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A New Generalization of Entropy 
and its Characterization 

BHU DEV SHARMA, ISHWAR SINGH 

We generalize branching property by considering the difference of entropies before and after 
grouping as nonhomogeneous functions of group probability. Starting from a suitable set of 
axioms which are modifications of those considered by Fadeev and later by Vajda for studying 
Shannon's entropy and degree a-entropy, new entropy is obtained, which is quite general and 
contains several parameters. Functional equations resulting from such an approach have also 
been formed. 

1. INTRODUCTION 

Shannon [6], in his fundamental paper introduced a quantitative measure of in
formation, called entropy, which, for a discrete probability distribution 

p = G > . , p 2 , . . . , p n ) , Pi^o, £ j > , « i , 
;=i 

is given by 

(1.1) Hn(P)= -tpilogPi 
; = i 

Shannon characterized this measure taking a reasonable set of postulates. The quantity 
has been subsequently characterized in various ways by several authors (see Aczel [ l]) . 
By suitably changing the postulates and sometimes otherwise, generalizations of 
this measure have been studied. 

Among several ways of characterization two elegant approaches are to be found 
in the work of Fadeev [4] and Chaundy and McLeod [2]. Basic postulate in Fadeev's 
approach is the branching property, viz: 

(1.2) H„(Pu Pi, • • -, P.) = Hn-i{Pi + Pi, Ps, •••,Pn) + 

+ (Pi+P»)«z(-iL-l-
ii-) 

\Pi + Pi Pi + Pi) 



n = 3, 4, . . . for the distribution 

P = (Pi,Pi, . . . , p „ ) , Pi^O, I P . = 1. 
i = l 

Both of the above mentioned approaches have been extensively employed and 

generalized (refer Sharma and Taneja [7]). A generalization of (1.2) taken by Havrda 

and Charvat [4] is 

(1.3) Hn(Pl,Pz, ...,P„) = H„_1(Pl + P2,Pi, ...,Pn) + 

+ (Pi + Pi)aH2[~ 
\Pi + Pг Pi + P: 

a > 0 , a ф 1 . 

In Section 2, of this paper we consider a broad generalization of branching pro

perty and in Section 3 we obtain the form of entropy resulting from it. In Section 4, 

we obtain a functional equation arising from the generalized branching property 

taken in Section 2. 

2. GENERALIZED BRANCHING PROPERTY 

A close observation of (1.2) and (1.3) reveals that it is equivalent to tacitly assum

ing that, difference of the entropies before and after grouping the events, i.e. 

(2.1) Hn+1(Pl, . . ., p„_„ pnq, pn(\ - q)) - H„(Pl, . ..,p„) , 

is a homogeneous linear function of pn (group probability) for Shannon's entropy 

and of positive degree a(=t= 1) for Havrda-Charvat's entropy. 

Taneja [9] has considered a unified form of the linear and degree a branching 

property by considering 

(2.2) Hn+1(Pl,p2,...,Pnq,pn(\ -q)) = 

= Hn(pu p2, ...,pn) + g(p„) H2(q, 1 - q) 

and has shown that under continuity, symmetry and boundary conditions: 

H2(2, i) = 1, H2(\, 0) = 0, g(P) can take only two forms viz. g(P) = P and g(p) = 

= P

a, a + 1, a > 0 leading to the two cases, viz. Shannon's measure and 

Havrda-Charvat's measure 

(2.3) H"n(P) = i^i , a > 0 , a * 1 . 
v / .v / 2 i _ a _ t 

This measure has been studied later by Vajda [10] and Daroczy [3]. 



As a natural generalization, it occurs to examine the case when the difference 
of entropies before and after grouping is not necessarily a homogeneous function 
of the group probability. In this situation we may considei that (2.1) is a function 
of the type 

(2.4) ix0pn h0(q) + HxPm K(i) + • • • + P-iPV h,(q), 

a, > 0 , «, + l , / 1 1 , 

where h0(q), hx(q), . . . , ht(q) are some suitable functions of q and the p's are arbitrary 
constants. In other words we can take the branching property in the form 

(2.5) Hn+1(pu p2, .. .,pnq, pjl - q)) = H„(pu p2, ...,pn) + 

+ P-oPn K(q) + HiPl1 h2(q) + ... + fi,p"„' h,(q) . 

