time algorithm is developed to decide the equivalence of an operator-precedence
grammar with the underlying Floyd's operator-precedence parsing algorithm, a result of possible
practical significance. As a consequence the necessary and sufficient condition for an operator-
precedence grammar to be the valid grammatical characterization of the underlying Floyd's
operator-precedence parsing algorithm is obtained.

1. INTRODUCTION

Recent work on the improvement of both the running time and the size of bottom-
up parsing algorithms has been oriented in several directions. Much effort has been
devoted to the development of optimizing transformations to reduce the size and/or
the time of parsing algorithms. In addition modified techniques have been proposed
to produce parsing algorithms of practical size. The research on the validity of shift-
reduce parsing algorithms is also a contribution in this direction.

The shift-reduce operator-precedence parsing algorithm is conceptually very
simple and hereby a very effective technique for syntactical analysis. It is sufficiently
general to handle the parsing of a variety of the programming language constructs.
However, the main impediment for using this technique is that Floyd's operator-
precedence parsing algorithm might accept strings not in the language of the under­
lying operator-precedence grammar. This is a consequence of using different means
in the definitions of both concepts. While operator-precedence grammars use non­
terminal symbols as well as unique operator-precedence relations to derive valid
strings, Floyd's parsing algorithms use only operator-precedence relations to
recognize valid input strings. On the other hand, the great advantage of this method
is the time and size efficiency because only those reductions are made that do not
involve single productions and in practical cases a copy of the whole grammar

368

usually need not to be kept in order to know which reduction is to be made by Floyd's
operator-precedence parsing algorithm.

Other parsing techniques are known in which it is necessary to overcome the same
problem of invalid strings being recognized. Well known are canonical precedence
parsing algorithms of Gray [5] or skeletal LR parsing algorithms of ElDjabri [3]
and Demers [2], or Knuth's [7] top-down parsing algorithms with partial back-up
used in McClure's TMG translator writing system. Knuth has proved that in the
case of top-down parsing algorithms with partial back-up it is not algorithmically
decidable whether a grammar generates the same language as it is accepted by the
intended parsing algorithm. Demers presented an algorithm to decide whether
a skeletal LR parsing algorithm accepts exactly the language of the underlying
grammar. Demers further claimed that his validity test applies to skeletal canonical
precedence parsing algorithms as well. We consider a similar problem for operator-
precedence parsing algorithms and we solve it by presenting a decision test for the
equivalence of an operator-precedence grammar and the underlying Floyd's operator-
precedence parsing algorithm.

2. BACKGROUND

We present some basic definitions and terminology in the area of context-free
languages and parsing theory (for more detailed information see i.e. [1]).

A context-free grammar G is a quadruple <iV, T, P, S), where JV is the finite set
of nonterminal symbols, Tis the finite set of terminal symbols, S is the start symbol
from N, and P £ JV x V* is a set of productions. Instead of (A, a) we write A -> a.
A single production is one of the form A -> B, where A and B are both nonterminal
symbols. A grammar is backwards-deterministic if no two productions have the same
right-hand side.

Unless specified we use Roman capitals (A, B, C, ..., X, Y Z) to denote nontermi­
nal symbols, lower-case Roman letters at the beginning of the alphabet (a, b, c, ..)
to denote terminal symbols, lower-case Roman letters near the end of the alphabet
(x, y, z, w,...) to denote terminal strings, lower-case Greek letters (a, /?, y, ...) to
denote strings of terminal and nonterminal symbols. We use e for the empty string.

We write a => /? in G if a = a!Aa3, /? = a ^ ^ , and A -> a2 is a production in P.
The relation =>* is the reflexive and the transitive closure of =>, and =>+ is the transi­
tive closure of =>. The context-free language for the grammar G is L(G) = {w E T* |
| S =>* w}. A derivation ocl => a2 =>...=> ock in G is called rightmost derivation
(denoted as =>R) if at the i-th step (1 ^ i < k) of the derivation the rightmost non­
terminal symbol of a; is replaced according to some production of G to yield a.+1.

