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Suboptimal Control on Finite Time Interval

ZDENEK VOSTRY

In the paper an algebraic approach to the numerical computation of suboptimal open-loop
control on finite time interval is developed. The linear time-invariant continuous system with
known transfer functions are considered.

INTRODUCTION

Some optimal control problems can be considered as finite time problems. In this
paper only linear time-invariant continuous systems are considered and hence their &
transfer functions are rational.

Our problem can be formulated as that of finding the best approximation g(r)
of the given impulse response f(7) in the following sense:
the integral

j ") - o0y at

o

is minimized subject to the conditions

L(f(@) = vls)fals),
2(9() = x()/As) »

dv < dp, 0x <dy,

where v, p and x, y are polynomials and dv, dp and dx, dy are their respective degrees.
For example an approximation of the high order .# transfer function by a low
order one may be needed. Assuming the impulse response g(t) partially predetermined
by the system with transfer function bja, Z(g(t)) = bx[(ay), the problem can be
described more generally as that of open-loop control.
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Consider the open-loop control system in Fig. 1, where

& is a realization of the transfer function b(s)/a(s), o
u(t) — input signal with & transform x(s)/y(s),

f(t) — reference signal with % transform o(s)/p(s),

e(t) — error signal,

then for any given dy we can find an input u(¢) such that fg *(r) d is minimized.

U

Fig. 1.

Problem formulation:

Let an integer K and polynomials b, a and v, p be given such that db < da, dv < dp.
Find the polynomials x, y such that dy = K, dx < dy and the following integral

[ 0 sty a
o
is minimized for R

The solution of this problem is complicated due to finite T.

To begin with we introduce same special notation and operations which are more
precisely described in [1] and [2]. The mathematical background is the congruence
of analytic functions modulo a polynomial.

Consider a polynomial m(s) = my + ms + ... + my,s’™ with real coefficients
and degree dm > 0. Then the set .# = {s : m(s) = 0} is called the spectrum of the
polynomial m.

Let functions f, g be analytic on .#. Then f, g are congruent modulo m, written
f = g mod m, if there exists a function h analytic on .# such that f =g + hm.

For any function f analytic on .# only one polynomial r exists such that

om

1) f=rmodm, dr<ém.

The polynomial m is called the modulus. The operation which yields such a poly-
nomial r is called the reduction of f modulo m and it is denoted as

(2) [f]m =r.

Denote &, the set of all functions analytic or having at worst removable singularities
on ./#.



PROPERTIES OF REDUCTION MODULO m

Let a modulus m, dm > 0, and function £, g € &#,, be given. Then for [f], = a,
[g]m = b and any complex number A the next equations hold:

©) [F+aln=[fln+[gln=a+b,
@ (M]n = 4[f]. = 2a,

(5) [f91n = [[f1n [g1n)m = [ab]a
(5)) if f/ge?/',,, then

-
9dn  LI9Tmtm im
If the function f is a polynomial then the reduction of f modulo m produces the
remainder after dividing f by m. Procedures for the computation of [f],. for the
functions In (s), e*, /s, s* with k real, and for bfa, b . a with polynomials a, b are
described in [1].

Now we introduce a new operation

) <S[—£-]—“\ = lim 1%1 Z Gy

ax

s Rindes] ’
where k = da
[f]u = Co 8+ . A Gyt

and the subscript s denotes the variable with respect to which the operation <. )
is performed.
The next Theorem is proved in [2].

Theorem 1. Let polynomials b, a, éb < da, with real coefficients be given. Then
the inverse Laplace transform of b/a denoted as ¢~ '(b/a), is the real-valued function

£(t) given by

®) | 1) = < b ]>

and furthermore

s = <i [s' es'],> L i=12...
a s

dr’

EVALUATION (7 £(1) g(¢) dt

The basic formula of this paper is in the following Theorem.
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Theorem 2. Let polynomials b, a, v, p, 3b < 8a, dv < dp be given. Denote f(t) =
= £~ (bja), g(t) = £ *(v|p) then

©) = f 1) o) d = < [b ,;IPQD _

Gl

where i(s) = v(—s), b(s) = b(—s).

Proof. Using Theorem 1 and the linearity of the operation <.), we can write

- fea).

T po o0
f e g1) dt = J e (i) di — f ¢ g(t) dt
0 o

T

It is evident that

and [ ¢ g(r) dt = §/p by definition of & transform.

By Theorem 1
S G
o) = <— [o ]>
p s

o+ 9= ere) = (e, <) .

s

and

Hence

00 o 5 a—sT
J e g(f)dt = e‘Tf e g(T + 7)dt = &7 ) € I
p

T o

and the proof is complete. Considering f(f) = £~ *(v/p), g(t) = £~ '(bla) the
second formula follows.

Remark. The computation of the formula (9) can be rearranged in the following
way. Denote

(10) e ], =x,
then dx < dp + da. Use division algorithm for x/ P, then
(11) x=pqg+r, or<dp

and
1= f 1) () de = <‘ [b « _—_pLJ_D - <S£ v eﬂ"]">.‘



MINIMIZATION PROCEDURE

AO:M”(%>,KG=$”<3,

1= r(f(;) — g dr.

