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The Optimum Sequential Test of a Finite 
Number of Hypotheses for Statistically 
Dependent Observations 

J ltd COCHLAR 

The paper deals with Bayes optimum sequential tests of a finite number of hypotheses for 
independent and differently distributed observations. The obtained results are applied to the 
problem of Bayes optimum sequential test for distinguishing wheather one of a finite number 
of known signals is present in a coloured Gaussian noise. The paper generalizes the results of [1], 
which deals with a case of two hypotheses, to the case of a finite number of hypotheses when the 
cost c„ of an observation xn depends on the index n. There is proved in Theorems 2.1 and 2.2 
that for independent and generally differently distributed observations the Bayes optimum 
sequential test is always the test of a posteriori probability. 

1. INTRODUCTION 

In this paper we shall deal with the Bayes optimum sequential tests of a finite 
number of disjoint statistical hypotheses for statistically dependent vector observa
tions. The present results are a generalisation of results of [1], where the same problem 
is introduced for the case of two hypotheses and for a constant cost of one observa
tion. For the solution of our problem we shall use general results derived in [2]. In 
this chapter we shall define some necessary concepts and an exact formulation of the 
problem. The more detailed explanation of introduced concepts contain references 
[1] and [2]. 

For an arbitrary fixed integer H, H S: 2 we shall define 

M7 = {1 ,2 , . . . , / / } 

as a set of hypotheses and 

s4 = {1 ,2 , . . . , / / } 

as a set of possible decisions of a statistician. Let the H x / / matrix of losses L be 
given with elements LVy Element LV} corresponds to the loss of the statistician due 



to accepting the decision j e sd when hypothesis i e J<f holds. We assume 0 < Lu < 37 
< co for /' + j , Ln = 0. 

Let a measurable space (Q, SF) and H probability measures Pt on this space 
(j e 3f) be given. Every triple („ , SF, P.) then represents a probability space cor
responding to the validity of a hypothesis i for ieJf. Let n _ (ln, ...,Hn) be 

ii 

a priori probability distribution on Jf, i.e. 0 < 'n, ieJf, Ŷ  'n = 1. We shall 
/ = I 

denote by J\ the set of all possible distributions n. For an arbitrary nef\ we shall 
define a probability measure P on (Q, SF) by the relation 

(1.1) P(A)±i>nP(A) 
i = l 

for every A e SF. Let N be the set of all positive integers, i.e. N _ {1,2 , . . .} , and let 
an arbitrary fixed M e N be given. Let £ be a M-dimensional Euclidean space and 
let M be a rr-algebra of Borel subsets of the set £. We assume that a sequence of !F\g8-
measurable functions x„ : Q -> £, n e N is given on the measurable space (Q, SF). 
We shall denote 

_- ,_ (x . , . . . , x , ) 

„„ is then a .^/^"-measurable function: £2 -> £". We shall assume that x„ and S"„ 
are random elements defined on (A, J^, Pt) for all n e N and every i e Jf. Let a proba
bility density 'wn(2£„) exists for every neN and /' e Jf. 

Random vectors x„ and n-tuples 3fn can be understood as random elements defined 
on (Q, SF, P) and it holds for the probability density wn(9£n) on this space 

(1.2) w„(3Q = X 'n • 'w„(^„) . 
i = i 

In [2] there is made a construction of probability spaces („ , SF, P) and (Q, #", /*,-), 
with here required properties, rising from the given densities w„, 'w„ respectively. 

Vector x„, for n e N, will be called the n-th observation of a statistician. We shall 
assume that the statistician's decisions on validity of a hypothesis i e M' are based 
only on his knowledge of „"„ for n = 1, 2 , . . . . We shall denote by c„ the cost which 
statistician pays for obtaining of value x„, i.e. c„ is a cost of the n-th observation x„. 
Everywhere further we shall assume 

(1.3) 0 < c„ = +oo , f c„ = +oo . 
n = i 

Let #" t c #"2 _ ... c SF be a-nondecreasing sequence of such c-algebras that 9>n 

is a minimum cr-algebra induced by Xn for every /zeA^. By the stopping rule x on 



38 a sequence {x„} we shall understand every integer random variable t defined on 
(Q, 3F, P) which has values from N and for which it holds 

(1.4) P({z < oo}) = 1 , {co : T(co) = ft} e &n for neN . 

