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On Nonblocking and Rearrangeable 
Communication Graphs 

JUHANI NlEMINEN 

Strictly nonblocking, widely nonblocking and rearrangeable communication graphs are 
characterized by means of graph homomorphisms based on Zelinka's tolerance relations on 
graphs. Channel-regular w-stage communication graphs are considered and some remarks for 
reducing such graphs are given. 

1. INTRODUCTION 

The purpose of this paper is twofold: We shall first characterize rearrangeable 
and nonblocking communication graphs by means of homomorphisms between 
graphs. Benes has formerly characterized nonblocking communication graphs by 
means of semilattice mappings; the characterization here develops Benes' results 
[1, 2] further. Secondly we shall consider constructing of communication network 
from the point of view of graph and lattice theories. In [7] Waller presented a graph-
theoretic way of constructing n-stage communication graphs, called the fibred product 
of graphs. An n-stage graph is determined by three kinds of graphs: channel, terminal 
and path graphs. In fact we shall try to determine some properties of channel and 
terminal graphs when the corresponding n-stage graph is nonblocking. This is done 
by studying relations between the state semilattices of the n-stage graph and of 
terminal and channel graphs. As stated by Cattermole and Waller [3, 7], a wide 
class of communication graphs consists of regular n-stage graphs. This motivates 
the restriction to a narrow class of graphs here. 

We shall first introduce the concepts and notations used here as briefly as possible. 
Secondly we give the characterization of rearrangeable and nonblocking graphs, and 
thereafter we finally consider interconnections bstween the state semilattices of an 
n-stage graph and its channel and terminal graphs. 



2. BASIC CONCEPTS AND DEFINITIONS 

By graph we shall mean an undirected connected graph G = (V(G), E(G)) without 
loops and multiple edges. Given any two graph projections p, : G, -» G3 and 
Pi '• G2 —> G3, we define their fibred product to be the projection p : G, 0 G2 —> G3, 
where G, o G2 has the vertex set V(G, 0 G2) = {(t>,, i>2) e V(G,) x V(G2) : p,(i>,) = 
= p2(f2)}, with adjacency (»., u2) ~ (t>i, i>2) whenever u, is adjacent to r, in G, and 
v2 to f2 in G2. p is defined by p(u,, v2) = p,(t>,) which equals p2(v2). The projections 
of fibred products are homomorphisms generated by tolerance relations on graphs; 
for tolerances and homomorphisms see Zelinka [8] and Nieminen [4], respectively. 

An n-stage graph G is a graph witn a projection p onto the path graph Pn (the 
path of length n). Denoting the vertices of P„ by uuu2, ..., u„, we call the set 
p _ 1 (u r ) the rth stage, r = I, ...., n. Vertices constructing the 1st stage are inlets and 
those of the nth stage are outlets. The subgraph of G consisting of all paths of length n 
from an inlet t>. to an outlet v„ is called a channel graphs C(vu vn). An n-stage graph 
G is called channel-regular, if the channel graphs of G are all isomorphic. 

A terminal graph is a channel-regular n-stage graph with the connectivity equal 
to 1, Besides Waller [7] and Cattermole [3], channel-regular n-stage graphs are 
considered also by Takagi [6]. In [7] Waller characterized channel-regular n-stage 
graphs as follows: 

Lemma 1. Let C be an n-stage channel graph and T an n-stage terminal graph 
with r inlets and s outlets. Then the fibred product p : C 0 T -> P„ is a channel-regular 
n-stage graph with r inlets and s outlets. Further, every channel-regular multistage 
graph can be uniquely expressed as the fibred product of a terminal graph and a 
channel graph. 

With any Hasse diagram of a finite semilattice L one can associate two kinds 
of directed graphs: one where the edges are directed downward and one where the 
edges are directed upward. There is a homomorphism a between two digraphs D, 
and D2 of r-type, if the vertices V(D,) can be divided into vertex disjoint classes 
C,, C2, . . . , C„ such that: 

(i) If jc, y e C, then Tx n C, * 0 if and only if Ty n c, 4= 0, i * / , and Tx n Ct = 
= 0 for each i. 

(ii) The vertices of D2 are the classes C,, . . . , C„ of Du and there is a directed 

edge C,., Cj e E(D2) if and only if for some x e C, in D, it holds: Toe n C, * 0. 

This is the directed version of the homomorphisms of graphs based on tolerance 

relations on graphs introduced by Zelinka in [8]. 
A state x of a channel-regular n-stage graph G is a set of disjoint paths of length n, 

each path joining an inlet to an outlet. The set of the states of a G is partially ordered 
by the set inclusion :£>, where x :g y means that the state x can be obtained from the 
state y by removing zero or more calls. S is a meet-semilattice where A coincides 



with the set intersection and where x v z exists whenever there is a state y = x, z. 361 
As the states of G consist of sets of pairwise disjoint paths, then, if y = x, there is 
a state z e S such that y A Z = 0 and z v y = x. The least element of S is the empty 
state. 