Let <§ = < V, E) be a graph with a set of vertices V and a set of edges E, and / =
= (vl) v2) be an edge from E. We define a graph <&' = <Vu {v}, E') such that
£ ' = (£ — {/}) u {(i\, v), (v, v2)}, v£ V. The graph ^ ' is called an elementary

369

division of the graph <§. A graph <§ is called the division of the graph <§ if there exists
a sequence of graphs <§ = <§0, <§u ...,<§„ = <§ such that <§i+x is an elementary
division of <§{ for i e <0, n — 1>. Two graphs <§ and <§' are called homeomorphic
if there is a graph <§ such that <§ is a division of ^ and ^ ' . Two derivations are similar
if the corresponding derivation trees are homeomorphic up to relabeling of interior
nodes. We say that a grammar G is ambiguous if there is some string in L(G) for
which there are two distinct non-similar rightmost derivations. G is otherwise called
unambiguous. We say that GY is structurally equivalent to G2 if every derivation in Gy

is similar to some derivation in G2 and vice versa. We say that Gt is equivalent to G2

if 1(0.) = L(G2).

An e-free grammar is a context-free grammar in which no right-hand side of
production is e. An operator grammar is a context-free grammar in which no
production has a pair of adjacent nonterminal symbols on its right-hand side.
Operator-precedence relations < , = , > are defined on Tin the following manner:

For a, b e T:

(i) a = b if there is A -> aaBbfi in P for B = e or B e N.

(ii) a < b if A -• aaJ5^ in P and B =>+ Cfry for C = e or C e JV.

(iii) o ?> b if A -> afltyS in P and JB =>+ yaC for C = e or Ce7V\

An operator-precedence grammar is an e-free operator grammar in which operator-
precedence relations < , ==, 5> are disjoint.

Assume M to be operator-precedence relations over the terminal alphabet T and
R = {(a, b) | a = b is in M} £ T x T. Then (a, fr) from R can be graphically
represented as an oriented edge from the node a to the node b. Thus, R can be viewed
as a directed graph <§R. A path in <§R is a sequence of consecutive nodes in <§R.
A cycle C is the path of the length greater than one in which from any node in C
one can reach an arbitrary node in C. We say that M contains a = -cycle if there is
a cycle in <§R.

Using the parsing stack and the precedence relations derived from some operator-
precedence grammar, the operator-precedence parsing algorithm operates on the
input string in the following way:
Initially the input contains a^ ... a„ -\ and the parsing stack contains h-.

begin
repeat

if topstack = (- and current-input-symbol = - |
then ACCEPT
else

if topstack = a and current-input-symbol = b
then

select

370

(1) a <° b or a = b : shift b from the input onto the stack;
(2) a »> b : repeat pop the stack and put this most recently popped

symbol to X
(3) until the topstack <° X;

otherwise : ERROR
end <select>

fi
fi

until forever
end

In order to construct a parse tree, the operator-precedence parsing algorithm must
create a node for each terminal symbol shifted onto the stack during the statement at
line (1). When the loop of line (2) reduces by some production, the parsing algorithm
creates a node whose children are the nodes corresponding to whatever is popped
off the stack. After the loop at line (2) the parsing algorithm places on the stack
a pointer to the node created. This means that some of the "symbols" popped by
line (2) will be pointers to nodes. The comparison of line (3) continuous to be made
between terminal symbols only; pointers are popped with no comparison being
made.

Floyd's operator-precedence parsing algorithm s/M is an operator-precedence
parsing algorithm driven by precedence relations M derived from some operator-
precedence grammar.

3. VALIDITY TEST

It has been already remarked by Fischer [4] that operator-precedence grammars
suffer one serious drawback, namely that though Floyd's shift-reduce operator-
precedence parsing algorithm accepts all input strings of the operator-precedence
grammar, there is no guarantee that such a parsing algorithm will also accept invalid
input strings of that grammar. To illustrate this disadvantage a simple grammar G
with the following set of productions can be chosen: S0 -» h- S —I, S -» BaB,
B —> b. We see that L{G) = {h- bab —|}. However, if one parses the string h- b —),
one finds that it holds h- <§ b and b > -\ and so the input string h- b -\ is reduced
to h- B H. This sentential form has (- = -H now and if no check is performed to
ensure that both terminal and nonterminal symbols match the right-hand side of
some production, \- b -\ will be accepted as a valid string of the language.