By the rule of a terminal decision d we understand every sequence of functions 
d„ : £" —> s4 for which it holds for an arbitrary j e si 

(1.5) {"J e £" : d„(%) = ;} e (Mn for «eJV. 

Definition 1.1. By the sequential test of a set of hypotheses Jf we understand every 
pair (d, x) (where d is an arbitrary rule of a terminal decision, T is an arbitrary stop
ping rule on a sequence {x„}) when statistician accepts a decision j = d„(S,'„(ca)) 
then and only then if it holds T(co) = n for co e Q. 

Let nn(SC„) = (ln„(2I„), ..., H7i„(,f„)) e F | be a posteriori probability distribution 
on Jf for a given n-tuple $"„. It holds 

(1.6) in„(!F„) = 'n • ' W ' W for n e N , i e J f , <Fa e £". 
w„(^„) 

Let /; be a real nonnegative function defined on r j by the relation 

(1.7) h(t)^ mm {I Lu.<t} for t = (% ..., Bt) eR • 
jetf i = l 

For every n e N let us define on the probability space (Q, &, P) a real random vari
able y„ by the relation 

(1.8) y0(co) = ~h(n„(%n(co))) - £ c» for n eiV . 
fc = i 

Note that y„ is #"„-measurable function of ft) for every neN. 

By f/ie Bayes rule of a terminal decision we shall understand a rule of a terminal 
decision d* = {<i*}„ defined by the relation 

(1.9) d*n(SC) = min {j : £ L y . ' J T ^ ) = h(7i„(^))} 3T e £" , n e N 
j£M i = 1 

Definition 1.2. By the Ba^es optimum sequential test of the set of hypotheses Jf 
(for the given i t e [ ] ) w e shall understand the sequential test (d*, x*), where d* is the 
Bayes rule of a terminal decision and T* is a stopping rule on a sequence {x„} if it 
holds 

(1.10) M(>v) = sup M(yt) 



where M is the expected value on the space (12, $F, P) and <¥ is the set of all possible 39 
stopping rules on a sequence {x„}. 

Note 1.1. The stopping rule T* satisfying (1.10) will be called the Bayes optimum 
stopping rule. 

Theorem 1.1. Let n„(2F„) be defined for all n e N and let it hold 

(1.11) -/.(it) <supM(X). 
tE« 

Then the Bayes optimum sequential test of a set of hypotheses Jf always exists for 
a given K e f ] . 

Proof. The existence of the Bayes optimum stopping rule follows directly from 
the Theorem 4.1 of [2]. If the condition (1.11) is not satisfied, then the stopping 
rule x* otherwise exists, as it follows e.g. from Theorem 2 of [3], but it has no prac
tical importance, since an accepting of a decision j e &? without observations brings 
the minimum risk to the statistician, for which it holds 

I V * =-*.(*)• 
!=1 

We shall not deal any more with the case when (1.11) does not hold. 
In the next chapter of this paper (using Theorem 4.1 of [2]) we shall derive the Bayes 

optimum sequential test for the case of independent and differently distributed 
observations. Similarly as in [1] we shall use this result for some case of dependent 
observations in chapter 3. According to the results of chapter 3, in chapter 4 we 
shall solve a problem of the optimum sequential test of a presence of one signal from 
the finite set of known signals in the coloured Gaussian noise. 

2. OPTIMUM SEQUENTIAL TEST FOR INDEPENDENT DIFFERENTLY 
DISTRIBUTED OBSERVATION 

We shall assume in this chapter that for n e N and i e 3ff the following equation 
holds for the probability densities 'w„ 

(2A) V a g - fl '/*(**) . ^ , = (*i, •••,*„) 
k = i 

where 'j„(x) ^ 0 for neN, xeE, i e tf and | E %(x) dx = 1 for neN, ieJf. 
This is evidently a case of statistically independent and generally differently distributed 
observations x„. 