An assignment is a specification of what inlets should be connected to what outlets 
in the G under consideration. Thus the set A of assignments represents of all fixed-
point-free correspondences from the set of inlets to the set of outlets of G. The set A 
is partially ordered by the set inclusion, whence it is a meet-semilattice with the empty 
assignment as the least element. There is a natural map y : S ~* A which takes each 
state x 6 S into the assignment it realizes. The mapping y of S into A has the following 
properties: (i) x = y => y(x) = y(y): (ii) x = y => there is a state z e S such that 
z A y = 0, y(y) A y(z) = 0 and y(z) v y(y) = y(x); (iii) y(x A y) ^ y(x) A v(y); 
(iv) 7(x) = 0 => x = 0. 

Not every assignment need be realizable by some state of S. It is common for 
practical networks to realize only a small fraction of the possible assignments. 

A subset I c S i s said to have the intersection property if and only if for every 
x e X and every a e A there exists y e X such that y(y) = a and y(x) A y(y) = 
= y(x A y). The following results derived by Benes [2] illuminate the concepts of 
non blocking. 

Lemma 2. A communication graph G is nonblocking in the wide sense if and only 
if some subset X <= S has the intersection property. 

Lemma 3. A communication graph G is strictly nonblocking if and only if S has 
the intersection property. 

If u is not a member of the inlets of a state x and v not in the outlets of x, the pair 
(u, v) is called an idle pair of x. G is called rearrangeable, if for any x e S of G and any 
idle pair (u, v) of x there is a state yeS such that y(y) realizes the assignment y(x) v 
v {(«, v)}, i.e. y(y) = y(x) v {(u, »)}. 

3. A CHARACTERIZATION OF COMMUNICATION GRAPHS 

We characterize first rearrangeable graphs by means of graph homomorphisms. 

Theorem 1. Let G be a given channel-regular n-stage graph, S and A its semilattices 
of states and assignments, respectively, and y the mapping S -* A. G is rearrangeable 
if and only if y is a r-type homomorphism: Ds ~* DA and y(£>s) = DA, where Ds 

and DA are directed graphs obtained from the Hasse diagrams of S and A by directing 
their edges downward. 

Proof. The proof is valid also for communication graphs, where the intersection 
of inlets and outlets is the empty set. 



Let y be J-type homomorphism: Ds ~» DA and y(Ds) = DA. Assume that (u, v) 
is an idle pair of a state x 6 S. Then y(x) v {(u, v)} e A, and as y(£>s) = DA, there is 
a state y e S such that y(.y) = y(x) v {(u, v)}. Hence G is rearrangeable. 

Let G be rearrangeable. If y(x) e A and if (u, v) is an idle pair of x, then y(x) v 
v {(u, i>)} e A, and there is a state yeS such that y(y) = y(x) v {(u, t>)}, as G is 
rearrangeable. By putting x = 0 (the empty state) and by applying the step reported 
above, one can show that each assignment is the image of a state of G under the 
mapping y, i.e. y(Ds) = DA. 

Let us consider y(x) 6 A. Each element y e Tx in Ds is obtained by removing a path 
from x and this means the removal of the corresponding pair from y(x). Also conver
sely, each vertex b eT y(x) in DA is obtained from y(x) by removing a pair from y(x), and 
as x realizes (yx), there is in x a path for any pair of y(x). Thus there is a one-to-one 
correspondence between the sets Ex and f y(x), and this holds for any state zeS with 
the property y(z) = y(x). The classification C,, . . . , C„ of the vertices of Ds, where 
x, y e C; o y(x) = y(y), and y(x) =# y(y), if x 6 C„ ye Cj and i #=;, is clearly a classifi
cation satisfying the demands of a f-type homorphism between D s and DA. In this 
homomorphism Ct = y(x), when x e C;. Hence y is a t-type homorphism: Ds -> DA. 

Theorem 2. Let G be a given channel-regular n-stage graph, S and A its semi-
lattices of states and assignments, respectively, and y the mapping S -* A. G is 
strictly nonblocking if and only if G is rearrangeable and y is also a f-type h6mo-
morphism: Us -> U^ and y(Us) = UA, where Us and UA are directed graphs obtained 
from the Hasse diagrams of S and A by directing all their edges upward. 

Proof. The proof is valid also for communication graphs, where the intersection 
of inlets and outlets is the empty set. 