The construction repeat S until p means that statements S are repeated until the condition p is
fulfilled (the case until forever is equal to until false) and the construction select px: Sv; ...;
pn : Sn; otherwise : Sn + 1 end means that the statement St for 1 g ;' gj n is performed when the
condition p; is true and all pj for 1 ̂ j sS ; — 1 are false. If all pl, ..., p„ are false, then the state­
ment Sn + i is performed.

371

We present an algorithm to decide whether an operator-precedence parsing
algorithm accepts exactly the language generated by the underlying grammar. The
principal idea behind this decision algorithm is the grammatical characterization
of the operator-precedence parsing algorithm and the reduction of our test to the
equivalence problem for two backwards-deterministic operator-precedence grammars
with the same operator-precedence relations. The latter problem is shown to be algo-
rithmically decidable.

We begin with a technical assertion that a single production removal does not
affect the operator-precedence property.

Lemma 3.1. Given an arbitrary operator-precedence grammar, one can find
a structurally equivalent operator-precedence grammar without single production.

Proof. Let G = <JV, T P, S> be an operator-precedence grammar. Let G =
= (N, T P, Sy, where P = (A -> a | a $ N and for some BeN, A =>* B in G
and B -> a in P). It is readily verified that L(G) = L(G) and that G is an operator-
precedence grammar without single productions and that every derivation in G is
similar to some derivation in G and vice versa. •

The key idea of our validity test is obtained in the following assertion.

Lemma 3.2. Given two backwards-deterministic operator-precedence grammars Gx

and G2 with equal operator-precedence relations, there is an algorithm to decide
whether it holds L(GV) = L(G2).

Proof. Let Gt = (Nu T, Pu St> and G2 = (N2, T, P2, S2> be two backwards-
deterministic operator-precedence grammars with equal operator-precedence rela­
tions. We first show that L(G,) = L(G2) if and only if Gx is structurally equivalent
to G2. Then we show that structural equivalency of two context-free grammars is
decidable.

1. Assume that L(GX) = L(G2) = L. Following Lemma 3.1 there are backwards-
deterministic structurally equivalent operator-precedence grammars G\ = (N\, T
P\, S\y and G2 = <W"2, T P'2, S2>, respectively, without single productions. We
show that an arbitrary input string w = at ... a„ from Lhas (up to relabling of
interior nodes) the same derivation tree according to G[as according to G2. We
first note that

Proposition 1. The string w has a unique derivation in G\.
This is true because G\ is a backwards-deterministic operator-precedence

grammar without single productions. To see it in more detail we have to distinguish
two cases. In the first case there are two various rightmost derivations of w in G\
of the form

S; =>* fiAu =>R ^BUi =>* ax ... an

S\^*RpAu^Rp2Cu2=>*Ra,...an

•ill

where B eN[, u, «,, u2 e T*, |u2| > |i*i(. In this case a contradiction with uni­
queness of operator-precedence relations is obtained by the same argument as the
one described in the proof of the Proposition 2 for the case k = i. In the second
case there are two various rightmost derivations of w in G[of the form

S[=>* ~Au =>R 0.BW, =>lai...a„

S[=>*, fiAu =>R p2Cux =>*Ra_...a„

where B, CeN[,B 4= C, u, ut e T*. In this case a contradiction either with back­
wards-deterministic property or as in the previous case with uniqueness property
of operator-precedence relations is obtained.

Furthermore, we prove

Proposition 2. The righmost derivation of w in G[is similar to the rightmost
derivation of w in G2.

The proof of this proposition is by induction on the length /; of derivations.
The proposition is trivial for h = 0. Assume that the proposition holds for
initial parts of derivations of the length shorter than h. We then prove the proposi­
tion for h (i.e. when initial parts of derivations of w in G[and in G2 are of the
length h). Indirectly assume that there are two rightmost derivations of the form

(3.1) S[-*.<*-J) M i - . ••• a« =*_ ViBtOt ••• a„ =>*R a, ... a„

(3.2) S2 =>(
R~l) P2A2at... a„ =>Ry2B2as ... a„ =>R ax ... an

where l<.s<h<:iSn and Px equals to /. 2 up to the renaming of nonterminal
symbols. In case k < i, from the derivation (3.1) it holds a t _ : °> ak, but from the
derivation (3.2) it must be ak_x = ak, a contradiction with the assumption that G[
and G2 have equal operator-precedence relations.