It is easy to show that it holds in this case for every ne N, ie 34? 

(2.2) X + 1 ( ^ + 0 = ^ " 1 ^ ^ X ^ ^ 
£X(; r n ) - s L + i (x„ + i ) 

s = l 

where 9£n = (x , , . . . , x„), SCn+i = (x 1 ; . . . , x„, x„+ 1). 
Let 2E be an arbitrary set. By an expansion of the set S£ we shall understand any 

finite system of sets {kS£}k,
 k2£ <= S£, keNR. where NR is an arbitrary finite set of 

finite integers and it holds for the set kS£ 

U k2£ = 2£ , "JT n l3t = 0 for fc + i ; k,ieNR. 
keNR 

We shall prove the theorem. 

Theorem 2.1. Let ix„(f „) be defined for all n e N. Then for every n e N there exists 

such an expansion {TL}J=0 = {Tl»> TL" •••• T L } o f t h e s e t II t h a t f o r T L + 0 
the Bayes optimum sequential test (d*, T*) of the set of hypotheses ^f is given by 
relations: 

(2.3) T* = inf{« : Ji„(^„) £ 0]!„} 
lleiV 

(2-4) df = £ j . V-W-T-)) + °cpn(nn(Xn)) 
J = I 

where J<p„ are indicators of sets JTJ„ for j = 0 , 1 , . . . , H. 

Proof. It follows from the Theorem 4.1 and the Remark 4.2 of [2] that the Bayes 
optimum stopping rule T* is given by the relation 

(2.5) T* = inf {n : rn(ZCn) = h(%n(%n))} . 
neN 

It holds for the function r„($£„): 

(2.6) rn(Hn) = min {/i(7i„(.f „)); M~(rn+1(£„+1) | Xn) + cn + 1 ) 

(2.7) rn(3£n) = lim Qn[h(n „(%„))] neN 

where Qk is the fc-th power of the operator Qn defined by the relation 

(2.8) &,[</>„(;r„)] = min {.//„(.f„); M > n + 1(3r„+1) | Xn) + c„+]} neN 

and M~(- | 9Cn) is a variant of the conditional mean value M(- | 3Fn), defined for 
all &,, on the space (Q, # ' , P), which is denoted in [2] by MnJSCn(-). 



It is clear from relations (2.2), (2.7) and (2.8) that the function rn(£n) depends 41 
on 9£„ only through nn(3£n). We can then define a new real function gn on \\ by the 
relation 

(2.9) 9 „(*„(%„)) = rn(X„) neN . 

It is easy to show from relations (2.5) till (2.9) that it holds for the function gn 

(2.10) a„(t) = min{/7(t); G„+1(t) + c„+1} t e j ] , neN 

(2.11) Gn(t) = f gn(tn(x))£'. . y„(x) dx , t = ( ' / , . . . , "J) EfJ 

for 

,w*/4^- -„^M -N 
I I•<••/,(*) I •(. •/„(*) I 
4 = 1 S=l / 

(2.12) «„(t) = lira #[fc(t)] t e f j , « e N 
lt-»oo 

(2.13) 2-W-)] = min L(t); [ *- + i(W*)) • 

« ) 
• I * t . y B + i ( x ) d x + c„+ 1 l neN. 

Substituting (2.9) into (2.5) we obtain 

(2.14) T* = inf [n : gn(nn(%n)) = h(nn(SC„))} . 
neN 

Let us define °rj„ <= fT by the relation 

(2.15) U * {ten :*-(«) <*(*)}• 

Relations (2.10), (2.14) and (2.15) then prove the relation (2.3). 
Let us further define JTJ„ <= J l by the relation 

(2.16) TI„ = {ten : £ L . ; . ' . = !>(«), I *•* • '< > *»(*) > 
i = i ; = i 

k = 1, ...,; - l } n ( n \ ° n „ ) J e ^ > neW. 