Let G be strictly nonblocking. As shown in [1, Section 2 : 10], if G is strictly 
nonblocking, it is also rearrangeable, and thus it remains to show that y is a f-type 
homomorphism: Us -» UA. Because V(DS) = V(US), V(DA) = V(U,,), and y(Ds) = 
= DA, also y(Us) = UA holds. 

Let us consider a state x e S. All the vertices Tx in Us are obtained from x by 
adding an idle pair (u, v) of x to x. This corresponds to the adding of a new pair 
{(u, v)} to y(x), and all the vertices y(x) v {(u, v)} belong to the set T y(x) in UA. 
Hence for any vertex of Ex in Us there is a vertex of E y(x) in UA. On the other hand, 
if b e r y(x) in UA, it means that there is a pair {(u, v)} not present in y(x) and hence 
(u, v) is an idle pair of x. As G is strictly nonblocking, there is a state y > x in S such 
that y(y) = y(x) v {(u, v)} [ l , Section 2 : 10], and as y > x, it is obtained from x 
by adding a path joining u and v in G and being disjoint from those in x. Thus y e Tx 
in Us. Hence there is a one-to-one correspondence between the vertices of the sets 
Ex and E y(x) in Us and UA. As above, the classification Cu ..., C„ of the vertices 
of Us, where x, y e Cto y(x) = y(y), and y(x) 4= y(y), if x e Cu ye Cj and i 4= j , 
is a classification satisfying the demands of a f-type homomorphism between Us 

and UA. This homomorphism is y. 



Conversely, let G be rearrangeable and y satisfy the properties of the theorem. 
Let x e S and a e A. a determines a class C; = {z | z e S and y(z) = a} of D s and 
Us being a class under /-type homomorphism y : Ds -> DA and Us -> UA. As A is 
a meet-semilattice, a A y(x) exists, and according to the properties of semilattices, 
there is a shortest path P, between y(x) and y(x) A a, and P 2 beetwen a and y (x) 
A a (P, and P 2 are not necessarily unique) in the Hasse diagram of A. As y is a 
/-type homomorphism Ds -> DA, there is a downward directed path from x to vertex 
w in Z)s such that y maps the vertices on this path onto the vertices on P, in DA 

and in particular, y(w) = y(x) A a. As y is a /-type homomorphism Us -> UA, 
there is an upward directed path from w to a vertex y in Us such that y maps the 
vertices on this path onto the path P 2 in UA, and thus y(y) = a. According to the 
definition of the /-type homomorphifms and as P, and P 2 are shortest possible 
paths in the Hasse diagram of A, y A X = z in S, and thus y is an element of S 
satisfying the demand y(y A X) = y(z) = y(x) A a — y(x) A y(y). Hence S has 
the intersection property and consequently (Lemma 3), G is strictly nonblocking. 

Theorem 3. Let G be a given channel-regular n-stage graph, S and A its semi-
lattices of states and assignments, respectively, and y the mapping S -> A. G is widely 
nonblocking if and only if G is rearrangeable and there is an induced subgraph H 
of Us such that y is a /-type homomorphism H -> UA and y(f/) = UA, where Us 

and UA are defined like in Theorem 2. 

Proof. The proof is valid also for communication graphs, where the intersection 
of inlets and outlets is the empty set. 

Assume that there is an induced subgraph H of Us such that y(H) = UA and 
y : H ~> UA is a /-type homomorphism. As y(H) = UA, H is an induced subgraph 
of Us, and as y : Ds -> DA is a /-type homomorphism, the vertices V(H) induce 
in Ds a subgraph DH such that y(I>H) = DA and y is a /-type homomorphism DH -> 
-» DA. According to Theorem 2, V(H) £ S is then a set having the intersection 
property, and thus G is widely nonblocking. 

Conversely, let G be widely nonblocking. Benes' results (Lemma 2) imply the 
existence of a set X ^ S having the intersection property. Moreover, as shown 
in [2, Lemma l ] , when X has the intersection property, then also the set 
X ~ {y | y e S and y rg x for some xeX} has the intersection property. According 
to [2, Theorems 4, 5 and 6], there is a strictly nonblocking graph having X as its 
state semilattice and realizing the assignments A of G. This shows that the elements 
of X induce a subgraph of Us having the properties of the theorem. 

In the undirected case Zelinka [8] has derived a matrix criterion for tolerances 
and the corresponding homomorphisms [5]. We hope that the directed version 
of this matrix criterion would offer a design tool when designing communication 
graphs which are rearrangeable or nonblocking. 