In case k = i, the rightmost symbol of the string yx must be the terminal symbol,
because G[is the operator grammar. Let yt = ya, for some t e <1, k - 1),
ye(N[u T)*. Assume that in the derivation (3.1) the first occurrence of ak

will be in a rightmost sentential form a,, the first occurence of at will be in a2 and
the first occurrence of ak^l will be in a3. Then the derivation (3.1) can be written
either in the form

S[=>+ a. =>*. a2 =>^ a3 =>% ax . . . a„

or in the form

S[=>+ a2 =>* a i =>s a3 =>* a. ... a„.

Assume that in the derivation (3.2) the first occurrence of ak will be in a rightmost
sentential form a4, the first occurrence of ak-i will be in a5 and the first occurrence
of a, will be in a6. Then the derivation (3.2) can be written in the form

S'2 =>+ a4 =>R a5 =>^ a6 =>| a, . . . a„ .

373

There must be some pe(t, k — 1> such that from (3.1) it holds ap+i <§ ap, but
from (3.2) it holds either a p + i = ap or ap+1 > ap, a contradiction with the as­
sumption that G[and G2 have equal operator-precedence relations. This ends the
proof of the Proposition 2.
Hence, we have proved that if L(GX) = L(G2), then Gx is structurally equivalent
to G2.

2. If Gj is structurally equivalent to G2, then by the definition it holds L(GX) = L(G2).
Now it is sufficient to construct an algorithm to decide whether Gj is structurally

equivalent to G2. Paull and Unger [10] showed that it is decidable whether two con­
text-free grammars are "structurally equivalent" in the sense that they generate the
same strings, and that their derivation trees are the same except for labels in interior
nodes. Independently, McNaughton [9] showed that equivalence is decidable for
paranthesis grammars, which are grammars in which the right-hand side of each
production is surrounded by a pair of parantheses, which do not appear elsewhere
within any production. Two grammars are "structurally equivalent" in the sense of
Paull and Unger if and only if the paranthesis grammars constructed from them are
equivalent.

It is immediately seen that an algorithm due to Paull und Unger can be used to
decide whether G[is structurally equivalent to G2, where G\(G'2) is an operator-
precedence grammar without single productions constructed following Lemma 3.1.

•
In order to characterize Floyd's operator-precedence parsing algorithm gram­

matically it is possible to apply only such constructions which preserve operator-
precedence relations. We show how for the Floyd's parsing algorithm a grammar
can be constructed which will generate the same language as it is accepted by Floyd's
parsing algorithm and in what cases the operator-precedence grammar will be back­
wards-deterministic. We make the following claim.

Lemma 3.3. Given any Floyd's operator-precedence parsing algorithm j</M ruled
by operator-precedence relations M without =-cycle, we can find an equivalent
backwards-deterministic operator-precedence grammar G with the same operator-
precedence relations M.

Proof. Let M be a set of disjoint precedence relations over the set Tof terminal
symbols not containing a special symbol # . We construct the grammar

G = <W, Tu { # } , P, S0> , where S0 is the start symbol,

N = {[aS6] | a, b e Tu {#}} u {S0} is the set of nonterminal symbols,

P = {[aSb] -* [aSa^ a1 [axSa^\ a2...ak [akSb] | there exist a, be Tu { # } such
that in M it holds a < ax, ak > b, at = ai+1 for a ; e T, 1 ^ i < k] u {S0 -*
~» # [# S #] # } u {[aSb] -> e | there exist a, b e Tu {#} such that in M it