In fact we start with an apparently more general form of branching property 
given by 

(2.6) Hn+1(pu p2, . ..,p„q, p„(l - q)) = 

i 

= H„(Pu p2, . . . , p„) + Y, H, 9,(P„) h,(q) 
1 = 0 

and consider that ht(q) is the same as H2*',9t)(q, 1 — q), an information type measure 
of the probability distribution (q, 1 — q) depending on a parameter f. Further, to 
indicate the dependence of the measure Hn(pu ..., p„) on the constants / /s and the 
functions g's, in what follows, we write H„f,° "''•go g,)(p1, .. ., pn) in place of just 
H„(pu ...,p„). Thus we can announce axioms for the measure H^° f";go g0 . 
.(pu ..., p„) as follows: 

(i) The measure Hn
ll0-,,'"',go g,)(pu . . . , p„) is a symmetric function of p . , . . . , p„. 

(ii) The measure Hn
m l";go--9,)(pu...,pn) is a continuous function of its 

arguments. 

(iii) The measure Hn
f'° ",;9° gi)(pu ..., p„) satisfies the branching property 

H„rrvv'g° "\Pi, ...-Pi-i, vn, vi2, Pi+U . . . , p „ ) = 

(2.7) = Hn»° »<«°--"XPU p2,...,Pn)+i nt g,(p) . !#••*> fe , "A 
'=o \Pt Pi) 

where vtx + vi2 = pt > 0 , i = 1, 2, . . . , n . 

(2.8) (iv) Hf° »"»>---«)(i> i ) = l , 

Hte>.~*Mo 9i)(1} o) = 0 . 



Before coming to the characterization of entropy under the above axioms, we need 369 
to examine the nature of measures H(£t,9t)(q, I - q) and the functions g0, . . . , gt. 
As a first step let us take p0 = \i 4= 0 and ju: = \i2 = \i} = . . . = 0 , g^(x) = g(x). 
The resulting measure H(„'i,9)(p1, ..., pn) satisfies then the relation 

(2.10) rtny
)(Vi,...,pn„i,pnq,pn(l-q)) = 

= Hfr\pi,...,pn)+(tg(pn)H<r)(q,\-q). 

This measure is also to be symmetric and continuous in its arguments. If we set 
H H2»-g)(q, 1 - q) = h'(q) in (2.10) then (2.10) reduces to 

(2.11) HirXPu ••; P„) = Hlr\Pu ...,Pn) + g(Pn) h'(q) 

which (refers Taneja [9]) requires that 

(2.12) 9(pq) = g(p) g(q) 

and the function h' is to be one of the following forms: 

(2.13) h'(q) = h'0(q) = -q log2 q - (l - q) log2 (1 - q) 

when g(p) = p , 
and 

(2.14) h'(q) = g(g) + g(l - g) - 1 
V } W 2g(i)-l 

when g(p) = p", x 4= 1. 

The result (2.13) which we obtain for g(p) = p is in fact limiting form of the one 
in (2.14). To see this let us write (2.14) as 

when g(p) = pa, x 4= 1, then lim h'(q) = h0(q). 
<z-> 1 

For the purpose of achieving compact representation, h0(q) will also be written as 

( 2 .1 6 ) gofr) + gp(! - q) = l i m gg + a - # - 1
 = 

2 a 0 ( i ) - l «-i ^ - ' - l 

= -q log2 cj - (1 - q) log2 (1 - q) 

so that for the purposes of writing results finally we have symbolic representation 
-q log q for g0(q) and o0(l) = 0. 



3. CHARACTERIZATION 

Theorem. The axioms (l) to (4) determine the measure, which for a probability 

distribution P = (pu ..., p„), pt >. 0 ,Y,Pt — L is given by 

i^i)-_._( / . ) ] 
(3.1) H(

n"
0 " ' : 9 ° g'\pu ...,Pn) = £-2 Uzl > 

Z^[2« r(i)- 9,(1)] ' 
t = 0 

where 

(3-2) g,(pq) = gt(p) g,(q) 

for t = 0 ,1 ,2 , . . . , / . 
Before proving the theorem, we prove, in the lemmas below, some intermediary 

results based on the above axioms. 

