Suboptimal Control on Finite Time Interval

Zdeněk Vostrý

In the paper an algebraic approach to the numerical computation of suboptimal open-loop control on finite time interval is developed. The linear time-invariant continuous system with known transfer functions are considered.

INTRODUCTION

Some optimal control problems can be considered as finite time problems. In this paper only linear time-invariant continuous systems are considered and hence their \mathscr{L} transfer functions are rational.

Our problem can be formulated as that of finding the best approximation $g(t)$ of the given impulse response $f(t)$ in the following sense:
the integral

$$
\int_{0}^{T}(f(t)-g(t))^{2} \mathrm{~d} t
$$

is minimized subject to the conditions

$$
\begin{aligned}
& \mathscr{L}(f(t))=v(s) \mid p(s), \\
& \mathscr{L}(g(t))=x(s) \mid y(s), \\
& \partial v<\partial p, \quad \partial x<\partial y,
\end{aligned}
$$

where v, p and x, y are polynomials and $\partial v, \partial p$ and $\partial x, \partial y$ are their respective degrees. For example an approximation of the high order \mathscr{L} transfer function by a low order one may be needed. Assuming the impulse response $g(t)$ partially predetermined by the system with transfer function $b / a, \mathscr{L}(g(t))=b x /(a y)$, the problem can be described more generally as that of open-loop control.
\mathscr{S} is a realization of the transfer function $b(s) / a(s)$,
$u(t)$ - input signal with \mathscr{L} transform $x(s) \mid y(s)$,
$f(t)$ - reference signal with \mathscr{L} transform $v(s) / p(s)$,
$e(t)$ - error signal,
then for any given ∂y we can find an input $u(t)$ such that $\int_{0}^{T} e^{2}(t) \mathrm{d} t$ is minimized.

Fig. 1.

Problem formulation:

Let an integer K and polynomials b, a and v, p be given such that $\partial b \leqq \partial a, \partial v<\partial p$. Find the polynomials x, y such that $\partial y=K, \partial x<\partial y$ and the following integral

$$
\int_{0}^{T}(f(t)-g(t))^{2} \mathrm{~d} t
$$

is minimized for

$$
f(t)=\mathscr{L}^{-1}\left(\frac{v(s)}{p(s)}\right), \quad g(t)=\mathscr{L}^{-1}\left(\frac{b(s) x(s)}{a(s) y(s)}\right) .
$$

The solution of this problem is complicated due to finite T.
To begin with we introduce same special notation and operations which are more precisely described in [1] and [2]. The mathematical background is the congruence of analytic functions modulo a polynomial.

Consider a polynomial $m(s)=m_{0}+m_{1} s+\ldots+m_{\partial m} s^{\partial m}$ with real coefficients and degree $\partial m>0$. Then the set $\mathscr{M}=\{s: m(s)=0\}$ is called the spectrum of the polynomial m.

Let functions f, g be analytic on \mathscr{M}. Then f, g are congruent modulo m, written $f=g \bmod m$, if there exists a function h analytic on \mathscr{M} such that $f=g+h m$.

For any function f analytic on \mathscr{M} only one polynomial r exists such that

$$
\begin{equation*}
f=r \bmod m, \quad \partial r<\partial m \tag{1}
\end{equation*}
$$

The polynomial m is called the modulus. The operation which yields such a polynomial r is called the reduction of f modulo m and it is denoted as

$$
\begin{equation*}
[f]_{m}=r \tag{2}
\end{equation*}
$$

Denote \mathscr{F}_{m} the set of all functions analytic or having at worst removable singularities on \mathscr{M}.