holds a <s b or a = b or a > b}

374

is the set of productions. G is not in the reduced and e-free form, but using the
standard transformation of a context-free grammar into reduced e-free form one can
obtain G to be in reduced e-free form. We can see that this transformation preserves
operator-precedence relations and it does not violate the backwards-deterministic
property. Hence, we can assume that G = <J*, t, P, S> is reduced and e-free, and
backwards-deterministic operator-precedence grammar with precedence relations M.
To prove the proposition it suffices to show that L(G) = # L(s/M) # .
(i) # L(s/M) # c L(G). Let w e L(s/M) and let w is accepted by s/M in /c reduction

steps. It can be easily proved by the induction on the number of reduction steps
done by s4M in accepting w that: "If in s/M, the i-th reduction of w transforms
txaub/} into the form otabp for u = uxu2 ... us, then in G, there exists a production
of the form [aSb] -* [aSuJ® u^u.Su^® u2 ... us[usSb]®, where [cSd]®
means either e or [cScf], such that there is a derivation of # w # in G of the form
S=>1 #<xa[aSb] bp# =><£> # w # , £ e f*". Hence, it holds *w*eL(G).

(ii) L(G) £ # L(stfM) # . Assume # w # e L(G). Then there is a derivation of the
formS=> w # w # in Gfor some k = 1. Again, it can be easily proved by the
induction on the length of derivation of # w # in G that "If the (k - i)-th
derivation step of # w # in G is of the form #v.aAbfi # =>R # ctaB^^^^,...
... BsusBs+1b[S#, then s/M in the i-th step reduces aaB1u1B2 ... usBs+1bfi,
P e f *, into the form aab/T. Thus, w e L(s4M). •

Now we are prepared to formulate the main result if this section.

Theorem 3.1. For any backwards-determinitic operator-precedence grammar G
with operator-precedence relations M and for the Floyd's operator-precedence parsing
algorithm s/M ruled by operator-precedence relations M there is an algorithm to
decide whether it holds L(G) = L(s/M).

Proof. For any Floyd's operator-precedence parsing algorithm ruled by operator-
precedence relations M containing = -cycle there does not exist an equivalent opera­
tor-precedence grammar with equal operator-precedence relations. This follows
from the following argument. Suppose that in M it holds at = a2 = ... = a„ = ax.
Then (at ... a„)k, k = 1, are substrings of some valid input strings in L(s/M). In
order to derive substrings (at ... a„)k, k =t 1, of valid input strings in L(G), it must
hold either a„ s> a1 or a„ < ax in M, a contradiction. Thus, if M contains =-cycle,
then L(G) 4= L(sSM).

If M does not contain = -cycle, then using Lemma 3.3 we can find an equivalent
backwards-deterministic operator-precedence grammar Gv Using Lemma 3.2 given
two backwards-determinitic operator-precedence grammars G and GL with the same
operator-precedence relations, there is an algorithm to decide whether it holds
L(G) -» Ufii). Hence, given any backwards-deterministic operator-precedence
grammar G with operator-precedence relation M it is algorithmically decidable
whether it holds L(G) = L(s/M) or not, where s#M is the Floyd's operator-precedence
parsing algorithm ruled by operator-precedence relations M. •

375

4. COMPLEXITY

Denote the size of a context-free grammar G = (N, T, P, S> by |G| = V (L I + 2),
peP

where p is a production of the form A -» ap and |ap| is the length of the string ap.
In order to determine the time complexity of the validity test for Floyd's operator-
precedence parsing algorithms we have to consider the following steps and to analyze
them according to the size of the grammar G

Fact 1 (Lemma 3A). An algorithm which transforms any operator-precedence
grammar G = <At, T, P, S> into a structurally equivalent operator-precedence
grammar without single productions works in time 0(|xY| . \P\ . |G|).