Relations (1.9) and (2.16) prove the relation (2.4). Let us note that, in accordance 
with the Definition 1.1, the value of d* in (2.4) can be defined quietly arbitrarily for 
ft„(3£„) e °n„- But according to the definition of the rule of terminal decision it must 



hold d* e stf also in this case. The condition °J~J, =f= 0 is equivalent to the condition 
(1.11) of our Theorem 1.1 (see relation (4.15) of [2]). By this the proof of theTheorem 
2+ is completed. 

Remark 2.1. As it follows from the proof of the Theorem 2.1, some elements of an 
expansion {JJ~f„} c a n t>e empty sets. 

Theorem 2.2. Let 3? be a er-algebra of all Borel subsets of the s e t ] ! . JTJ„ are convex 
sets and it holds JTJ„ e 3P, °rj„ e 2P for every n e N and all j e s£. 

Proof. First we shall prove that TJ„ are convex sets for j e s4. The proof is trivial 
for JTJ„ = 0. Let us thus assume that JTJ„ + 0. Let us define a function hj on FJ for 
j 6 sJ by the relation 

(2.17) hj(i)^Uj.H, t - ( - » , . . . , » 0 e n -
i = i 

According to relations (2.10), (2+5) and (2.16) it holds for JTJ„, j esJ, neN 

(2.18) jrj„ = {t : G„+ .(t) + cn+1 £ h(t), hj(t) = h(t), 

hk(t)> h(t) for k= 1....J- 1} . 

Let tj = (ltu ..., Htt), t2 = (lt2, ..., Ht2) be two arbitrary elements of the set J'JT„. 
According to [4] we must prove that it holds for every X e (0, 1) 

(2.19) Xtl+(l-X)t2e'Y\n. 

It holds for tj 2 e
J'J]„ and arbitrary X e (0, 1) 

(2.20) /.(At. + (1 - A) t2) = min { £ L./A . j , + (1 - X). %)} = 
Jejrf i = 1 

= A h(tt) + (1 - A) h(t2) . 

Further it holds for every j e srf 

(2.21) hj(Xtx + (1 - A) t2) = A ft,(tl) + (1 - A) hj(t2). 

Since the function h(t) is concave, functions ,o„(t) and G„(t) are also concave for every 
neN according to [4] and relations (2.11), (2.12). Then it holds for every A e (0, l) 

(2.22) G^^Xt, + (1 - A) t2) ^ A G„+1(t t) + (1 - A) G„ + )(t2) . 

The verified relation (2.19) directly follows from (2.18) together with (2.20) till (2.22) 
Now let us show that it holds for j e {0, 1, . . . , H) 

(2.23) T l « e ^ f o r n e N -



It is clear that functions h(t) and hj(t) are ^-measurable functions. It is easy to show 
that o„(t) and Gn(t) are also ^-measurable. Relation (2.23) then follows directly 
from relations (2.15) and (2.18). Theorem 2.2 is proved. 

Remark 2.2. Let us denote by {JT]o}f=o a n expansion of the setFJ given by relations 

°r io^0 , 

TIo = {t : h(t) = hj(t), hk(t) > h(t) for k = 1, ...J - 1} . 

Then TJo are convex sets for j e s/ and it holds for all n e N 

TL <= Tlo e ^ i ' e^ -

Remark 2.3. Let some sequence of expansions {{jn»}f=o}n satisfying assertion of 
Theorem 2.2 for neJVbe given. We shall denote by a sequential test of a posteriori 
probability, defined by the mentioned sequence of expansions, every sequential test 
(d, T) for which relations (2.3) and (2.4) hold for this sequence of expansions. It is 
known that the optimum sequential test of a posteriori probability defined by a se
quence of expansions (2 18) is equivalent for if = 2 to the sequential likelihood 
ratio test with some sequence of thresholds which was introduced in [1]. 