Let a modulus $m, \partial m>0$, and function $f, g \in \mathscr{F}_{m}$ be given. Then for $[f]_{m}=a$, $[g]_{m}=b$ and any complex number λ the next equations hold:

$$
\begin{equation*}
[f+g]_{m}=[f]_{m}+[g]_{m}=a+b, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
[\lambda f]_{m}=\lambda[f]_{m}=\lambda a, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
[f g]_{m}=\left[[f]_{m}[g]_{m}\right]_{m}=[a b]_{m}, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } f / g \in \mathscr{F}_{m} \text { then } \tag{6}
\end{equation*}
$$

$$
\left[\frac{f}{g}\right]_{m}=\left[\frac{[f]_{m}}{[g]_{m}}\right]_{m}=\left[\frac{a}{b}\right]_{m} .
$$

If the function f is a polynomial then the reduction of f modulo m produces the remainder after dividing f by m. Procedures for the computation of $[f]_{m}$ for the functions $\ln (s), \mathrm{e}^{k s}, \sqrt{ } s, s^{k}$ with k real, and for $b / a, b . a$ with polynomials a, b are described in [1].

Now we introduce a new operation

$$
\begin{equation*}
\left\langle\frac{s[f]_{a}}{a}\right\rangle_{s}=\lim _{s \rightarrow \infty} \frac{s[f]_{a}}{a}=\frac{c_{k-1}}{a_{k}} \tag{7}
\end{equation*}
$$

where $k=\partial a$

$$
[f]_{a}=c_{0}+c_{1} s+\ldots+c_{k-1} s^{k-1}
$$

and the subscript s denotes the variable with respect to which the operation $\langle.\rangle_{s}$ is performed.

The next Theorem is proved in [2].
Theorem 1. Let polynomials $b, a, \partial b<\partial a$, with real coefficients be given. Then the inverse Laplace transform of b / a denoted as $\mathscr{L}^{-1}(b / a)$, is the real-valued function $f(t)$ given by

$$
\begin{equation*}
f(t)=\left\langle\frac{s}{a}\left[b \mathrm{e}^{s t}\right]_{a}\right\rangle \tag{8}
\end{equation*}
$$

and furthermore

$$
\frac{\mathrm{d}^{i}}{\mathrm{~d} t^{i}} f(t)=\left\langle\frac{s}{a}\left[s^{i} b \mathrm{e}^{s t}\right]_{a}\right\rangle_{s}, \quad i=1,2, \ldots
$$

EVALUATION $\int_{0}^{T} f(t) g(t) \mathrm{d} t$
The basic formula of this paper is in the following Theorem.

Theorem 2. Let polynomials $b, a, v, p, \partial b<\partial a, \partial v<\partial p$ be given. Denote $f(t)=$ $=\mathscr{L}^{-1}(b / a), g(t)=\mathscr{L}^{-1}(v / p)$ then
(9)

$$
\begin{gathered}
I=\int_{0}^{T} f(t) g(t) \mathrm{d} t=\left\langle\frac{s}{a}\left[b \frac{\bar{v}-\mathrm{e}^{s T}\left[\bar{v} \mathrm{e}^{-s T}\right] \bar{p}}{\bar{p}}\right]_{a}\right\rangle_{s}= \\
=\left\langle\frac{s}{p}\left[v \frac{\bar{b}-\mathrm{e}^{-s T}\left[\bar{b} \mathrm{e}^{-s T}\right] \bar{a}}{\bar{a}}\right]_{p}\right\rangle_{s}
\end{gathered}
$$

where $\bar{v}(s)=v(-s), \bar{b}(s)=b(-s)$.
Proof. Using Theorem 1 and the linearity of the operation $\langle.\rangle_{s}$ we can write

$$
I=\left\langle\frac{s}{a}\left[b \int_{0}^{T} \mathrm{~s}^{s t} g(t) \mathrm{d} t\right]_{a}\right\rangle_{s} .
$$