Lemma 1. If vk >. 0, k — 1, 2, . . . , m ; £ vk — pf > 0 then 

k= 1 

(3.3) ff <?£•_««*' 91)(- ». • • . . . i - i , .- • • • .«_ . p i + „ • • -, p.) = 

_ H(„.....-,«....rfI)(Pij..., Pn) + i ^ ^t(Po / C - » (V-I ,..., vA. 
t=0 \Pi Pi/ 

Proof. The result will be proved by induction. The statement clearly holds for 
m — 2, in view of axiom (iii). Let us suppose that the result is true for integers less 
than or equal to m. We have 

tfft0;"-"'*0'""''^., • • . , _ , - , , f „ . . . , i W i , . « . i , . . . , * „ ) - » 

= H<7r'" ' ; 9 0 ' " ( f t , • • -, P . - l , »,, !- P.+ 1. • • ;Pn) + 

+ IK9AL) &<*(*,*,...,*-**), 
t = o \L L L J 

where L = v2 + v3 + . . . + vm+i > 0 . Hence 

_*.?;••*«*» 9'\Pu • • ;Pi-l,Vu • • -, Vm + U Pi+U . . . , - „ ) -

_ H(„.....„i„,...^1)(pi) ..., Pn) + J>, </,(>.) --_ ",,) ( - . - ) + 
' = 0 \ P ( P i j 

where p,- = u, + L < 0 . 



In view of (3.2), the terms in the two summations on the right are 

or 

t = o \pt p.. pi J 

as from (2.11) it is easy to prove (see Taneja [8]) that 

(3.4) 

H^ (* , • • •. M = H<^ (-- ,k) + gt (k) _?.-*> (h. , . . . . 5_L 
\Pi Pi / VPi P./ \P i / \ L L , 

Thus the result is proved by induction. Now by repeated application of Lemma 1, 
we have 

Lemma 2. If vtJ _ 0, j = 1, 2, . . . , m;, £ u;j- = p ;, i = 1, 2, . . . , n, ]T pt = 1, 
then J = 1 i = 1 

(3.5) H f c - ^ ° ; - f >(yi ., i>12, ..., ».„,, ...,»„.,..., O = 

= -#• ":*"-">(p1,..., P„) + £ pt £ 0.0.) I!;rt( f - . • • •, ^ V 
( = 0 i = l \ P i Pi J 

Next let 

(3.6) ғ(я) = нţ! _ ŁJ(ДO,...,PI;<;O.-..,ЯI) 1 1 

The value of E(«) is given in Lemma 4 below. However we shall need the following 
result due to Taneja [9]. 

Lemma 3. If 

then 

(3.7) 

where 

F^\n) = l\gt(l)-ngt(k\ 

A-J> ([ff t(l)-iťř,(i)I. 



Lemma 4. The function F(n) defined in (3.6) is given by 

(3.8) F(n) = KiJg,(l) - ng.f^jl, 

where 

(3-8) I-= [ E f t { 0 , ( l ) - 2 0.fi)}]-1. 
(=0 

Proof. In the result of lemma 2, replace mt by m and set vtj = \\mn, i = 1, 2, . . . 
. . . , n, j = 1, 2, . . . , m, where m and n are some positive integers. This, using 
symmetry, gives 

(3.10)" F(mn) = F(n) + n £ / . , a, (-) F^'\m) , 
r=o \nj 

(3.11) F(mn) = F(m) + m^ntgt (±\ F(""fl,)(«) . 
r = o \m/ 

Putting m = 1 in (3.11) and using the fact that F(l) = 0, (from (2.9)), we get 

(3.12) F(n) = intgt(\)F^'\n). 
1 = 0 

Expressions (3.12) and (3.7) prove the result (3.8). The value of K is determined 
by (2.8). 

This completes the proof of lemma 4. 