3. OPTIMUM SEQUENTIAL TEST FOR DEPENDENT 
OBSERVATIONS 

In this chapter we shall discuss one special case of statistically dependent observa
tions x„. In explanation we shall follow chapter 3 of [1], results of which we shall 
generalize for H _• 2 of statistical hypotheses and for the cost c„ depending on n. 

We shall express the n-tuple $£„ of observations x1 ; ..., x„ by a row vector defined 
by the relation 

Xn = (xiu...,xiM,...,xnU...,xnM) neN 

where 

x„ = (xnl, ..., xnM) neN. 

Let us define a new row vector X„ 

- \ l — ( X l l > • • •! X1M> • • •> Xnl- • •> XnM) 

by the relation 

(3.1) X'„T = D„X„r neN 



where YT denotes a transposed (column) vector to the row vector Y and D„ is a 
Mn x Mn matrix with real elements, given by the recursive relation 

(3,, - . . . - [ - * | nєN . 

For every n e N the </,'„ d,", </,'," are M x Mn, M x M, Mn x M matrices where Dj 
and d'n are regular matrices and d'n" is a zero matrix. It follows from these assumptions 
that the matrix D„ is regular for every n e N and there exists its inverse C„, C„ = D~ l 

for « e JV. 
We shall express vector Xn as the rc-tuple 9C'„ of vectors x., i.e. 

r,; = (x'j,...,x;) 

X„ = (xnl, ...,XnM) 

According to (3.1) and (3.2), 9C'n is a random element defined on probability spaces 
(Q, J~, P) and (Q, J~, P,), / e X . Let us denote the probability density of n-tuple 
3C'n on (Q, 2F, Pt) by lw'n(S,"n). This probability density always exists due to the regulari
ty of the matrix D„ and it holds 

(3.3) ''<(%'„) = Jn • '*«(%„) ieje , neN 

where /„ is the absolute value of Jacobian of the linear regular transform (3.1), i.e. 

(3.4) J„ = |detC„| + 0 neN , 

We shall prove the following theorem: 

Theorem 3.1. Let for every n e N there exists a matrix D„, satisfying (3.2) and such 
that it holds for every i e J^ and for every neN 

(3.5) ;w;(c) = fl '/*(*.) 
k=\ 

where %(x') ^ 0 for x e £, i e JCf, neN and fE %(x') dx' = 1 for i e j f , n e N . 

Let JI„(^"„) be defined for all n eJV. Then for every neiV there exists an expansion 

{TL.}f-o = {°ri- T k •vHn»} o f t h e s e t Tl w i t h t h e following properties 
a) TT, e ^ for j e {0, 1, ..., H], neN; 

b) JT{„ are convex sets for every j e s4 and neN; 

c) The following relations hold for the Bayes optimum sequential test (d*, T*) of 
the set of hypotheses ^f for °JT1 + 0 

(3.6) T* =inf{n:TC„( .f„)^°n„} 
neN 



(3-7) d: = Zj.J\p„(K„(X„)) + 0<p„(nn(:£„)) 
J' = I 

where J'<pn are indicators of sets JT]„. 

Proof. Since Bayes optimum sequential test (d*, T*) exists, according to Theorem 
1.1, the proof of the statement c) of our theorem is an easy generalization of a proof 
of Theorem 3 in [ l ] for the case H ^ 2 using Theorem 2.1 of the proceeding chapter. 
Relations (2.15) and (2.16) hold for elements JTJ„ of an expansion (Tl.JT-o- State
ments a), b) then follow from Theorem 2.2. 

Remark 3.1. It follows from Theorem 3.1 that the Bayes optimum sequential test 
(d*, T*) is the sequential test of a posteriori probability for here assumed type of 
dependence of observations x„. 

4. OPTIMUM SEQUENTIAL TEST FOR DISTINGUISHING OF KNOWN 
SIGNALS IN A COLOURED GAUSSIAN NOISE 

Theorem 3.1 gives us a possibility to solve a problem which of H possible known 
signals is present at the output of the transmission channel with a coloured Gaussian 
noise. We shall deal with this problem which is important from the point of view of 
practical applications. 