It is evident that

$$
\int_{0}^{T} \mathrm{e}^{s t} g(t) \mathrm{d} t=\int_{0}^{\infty} \mathrm{e}^{s t} g(t) \mathrm{d} t-\int_{T}^{\infty} \mathrm{e}^{s t} g(t) \mathrm{d} t
$$

and $\int_{0}^{\infty} \mathrm{e}^{s t} g(t) \mathrm{d} t=\bar{v} / \bar{p}$ by definition of \mathscr{L} transform.
By Theorem 1

$$
g(t)=\left\langle\frac{s}{p}\left[v \mathrm{e}^{s t}\right]_{p}\right\rangle_{s}
$$

and

$$
g(T+\tau)=\left\langle\frac{s}{p}\left[v \mathrm{e}^{s T} \mathrm{e}^{s t}\right]_{p}\right\rangle_{s}=\left\langle\frac{s}{p}\left[\left[v \mathrm{e}^{s T}\right]_{p} \cdot \mathrm{e}^{s \tau}\right]_{p}\right\rangle_{s} .
$$

Hence

$$
\int_{T}^{\infty} \mathrm{e}^{s t} g(t) \mathrm{d} t=\mathrm{e}^{s \tau} \int_{0}^{\infty} \mathrm{e}^{s t} g(T+\tau) \mathrm{d} \tau=\mathrm{e}^{s \tau} \frac{\left[\vec{v} \mathrm{e}^{-s T}\right]_{\bar{p}}}{\tilde{p}}
$$

and the proof is complete. Considering $f(t)=\mathscr{L}^{-1}(v / p), g(t)=\mathscr{L}^{-1}(b / a)$ the second formula follows.

Remark. The computation of the formula (9) can be rearranged in the following way. Denote

$$
\begin{equation*}
\left[\bar{v} \mathrm{e}^{-s T}\right]_{\bar{p} a}=x, \tag{10}
\end{equation*}
$$

then $\partial x<\partial p+\partial a$. Use division algorithm for x / \bar{p}, then

$$
\begin{equation*}
x=\bar{p} q+r, \quad \partial r<\partial \bar{p} \tag{11}
\end{equation*}
$$

and

$$
I=\int_{0}^{T} f(t) g(t) \mathrm{d} t=\left\langle\frac{s}{a}\left[b \mathrm{e}^{s T} \frac{x-[x]_{\bar{p}}}{\bar{p}}\right]_{a}\right\rangle_{\mathrm{a}}=\left\langle\frac{s}{a}\left[b \mathrm{e}^{s T} q\right]_{a}\right\rangle .
$$

Denote

$$
g(t)=\mathscr{L}^{-1}\left(\frac{b x}{a y}\right), \quad f(t)=\mathscr{L}^{-1}\left(\frac{v}{p}\right)
$$

and

$$
I=\int_{0}^{T}(f(t)-g(t))^{2} \mathrm{~d} t
$$

Assuming the polynomials a, y, p in normalized form, $a_{e \hat{} a}=1, y_{\hat{e} y}=1, p_{\hat{\imath} p}=1$, we can write

$$
\begin{gathered}
f(t)=\left\langle\frac{s}{s^{\bar{c} p}}\left[\mathrm{e}^{s t} \cdot\right]_{p}\right\rangle_{s}, \\
g(t)=\left\langle\frac{s}{s^{i a+i}}\left[\mathrm{e}^{s t} b x\right]_{a y}\right\rangle .
\end{gathered}
$$

From the problem formulation the next formula follows.

$$
\begin{equation*}
I(x, y)=\int_{0}^{T}(f(t)-g(t))^{2} \mathrm{~d} t \tag{12}
\end{equation*}
$$

Using the variation approach the condition for minimizing (12) is given by

$$
\begin{equation*}
\delta I=2 \int_{0}^{T}(f(t)-g(t)) \delta g(t) \mathrm{d} t=0 \tag{13}
\end{equation*}
$$

for any variation of $g(t)$ which is given as

$$
\delta g(t)=\mathscr{L}^{-1}\left(\frac{b \delta x}{a y}-\frac{b x}{a y^{2}} \delta y\right) .
$$