Denote

and

Assuming the polynomials a, ¥, p in normalized form, a,, = 1, ¥, =1, p,, = 1

we can write
_ /S rast
10 = (510,) -

o0 = (s [0 -

From the problem formulation the next formula follows.
r -
(12 165:3) = [ 010~ ofo)? a1
[
Using the variation approach the condition for minimizing {12) is given by

(13) o - 2fr(f(t) — g1 a(t) ds = 0

0

for any variation of g(r) which is given as

g(t)y =21 (llﬁ - b'\; 5_\/).

ay ay”

Hence using Theorem 2

2]

s

(14) ol = <¥17 [box(F — )]ny>s - <Zfl_2? [bxy(F — 6')]”2> -0,

for all 6x, dy, where

_ T — e+ST[e—xT L—]ﬁ
1

F -
5

G ¥ — e Thx]y
ay

>
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Since
Ox = 0xg + s6x; + ... + 577 6xp_,,
3y = 8y + 0y, + ... + sV 6y,
Yoy =1
the equation (14) may be written as a set of conditions

ol . ; . ~
(19) Zenp = (g e - o) —o,

ox; s

o _ 5 sbx(F — G -
. =19 = <s‘éﬁié} [sox(F — G)],,yz>' =0,

i=01,...,0y —1.
To solve these nonlinear equations we use Newton'’s iteration method in the form
(16) ' IP + 61 =0, for i=0,1,...,0y — 1,
I + 819 =0,

where 81, 61$? denote variations of 1{", I” with respect to dx, dy.

Note that the application of Theorem 2 to equations (15) gives

zw=fvm—amWMM—0,

o

where ) = £~ Y(s'H), H = bfay
and similarly

T
= J (F()) — a(6) V() de = 0,
Q
where
) = 2(s’c), €= 2%,
ay
Hence

o1 = fr((f (1) — 9(1) 8 K1) — K1) 6 g(1) dt,

SIS = j ") = 9(0) 5¢9(t) — <P(1) 8 g(1)) a1,

)



where
5 () = 2! (~ sk §y>,
ay?
5 = 2 s'hox ) s'bxdy ’
ay? ay?
' 1 [bdx  bxdy
Sg(ty=2" ' [— - .
o) = (1 22
Define .
B = b(=s)' — eT[e™(=5)' Bly
ay ’
W = bi(—s)' — eT[e™*Thx(—5) ]y
ay?

and the elements of the matrices 4, B, C, D of the dimension dy x dy in the following
way.

(17) - < S [bIAo, >

Biiyjer = <Sﬂn+za [bxs Hm] > < da+ 20y [bS'“( - (_;)]ay1> ’
5 s s

Ci+1,;+1 = B}+1,:+1 >

D““J“ = <san+3ay [stlH(F - G)]ﬂy’> - < 20+ 23y [bxs’C(”]ny;> 4

i=01,..,9y—1, j=01,. ,0y—1.

Using Theorem 2 it is simple to prove that 4, D are symmetric matrices.
Using the matrix notation

WY =10 1, nxy) =[5 |
{(11) I(zl)
Jray @0

X=1x0 |, Y=|po |, V=1,
Xy Y1

Xay—1 Yoy-1
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. 238 then
(18) 6Jy = —A8X + BOY,
6J, = B'6X + D§Y.

Let us point out that I can be computed as
=2 [s'6F],, Y — 2 [6xH®]
L. soatoy ay SPatoy X oy ) 2
o S i
19 = <;s+—e, [s bF],,y>

and I$? corresponds to the second term in the formula for B, ; ;. Hence in our itera-
tion process, we can define for given Y the optimal X by

ay—1
- Z Aiv s ge1%;
i=0

(19) X=4717,0,7).
Substituting (19) into (18) and using Newton’s formula
— A8X x BdY =0,
J, + B'SX + DSY = 0
we obtain
8Y= —~(D+ BA™'B)"' J,.
Now we summarize the iteration algorithm.
(1) Start from initial condition y = s%.
(2) Compute optimal X given by X = 47'J,.
(3) Compute the value Y = Y + Y, where
8Y= ~(D + BA™'B)™* J,.
(4) If the n-th iteration and the (n-1)-th iteration are not sufficiently near go to (2).
(5) Print results.
This algorithm was programed and tested on IBM 370/135 computer using PL/I
language.
Example 1. Consider the reference signal f(t) = £~ (v/p),
where
v = 0:03387 — 0-06093s5 — 1:1634s> — 0-43164s® + 8:6775s* —
— 95255 + 0-9898s° + 1:5379s7,



p = 001129 - 0:03329s — 1:1056s + 5822135 — 1-77933s* — 239
— 6:369525° + 1-976855° + 57 + 0-5s%,
and the system transfer function b/a, where
b=1,
a=1+02s + 0042 .
Find polynomials x, y such that dy = 3 and the integral
s bx
J‘ (f(t) — g(1))* dt, where - g(1) = £* (-) s
0 ay
is minimized.
The result is obtained after five iterations in the form
x = 0-8023 — 1:225s + 0-1849s%,
y = —0:01124 — 0:007296s — 0-0006085% + s .

The functions f(t), g(t) are plotted in Fig. 2.

~ o
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Fig. 2.

Example 2 Consider the transfer function »/p as in Example 1. Find a 3-order
approximation of this transfer function such that the integral

f () = 6P dt, where 4(5) = £ 1(xJy)

is minimized. The solution is similar as in the previous Example, but b = 1, a = 1.



240 After five iterations we obtain the result

x = 069452 — 123765 + 0-5877s%,
y = 0-6626 — 0-6487s — 1-011s> + s° .

The function §(t) is plotted in Fig. 2.
(Received December 6, 1978.)
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