Let it hold for the «-th observation 

(4.1) x„ = n„ + •'-„ ieJt? , neN 

where 's„ = ('s„,, ..., 's„M) is a given vector of signal and n„ = (n„u ..., n„M) is 
Gaussian random vector. Let the vector 

(4.2) X„ = N„ + % = (x , , , . . . , xlM,...,xnU..., x„M) iejf, neN 

be a Gaussian random vector with a mean 'S„ and with a covariance matrix R„ and 
let it hold for every neN 

(4.3) N„ = («, , , ..., nlM, ..., nnU ..., nnM) 

% = ('siu ..., ' s , M . . . . , ''s„,, ...,'s„M) ieJf 

R„ = M;((X„ - >S„y . (X„ - 'S„)) = 

= Mj((X„ - J'S„)T . (X„ - J'S„)) i, j e * 

where Mt is the expected value on the probability space (Q, #", Pt), i e #C We 
shall assume that symetric Mn x Mn matrix R„ is positive definite. 



Relations (4.1) till (4.3) define a transmission channel, to the input of which one 
from H possible known signals {'s,,} is led. In the following theorem we shall derive 
the Bayes optimum sequential test which knowing the output of the channel {x,,} 
estimates what signal {'s,J was led to the input. 

Theorem 4.1. Let SCn = (x,,..., x„), where x„ is given by the relation (4.1) and let 
a priori probability distribution on the set of all possible signals {^s,,},,, ..., {Hs„}„} 
be 7t e ] T Then for every n e N there exists an expansion { F]n};=o of a set f ] with the 
following properties: 

a) JY\n e SP for j e {0, 1, ..., H], neN; 

b) J'JT„ are convex sets for every j e s4 and neN; 

c) For Bayes optimum sequential test (d*, T*) of the set of hypotheses {//;}f=i = 

= {{*„}„ = {("„ + \)}n, . - , {*„}„ = {("n + "*„)}„} it holds for T L + 0 

(4.4) z* = inf{n:7t„(^„)£°]l„} 

(4.5) d* = l j . >,K(3f„)) + >„(K„(^„)) 
; = i 

where Jcpn are indicators of sets J]\n. 

Proof. Analogically as in discussions of chapter 4 in [1] we can show that for 
our case there always exists such matrix D„ with a property (3.2) that Xn in (3.1) is 
a Gaussian vector with uncorrelated Gaussian components x'k[ for k = 1 , . . . , n and 
I = 1, ..., M. Since uncorrelated Gaussian components are statistically independent, 
thus condition (3.5) is satisfied. Theorem 4.1 is then a consequence of Theorem 3.1, 
since nn(2£n) exists for all n e N in our Gaussian case. 

Remark 4.1. Theorem 4.1 contains, as a special case for H = 2 and for 1sn ~ 0, 
2s„ :=: sn,ne N, the assertion of Theorem 4 of [1]. 

It is clear from Theorem 4.1 that Bayes optimum sequential test for coloured 
(statistically dependent) Gaussian observations is a sequential test of a posteriori 
probability if Gaussian observations differ in their means according to the finite 
number of possible hypotheses. 

5. CONCLUSIONS 

Theorems 2.1, 3.1 and 4.1 determine the Bayes optimum sequential test of the finite 
set of hypotheses as a sequential test of a posteriori probability defined by some 
sequence of expansions of a set TJ of all possible probability distributions on the set 
of hypotheses Jf. In connection with this there arises a very interesting and not yet 



solved problem of finding sufficient and necessary conditions when the sequential 

test of a posteriori probability is at the same time the Bayes optimum sequential test. 

Further not yet solved problem of a great importance in practical applications of 

Bayes optimum sequential test according to Theorems 2.1, 3.1 and 4.1 is finding the 

constructive methods how to determine expansions {JTT,I}J = O-

(Received October 9, 1978.) 
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