Hence using Theorem 2

$$
\begin{equation*}
\delta I=\left\langle\frac{1}{s^{2 a+i y}}[b \delta x(\bar{F}-\bar{G})]_{n y}\right\rangle_{s}-\left\langle\frac{1}{s^{\frac{2}{2 a+2 e y}}}[b x \delta y(\bar{F}-\bar{G})]_{n y^{2}}\right\rangle_{s}=0, \tag{14}
\end{equation*}
$$

for all $\delta x, \delta y$, where

$$
\begin{aligned}
\bar{F} & =\frac{\bar{v}-\mathrm{e}^{+s T}\left[\mathrm{e}^{-s T} \bar{i}\right]_{\overline{\bar{p}}}}{\bar{p}}, \\
\bar{G} & =\frac{\overline{\bar{x}}-\overline{\mathrm{e}^{s T}}\left[\mathrm{e}^{-s T} \bar{b} \bar{x}\right]_{\bar{a} \bar{v}}}{\bar{a} \bar{y}}, \\
\bar{a}(s) & =a(-s) .
\end{aligned}
$$

236 Since

$$
\begin{gathered}
\delta x=\delta x_{0}+s \delta x_{1}+\ldots+s^{\partial y-1} \delta x_{\partial y-1}, \\
\delta y=\delta y_{0}+s \delta y_{1}+\ldots+s^{\partial y-1} \delta y_{\partial y-1}, \\
y_{\partial y}=1
\end{gathered}
$$

the equation (14) may be written as a set of conditions

$$
\begin{gather*}
\frac{\partial I}{\partial x_{i}}=I_{1}^{(i)}=\left\langle\frac{s}{s^{\bar{a}+\delta y}}\left[s^{i} b(\bar{F}-\bar{G})\right]_{a y}\right\rangle_{:}=0 \tag{15}\\
\frac{\partial I}{\partial y_{i}}=I_{2}^{(i)}=\left\langle\frac{s}{s^{\partial a+2 \partial y}}\left[s^{i} b x(\bar{F}-\bar{G})\right]_{a y^{2}}\right\rangle=0, \\
i=0,1, \ldots, \partial y-1
\end{gather*}
$$

To solve these nonlinear equations we use Newton's iteration method in the form

$$
\begin{align*}
& I_{1}^{(i)}+\delta I_{1}^{(i)}=0, \text { for } i=0,1, \ldots, \partial y-1 \tag{16}\\
& I_{2}^{(i)}+\delta I_{2}^{(i)}=0
\end{align*}
$$

where $\delta I_{1}^{(i)}, \delta I_{2}^{(i)}$ denote variations of $I_{1}^{(i)}, I_{2}^{(i)}$ with respect to $\delta x, \delta y$.
Note that the application of Theorem 2 to equations (15) gives

$$
I_{\mathrm{1}}^{(i)}=\int_{0}^{T}(f(t)-g(t)) h^{(i)}(t) \mathrm{d} t=0,
$$

where $h^{(i)}=\mathscr{L}^{-1}\left(s^{i} H\right), H=b / a y$
and similarly

$$
I_{2}^{(i)}=\int_{0}^{T}(f(t)-g(t)) c^{(i)}(t) \mathrm{d} t=0
$$

where

$$
c^{(i)}(t)=\mathscr{L}^{-1}\left(s^{i} C\right), \quad C=\frac{b x}{a y^{2}} .
$$

Hence

$$
\begin{aligned}
& \delta I_{1}^{(i)}=\int_{0}^{T}\left((f(t)-g(t)) \delta h^{(i)}(t)-h^{(i)}(t) \delta g(t)\right) \mathrm{d} t \\
& \delta I_{2}^{(i)}=\int_{0}^{T}\left((f(t)-g(t)) \delta c^{(i)}(t)-c^{(i)}(t) \delta g(t)\right) \mathrm{d} t
\end{aligned}
$$

$$
\begin{aligned}
\delta h^{(i)}(t) & =\mathscr{L}^{-1}\left(-\frac{s^{i} b}{a y^{2}} \delta y\right) \\
\delta c^{(i)}(t) & =\mathscr{L}^{-1}\left(\frac{s^{i} b \delta x}{a y^{2}}-2 \frac{s^{i} b x \delta y}{a y^{3}}\right), \\
\delta g(t) & =\mathscr{L}^{-1}\left(\frac{b \delta x}{a y}-\frac{b x \delta y}{a y^{2}}\right) .
\end{aligned}
$$