P roo f of the Theorem. We next prove the theorem for rational numbers:the 
result, in general, then follows for real numbers for continuity axiom (ii). So let 

rtjm = pt where rt = 0 and m > 0 are integers, £ r{ — m, i = 1, 2, . . . , « . By 
Lemma 2 we have 1 = 1 

F(m) = H%° "'•<><> "> (~ , .,., - , ..., ±-, .. „-) -
\m m m mj 

ri r„ 

= Hf° '«• " ^ i . ••-,?») + 2 > . I ff.fo) <''''> f 1 , •••>1N) 
t=o ;=i V . r . / 

or 

(3.13) H^ -«• '"(p., ..., p„) = E(m) ~ I > , £ ff.(Pi) ̂ " " V . ) • 
r = 0 i = l 

where 

(3.14) F(rt) =H?;-g<) (-,..., - Y 



Expressions (3.13) and (3.8) give 

Ieo,-"";9° " W • -,A) = *£o4*.(-) -m p. (-)" -

-Ki^tigt(pt)[gt(i)-rigt(^' = 

-4AH-w"(^)-^+sr'-(S" 
-KMt*.(pO-*(-)]> 

1 = 0 . . . 

where K is as determined earlier. 
This completes the proof of the theorem. 

Particular Cases 

(i) If we take fi0 + 0 and all other /x's = 0, then (3.1) reduces to 

£ 0o(p,-) ~ fifo(l) 
(3.15) Hf°\Pl, ...,p„) = ^ 1 — — = - S p , l o g P j , 

2 0o(i) - 0o(l) «-i 

what is Shannon's entropy. 
As explained earlier, here we have used symbolic representation explained in (2.16) 

according to which in the final result we have 

9o(Pi) = ~Pt log Pt, 

0o(l) = 0 . 

(ii) Next take p.1 = n + 0, and other /t's = 0. If we take gi(pi) = pi, oe > 0, a 4= 1, 

then (3.1) reduces to Havrda - Charvat entropy given in (2.15). 

(iii) Also if we take fi2 = 2, /i3 = —2 and all other /.'s = 0, g2(p,) = p*, #3(P() = 

= p\, then (3.1) reduces to entropy of type (a, /?) (refer [6]) 

Hn(Pu...,pn;z,fi) = (2i-*-2^)-ii{pai-p°i), 
i = i 

a * j?, a, #9 > 0 . 

4. FUNCTIONAL EQUATION 

Given a complete probability distribution P = (pu ..., pn); pt _ 0, J] p ( = 1 
( = i 

of a discrete finite random variable X = (xx,x2, ..., xn), let the generalized entropy 



374 be taken so as to satisfy the axioms given in Section 2. Applying branching property 
for n = 3, and writing generalized entropy with several parameters fi's and functions 
g's obtained earlier as simply H„(pu ..., pn), we get 

(4.1) H2(Pl + p2, p3) + i n , g,(Pi + Pi) Bt"* (-2L— , -&—) = 
r = 0 \ P l + p2 p. + p2J 

= H2(Pl + p3, p2) + i n, g,(Pl + p2) Bfit"» (~^~ , — ^ — ) • 
r=o \pt + p3 Pl + p3J 

Let us define 

(4.2) f(x) = H2(l - x, x) , 

(4.3) / ("'9t )(x) = H2
fl"g'\l - x, x ) . 

So that setting p3 = x, p2 = y and px + p2 + p3 = 1 the relations (4.1), (4.2) and 
(4.3) lead to the functional equation 

(4.4) 

/(*) + i ft 9,(1 - *)/(*"9t) ( - M = /W + i ft ft(i - j')/°"'9t) (V-M • 

,=0 \1 — Xj r = o \ 1 - yj 

From the symmetry of measures in (3.1) and (4.3), (4.4) we also have 

(4.5) / ( x ) = / ( l - x ) , 

(4.6) / (""9t)(x) = f<J"-<»\l - x ) . 

Further, expressions (4.6), (4.5) and (2.9) give the boundary conditions 

(4.7) / ( l ) = / ( 0 ) = 0 , 
(4.8) /0"~u )(l) = f""9t)(0). 

The measure Hn"
0'-•",;9° 9 , )(pi, ...,pn) for P may now be defined in terms 

of the solutions of (4.4), (4.5), (4.6) when (4.7) and (4.8) hold, as 

(4.9) Hi"" "-» 0'\pu ...,p.) = E f t Z f f , ( s , ) / f - V 

where st = px + p2 + . . . + pt and g satisfies the equation 

(4.io) g,(pq) = g,(p)g,(q) 

(c.f. Daroczy [3] (1970)). Detailed studies in this direction will be reported in a forth
coming paper. 

(Received March 28, 1978.) 
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