It is easy to verify the time bound 0(|iV| . |R | . |G|) of the transformation, given in
Lemma 3.1, on an input grammar G. We note that the set of nonterminal symbols
of the resulting grammar is a subset of At and that the size of the resulting grammar
can be asymptotically greater than the size of G. For example, if G is of the form
G = <{S, Au..., A„, Bu ..., B,,}, (a j , . . . , an, bu ...,bm}, {S -> a.A-,, A-, -> B, B ->
-» ftj . . . bm | 1 g i S »}, S>, then |G| = 0(n + m), but the size of the resulting
grammar G = <{S, Au ..., A„}, {au ..., a„, bu ..., b,n}, {S -> atAh At -» bt ... bm\

1 ^ i g n}, S> is 0(n . m). But the size of the resulting grammar is bounded by
N\ . \P\. max(|ap | + 2), which gives the bound of Fact 1.

peP

Fact 2 (Lemma 3.2). A test for structural equivalence of two reduced backwards-
deterministic operator-precedence grammars Gx = <Atl5 T, Pu Sj> and G2 =
= <At2, T, P2, S2> with equal precedence relations and without single productions
can be performed in time 0(|At| . |G|2), where |G| = max (|Gj|, |G2|) and |At| =
= max (|Atj|, |At2 |).

The idea of the test is to group those productions (in both grammars separately)
which have the same "terminal pattern" on their right-hand sides together with
nonterminal symbols in the same positions on the right-hand sides (i.e. two produc­
tions of the form A -» A1a1A2 ... AkakAk+1 and B -> B1b1B2 ... BkbkBk+1 of
a grammar belong to the same group if and only if ar = b{ for 1 ^ i g k and for
1 :g i ^ k + 1 both A,, Bt are either nonterminal symbols or the empty string e).
Then a correspondence between nonterminal symbols of both grammars is deter­
mined by their positions on the left-hand and/or the right-hand sides of productions
in the corresponding groups of productions. For example, consider grammars
G, = <{Si, A}, {a, b}, {Sj -> aAb, A -> aAb, A -> ab}, S.> and G2 = <{S2},
{a, b}, {S2 -> aS2b, S2 -» ab}, S2>. According to the right-hand side terminal
patterns we obtain two groups {Si -» aAb, A -> aAb} and {A -> ab} for Gx and
two groups {S2 -» aS2b} and {S2 -> ab} for G2. From corresponding groups
{A -> ab} and {S2 -> ab} we obtain the correspondence A <-> S2. Moreover, from
corresponding groups {Sx -» aAb, A -» aAb} and {S2 —> aS2b} we obtain Sj *-> S2

376

and A «-> S2. So G : and G2 are structurally equivalent. The time bound follows from
the fact that it requires time 0(|G|2) to determine the correspondence between groups
of Gj and G2.

Fact 3. A simple test determining whether a set of operator-precedence relations
contains a = -cycle or not can be performed in time 0(|T |3).

The complexity bound follows from the fact that the presence of a = -cycle can
be determined by the transitive and reflexive closure of the incident matrix in which
the entry (a, b) equals to i if and only if a = b holds.

The valid grammatical description of the Floyd's parsing algorithm described
in Lemma 3.3 is of exponential size. To determine the grammatical description of
Floyd's parsing algorithm s/ efficiently one can use backwards-deterministic operator-
precedence grammar G without single productions. The "trick" is to "extend" G to
cover L(stf) (proving L(G) 4= L(sJ)) or to show that it is not possible to "extend"
G (proving L(G) = L(s#)). We first try to "extend" G. We determine the number of
different path from a to b, a, b e T, through = relations. This can be determined
in time 0(|T |3). Consider a pair (a, b) for which there exists at least one =-path
and for which there is a valid sentential form in G of the form acdfi, where c <s a,
b > d. If the number of different paths for a pair (a, b) differs from the number of
productions in G of the form A -> BaabC, B,CeN u {e}, where a contains different
terminal patterns, then we have to add new productions to G in order to cover L(si),
thus L(G) 4= L(s/). If the number of different paths is equal to the number of
productions of the form A -> BaabC, then we try for some productions in G to add
new productions to G with the same terminal pattern. For each nonterminal symbol D
we determine quadruples of terminal symbols (a, b, c, d) such that yxaDby2 is a valid
rightmost derivation in G and it holds aDb =>| acy3db. This can be computed in time
0(| T|4 . |7V|) using tables of <°, = , §> relations and incidence matrices in which (A, B)
equals to 1 if and only if A -> aBfi. Now we try to insert a nonterminal symbol D
on the right-hand side of each production or we try to replace some nonterminal
symbol on the right-hand side of some production by another nonterminal symbol D,
where (a, b, c, d) is a quadruple in the list of D, such that D is surrounded by terminal
symbols a, b in this production. If we succeed, then L(G) 4 L(sf). Otherwise L(G) =
= L(s£). The latter case can be performed in time 0(JAt| . | T | 4 . |G|). Hence, we
obtained

Fact 4. A test determining whether G is the valid grammatical characterization
for the underlying Floyd's operator-precedence parsing algorithm si can be deter­
mined in time 0(|iV| . | T | 4 . |G|), where G is a reduced backwards-deterministic
operator-precedence grammar without single productions.