Define

$$
\begin{aligned}
\bar{H}^{(i)} & =\frac{\bar{b}(-s)^{i}-\mathrm{e}^{s T}\left[\mathrm{e}^{-s T}(-s)^{i} \bar{b}\right]_{\bar{a} \bar{y}}}{\bar{a} \bar{y}}, \\
\bar{C}^{(i)} & =\frac{\overline{\bar{x}}(-s)^{i}-\mathrm{e}^{s T}\left[\mathrm{e}^{-s T} b \bar{x}(-s)^{i}\right]_{\overline{\bar{x}} \bar{p}}}{\bar{a} \bar{y}^{2}}
\end{aligned}
$$

and the elements of the matrices A, B, C, D of the dimension $\partial y \times \partial y$ in the following way.

$$
\begin{gather*}
A_{i+1, j+1}=\left\langle\frac{s}{s^{\partial a+\partial y}}\left[b s^{j} \bar{H}^{(i)}\right]_{a y}\right\rangle_{s}, \tag{17}\\
B_{i+1, j+1}=\left\langle\frac{s}{s^{\partial a+2 \hat{y} y}}\left[b x s^{j} \bar{H}^{(i)}\right]_{a y^{2}}\right\rangle_{s}-\left\langle\frac{s}{s^{\partial a+2 \partial y}}\left[b s^{i+j}(F-\bar{G})\right]_{a y^{2}}\right\rangle, \\
C_{i+1, j+1}=B_{j+1, i+1}, \\
D_{i+1, j+1}=\left\langle\frac{s}{s^{\partial a+3 \partial y}}\left[2 b s^{i+j}(F-G)\right]_{a y^{3}}\right\rangle_{z}-\left\langle\frac{s}{s^{\partial a+2 \theta y}}\left[b x s^{j} \bar{C}^{(i)}\right]_{a y^{2}}\right\rangle, \\
i=0,1, \ldots, \partial y-1, \quad j=0,1, \ldots, \partial y-1 .
\end{gather*}
$$

Using Theorem 2 it is simple to prove that A, D are symmetric matrices.
Using the matrix notation

$$
\begin{gathered}
J_{1}(X, Y)=\left[\begin{array}{l}
I_{1}^{(0)} \\
I_{1}^{(1)} \\
\vdots \\
I_{1}^{(\partial y-1)}
\end{array}\right], \quad J_{2}(X, Y)=\left[\begin{array}{l}
I_{2}^{(0)} \\
I_{2}^{(1)} \\
\vdots \\
I_{2}^{(0,-1)}
\end{array}\right], \\
X=\left[\begin{array}{l}
x_{0} \\
x_{1} \\
\vdots \\
x_{\partial y-1}
\end{array}\right], \quad Y=\left[\begin{array}{l}
y_{0} \\
y_{1} \\
\vdots \\
y_{\partial y-1}
\end{array}\right], \quad y_{\partial y}=1,
\end{gathered}
$$

238 then
(18)

$$
\begin{aligned}
& \delta J_{1}=-A \delta X+B \delta Y \\
& \delta J_{2}=B^{\prime} \delta X+D \delta Y
\end{aligned}
$$