4. n-STAGE CHANNEL-REGULAR GRAPHS 

Let T= (V(T),£(T))and C = (V(C),E(C)) be the given terminal and channel graphs 
of an n-stage channel-regular communication graph, respectively, and let the corre
sponding sets of states be ST and Sc. In Sr the empty state is the least state of T and 
the other states consist of pairwise disjoint paths of T having the length n between 
an inlet and an outlet; two paths are disjoint if they have no common vertices. If 
x, y e ST, x A y consists of paths contained in x and y. We define Sc so that there 
is no least element and the states of C consists of pairwise limitedly disjoint paths 
of C having the length n and joining the inlet and the outlet of C. Two paths of C are 
limitedly disjoint if they have no common vertices except the inlet and the outlet. 
If x, y e Sc and x A y exists (i.e. x n y #= 0), x A y consists of paths contained 
in x and y. 

Lemma 4. Let T and C be the terminal and channel graphs of a given channel-
regular n-stage graph G and Sr, Sc and SG the corresponding sets of states ordered 
by the set inclusion. Then G = T0 C and each path PG of G is the fibred product 
of corresponding paths PT and P c in Tand C : PG = P 7

 0 P
c . Moreover, two paths 

PG = p T
 0 p

c and PG = PT
 0 P

c belong to the same state of G if and only if either 
(i) or (ii) holds: 

(i) P\ and PT are disjoint, 

(ii) P c and P2 are limitedly disjoint, vtl =t= vi2 and t>„i + vn2, where vn and vnl 

are the inlet and the outlet of PT, and vl2 and vn2 those of P\. 

The proof follows directly from the definition of the fibred product and the fact 
that G = To C. 

It is now possible to determine also SG as a product of Sr and Sc; the least element 
of SG is the empty state. 

Theorem 4. Let T and C be the terminal and channel graphs of a given channel-
regular n-stage graph G. xe SG if and only if there are different states tt. ..., tm e Sr, 
y l 5 . . . yke Sc,andanord3ringof the paths in the s e t ^ = {Pc, ..., P c} of all the paths 
of the states yu ..., yk such that {rt o Pc} u {t2 0 P

c} u . . . u {tm „ Pm} constitutes 
a set of pairwise disjoint paths of G, where {t;PoC} = {Pjr o Pc \ P]r is a path 
of the state tj of T},j = 1, ..., m. 

Proof. If {ft o Pc} u . . . u {tm o PC} contains only pairwise disjoint paths of G, 
it is a state of G. Let, conversely, x be a state of G, i.e. a set of pairwise disjoint paths 
of G of length n from an inlet to an outlet. As G = To C, each path in x is a fibred 
product of the type PT o P c . Thus the paths in x can be divided into classes according 
to the path P c in the product PT o P c : a class has the form 10 P c , where t consists of 
paths in T. As x is a state, the condition (i) in Lemma 4 implies that t is a state of T. 
Clearly the paths P c can now be grouped into states of C, and the theorem follows. 



Let au ..., am be all the maximal assignments of G in AG and 3PT and SPC the least 
families of paths in Tand C, respectively, needed to realize the assignments au . . . 
. . . , am; the states of SG realizing au ..., am are made up by the paths in 0>T and 0>c 

as reported in Theorem 4. Remove all the edges not belonging to the paths of 0>c 

from C and denote the resulting reduced graph by Cr; the reduced graph Tr is obtained 
analogously. Then already the communication graph Gr = Tr 0 Cr has a set S of 
states realizing all the assignments au ..., am e AG as Tr and Cr contain all the paths 
needed to realize au ..., am. As a set of states in S realizes all the maximal assign
ments of AG, there is consequently at least one state s e S realizing an arbitrary 
assignment a, a < at for some at, i = 1, . . . , m. Thus Theorem 4 offers a way 
of reducing the number of edges in C, Tand consequently in G. 

If there are at least m states, s,, . . . , sm in S of a communication graph G realizing 
all the maximal elements au ..., ame A of G, then, as s e S is a set of paths and 
a e A is a set of pairs, y maps each path from st to 0 in Ds onto a path from a, to 0 
in DA, i = 1, . . . , m. Hence y is a f-type homomorphism Ds -> DA, y(Ds) = DA and 
G is rearrangeable. Thus each graph Gr obtained by reducing Tand C is rearrangeable. 

Let S be the state semilattice of the reduced Gr, y(Ds) = DA, y a f-type homo
morphism Ds -» DA, and let su ..., skeS be all the maximal states of S. If y maps 
each maximal element Sj of S to a maximal element at of A, then Gr is strictly non-
blocking. According to Theorem 2, it suffices to show that y is a Mype homomorphism 
Us -> U4- This property of 7 follows from the facts that y(-Ds) — DA, y : Ds -> DA 

is a f-type homomorphism, and y maps each maximal element Sj of S to a maximal 
element at of A. Thus the reduction offers also a way of obtaining strictly nonblocking 
graphs, if such exists. 

(Received October 25, 1977.) 
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