Fact 5. A simple transformation which reduces a backwards-deterministic operator-
precedence grammar G can be performed in time 0(|G|3).

377

This transformation uses the transitive and reflexive closure of incidence matrices
in which (A, B) equals to 1 if and only if A -> aBfi, B e N u T, a,fie(NuT)*
and (A, B) equals to 1 if and only if A -> uBfi, B e N, a, $ e (N u T)* or A -> aB$,
a, $ e T*, B e T.

Theorem 4.1. A decision, whether an operator-precedence grammar G is equivalent
to the underlying Floyd's operator-precedence parsing algorithm, can be performed
in time polynomial to the size of G.

4. CONCLUSIONS

Operator-precedence grammars are suitable for specifying a variety of program­
ming language constructs using an information about the precedence and associativity
of operators. However, operator-precedence parsing algorithms possess a curious
property that one can accept inputs that are not in the language of the underlying
grammars. In the preliminary version of this paper [11] we have answered natural
questions concerning two classes of languages which are definable using the operator-
precedence grammars and the Floyd's operator-precedence parsing algorithm. In
this paper we concentrated on proving the decidability of the equivalence problem
for these two models. The latter result can be reformulated as the necessary and suf­
ficient condition for an operator-precedence grammar to be valid grammatical
characterization for Floyd's operator-precedence parsing algorithm. This result
solves the problem stated by Levy [8]. We have not yet looked at a modification of
operator-precedence relations in order to obtain a valid characterization of Floyd's
parsing algorithms. A partial solution of this problem has been obtained by Hen­
derson and Levy [6] by defining extended operator-precedence relations.

(Received February 4, 1981.)

R E F E R E N C E S

[1] A. V. Aho, J. D. UUman: The Theory of Parsing, Translation, and Compiling. Vol. I:
Parsing. Prentice-Hall, 1972.

[2] A. J. Demers: Skeletal LR parsing. 15th Annual Symposium on Switching and Automata
Theory 1974, 185-198.

[3] N. El Djabri: Extending the LR Parsing Techniques to Some Non-LR Grammars. TR-121,
Princeton University, New Jersey 1973.

[4] M. J. Fischer: Some properties of precedence languages. 1st Annual ACM Symposium on
Theory of Computing 1969, 181-190.

[5] J. N. Gray: Precedence Parsers for Programming Languages. Ph. D. Thesis, Department of
Computer Science, University of California, Berkeley 1969.

[6] D. S. Henderson, M. R. Levy: An extended operator-precedence parsing algorithm. Com-
put. J. 19 (1976), 3, 229-233.

378

[7] D. Knuth: Top down syntax analysis. Acta Informatica I (1971), 2, 79—110.
[8] M. R. Levy: Complete operator precedence. Information Processing Lett. 4 (1975), 2,

3 8 - 4 0 .
[9] R. Mc Naughton: Paranthesis grammars. J. Assoc. Comput. Mach. 14 (1967), 3, 490—500.

[10] M. C. Paull, S. H. Unger: Structural equivalence of context-free grammars. J. Comput.
System Sci. 2 (1968), 1, 427-463.

[11] P. Ruzicka: Validity test for Floyd's operator-precedence parsing algorithms. In: Mathe­
matical Foundations of Computer Science (J. Becvaf, ed.), Lecture Notes in Computer
Science 74. Springer-Verlag, Berlin 1979, 415-424.

RNDr. Peter Ruzicka, Vyskumne vypoctove stredisko (Computing Research Centre), Dubravskd
cesta 3, 885 31 Bratislava. Czechoslovakia.

379