Let us point out that $I_{1}^{(i)}$ can be computed as

$$
\begin{aligned}
& I_{1}^{(i)}=\left\langle\frac{s}{s^{\partial a+\partial y}}\left[s^{i} b \bar{F}\right]_{a y}\right\rangle_{s}-\left\langle\frac{s}{s^{\partial a+\partial y}}\left[b x \bar{H}^{(i)}\right]_{a y}\right\rangle_{s}, \\
& I_{1}^{(i)}=\left\langle\frac{s}{s^{\partial a+\partial y}}\left[s^{i} b \bar{F}\right]_{a y}\right\rangle_{s}-\sum_{j=0}^{\partial y-1} A_{i+1, j+1} x_{j}
\end{aligned}
$$

and $I_{2}^{(i)}$ corresponds to the second term in the formula for $B_{i+1,1}$. Hence in our iteration process, we can define for given Y the optimal X by

$$
\begin{equation*}
X=A^{-1} J_{1}(0, Y) \tag{19}
\end{equation*}
$$

Substituting (19) into (18) and using Newton's formula

$$
\begin{aligned}
-A \delta X \times B \delta Y & =0 \\
J_{2}+B^{\prime} \delta X+D \delta Y & =0
\end{aligned}
$$

we obtain

$$
\delta Y=-\left(D+B^{\prime} A^{-1} B\right)^{-1} J_{2}
$$

Now we summarize the iteration algorithm.
(1) Start from initial condition $y=s^{\partial y}$.
(2) Compute optimal X given by $X=A^{-1} J_{1}$.
(3) Compute the value $Y=Y+\delta Y$, where

$$
\delta Y=-\left(D+B^{\prime} A^{-1} B\right)^{-1} J_{2}
$$

(4) If the n-th iteration and the ($n-1$)-th iteration are not sufficiently near go to (2).
(5) Print results.

This algorithm was programed and tested on IBM $370 / 135$ computer using PL/I language.

Example 1. Consider the reference signal $f(t)=\mathscr{L}^{-1}(v / p)$, where

$$
\begin{gathered}
v=0.03387-0.06093 s-1.1634 s^{2}-0.43164 s^{3}+8.6775 s^{4}- \\
-9.525 s^{5}+0.9898 s^{6}+1.5379 s^{7}
\end{gathered}
$$

$$
\begin{aligned}
p=0.01129 & -0.03329 s-1.1056 s^{2}+5.82213 s^{3}-1.77933 s^{4}- \\
& -6.36952 s^{5}+1.97685 s^{6}+s^{7}+0.5 s^{8},
\end{aligned}
$$

and the system transfer function b / a, where

$$
\begin{gathered}
b=1 \\
a=1+0.2 s+0.04 s^{2}
\end{gathered}
$$

Find polynomials x, y such that $\partial y=3$ and the integral

$$
\int_{0}^{5}(f(t)-g(t))^{2} \mathrm{~d} t, \quad \text { where } \cdot g(t)=\mathscr{L}^{-1}\left(\frac{b x}{a y}\right)
$$

is minimized.
The result is obtained after five iterations in the form

$$
\begin{gathered}
x=0.8023-1.225 s+0.1849 s^{2} \\
y=-0.01124-0.007296 s-0.000608 s^{2}+s^{3} .
\end{gathered}
$$

The functions $f(t), g(t)$ are plotted in Fig. 2.

Fig. 2.

Example 2 Consider the transfer function v / p as in Example 1. Find a 3-order approximation of this transfer function such that the integral

$$
\int_{0}^{5}(f(t)-\hat{g}(t))^{2} \mathrm{~d} t, \text { where } \hat{g}(t)=\mathscr{L}^{-1}(x / y)
$$

is minimized. The solution is similar as in the previous Example, but $b=1, a=1$.

After five iterations we obtain the result

$$
\begin{aligned}
& x=0.69452-1.2376 s+0.5877 s^{2} \\
& y=0.6626-0.6487 s-1.011 s^{2}+s^{3}
\end{aligned}
$$

The function $\hat{g}(t)$ is plotted in Fig. 2.
(Received December 6, 1978.)

REFERENCES
[1] Z. Vostrý: Congruence of Analytic Functions Modulo a Polynomial. Kybernetika 13 (1977), 2, 116-137.
[2] Z. Vostrý: Polynomial Approach to Conversion between Laplace and Z Transforms. Kybernetika 14 (1978), 4, 292-306.

Ing. Zdenëk Vostrý, CSc., Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou vĕz̆i 4, 18208 Praha 8. Czechoslovakia.

