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On the Numerical Solution of Implicit 
Two-Point Boundary-Value Problems 

JAROSLAV D O L E Ž A L , J I Ř Í F I D L E R 

This paper presents an application of the so-called modified quasilinean'zation method to the 
solution nonlinear, implicite two-point boundary-value problems. Analogously as in the explicit 
case the resulting algorithm exhibits the descent property in the auxiliary performance index 
which measures the cumulative error in the differential equations and the boundary conditions. 
Practical importance of this algorithm is illustrated on several examples solved in detail. A com
parison with the classical Newton-Raphson method is also included. 

1. INTRODUCTION 

A modified quasilinearization method for solving nonlinear two-point boundary-
value problems was suggested and extensively studied by Miele et al. in [1 — 3]. 
An alternative derivation of this method including also the convergence proof is 
given by Roberts and Shipman in [4]. Thus the modified quasilinearization method 
is obtained when the appropriate realization of the abstract Newton method is applied 
to the studied problem and only a partial correction to the current profile is taken. 
For further details see [4]. 

The modified quasilinearization technique has two characteristic features: (i) the 
inhomogeneous terms in the linear differential equations and the corresponding 
boundary conditions, which define the sequence of linear two-point boundary-value 
problems, are multiplied by a scalar a, 0 < a <. 1, such that a =? 1 implies the 
Newton-Raphson method; and (ii) an auxiliary performance index P(«) is introduced 
which, after the appropriate choice of a, decreases in each iteration and exhibits 
the so-called descent property. In this way it is possible to overcome the difficulties 
of the original Newton-Raphson scheme caused by excessive magnitude of varia
tions. This circumstance is further supported by a number of selected examples 
presented [1 — 3], so that the reader obtains an impression that the modified quasi
linearization method can solve any given problem. 



The authors of this paper studied and tested this method and also its discrete 
version in [ 5 - 6 ] . It has shown that there exist also problems which it is not possible 
to solve applying the modified quasilinearization method due to the descent property 
requirement. On the other hand, the classical Newton-Raphson method solved 
some (not all) of these problems quite easily not always decreasing the performance 
index P. 

This behaviour of the modified quasilinearization method has grown more apparent 
when applying this method to the implicit two-point boundary-value problems, 
either continuous or discrete [ 6 - 9 ] . The word "implicit" denotes the problems 
having the equation not solved with respect to the highest derivative or difference. 
In fact, one can speak about several classes of problems according to their solvability 
by the both discussed methods. 

Having this in mind the aim of this paper is twofold. First, a generalization of the 
modified quasilinearization method is presented to deal with implicit two-point 
boundary-value problems. These problems are not only interesting as such, but also 
arise, at least principally, in some other fields, e.g., in the calculus of variations 
(Euler-Lagrange equation, see [10]) and discrete optimal control (intrinsically 
discrete problems, see [6]). Up to now this type of boundary-value problems is not 
very much treated, especially from the computational point of view. To the authors' 
knowledge only the paper of Edelen [11] deals with these problems applying the 
implicit function theorem. The descibed procedure concerns primarily the nonlinear 
equations, but it can be applied also to boundary-value problems. To avoid the 
evident difficulties due to the eventual branching and non-uniqueness, only the 
"regular" case will be considered, because otherwise a general systematic approach 
would be hardly possible. 

Second aim is to give an exhaustive classification of problems based upon their 
behaviour when treated by both, modified quasilinearization and Newton-Raphson 
methods. Several examples are solved in detail to illustrate this matter. Let us 
mention the fact that such classification of a particular problem can heavily depend 
also on the initial solution estimate. 

2. MODIFIED QUASILINEARIZATION METHOD 

For the sake of comparison and for the reader's convenience the notation of [1 — 3] 
is preserved whenever possible. Matrix notation will be used throughout the paper 
In this respect all appearing vectors are supposed to be column-vectors, while the 
gradients of various functions are always treated as row-vectors. All further defined 
functions are assumed to be continuously differentiable. Various partial derivatives 
will be indicated by the appropriate lower indices. 

To begin, let us consider an implicit differential equation 

(1) <p(x, x, t) = 0 , 0 | ( ^ 1 , 



:24 which is subject to the boundary conditions 

(2) /W0)] = 0, 3[x(l)] = 0, *[x(0),x(l)]=0. 

Here xeEn,<p: E2n + 1 -* En,f : En - E", g : E" -+ E« and h : E2n -» E'. It is assumed 
that p + q + r = n. Without any loss of generality the unit interval for the time 
variable t is considered. Finally let the matrix <p± be regular. The problem is to find 
the differentiable function x(t), 0 < t g 1, which satisfies ( l ) - ( 2 ) , provided that 
such a function exists. 

Following [ 1 - 3 ] let us define for any function x(t), 0 < t = 1, not necessarily 
satisfying (1) —(2), the performace index P as (arguments are omitted for the sake of 
simplicity): 

(3) P=C((p
Tcp)dt + (fTf+gTg + hTh). 

Here T indicates the transpose. This quadratic functional can be interpreted as the 
cumulative error in the implicit differential equation (l) and the boundary conditions 
(2). Clearly P = 0, iff x(t), 0 = t g 1, is the solution of ( l ) - ( 2 ) ; otherwise P > 0. 

Taking now x(t), 0 <. t <. 1, as the nominal trajectory and perturbing it by Ax(t), 
0 < t < I, the new trajectory appears as 

(4) x(t) = x(t) + Ax(t) , 0 < t < 1 . 

The result of this perturbation is that the performance index P changes to the first 
order 

(5) ÓP = 2 f <pTd(p dř + 2(fT5f + gTóg + hT5h). 

As in [1 - 3] assume the linear variations 

(6) 5(p = — acp , 

(1) df=-af, 8g=-ag, 3h = -ah, 

where a, 0 < a _ 1, is the stepsize to be determined later. Substitution of these terms 
in (6)-(7) yields the relation 

(8) ÔP = -2a Г ęтę dí - 2a(/7 + gтg + hтh), 

which further implies that 

(9) 8P = - 2 a P < 0 . 

Hence, for a small enough, 0 g P + 5P < P, and the descent property is established. 



Expanding now (6) —(7) to the first-order terms one has 

(10) 8(p = q>x Ax + <pxAx, 0 = t = 1 , 

and 

(11) Sf = fx(0) Ax(0), iff - t7«(i) M O , 

<5/z = /ix(0) zlx(0) + hx(i) Ax(l). 

The dimensions of various matrices follow from the preceding considerations. 

Substitution of (6)-(7) into (10) — (11), respectively, yields 

(12) <pt Ax + (px Ax + (tip = 0 , 0 = f = l , 

and 

fx(0) Ax(0) + af = 0 , gx(l) Ax(l) + ag = 0 , 

(13) ftx(0) Ax(0) + hx(1) Ax(l) + ah = 0 . 

Thus, for a given value of a, the linear implicit two-point boundary-value problem 
for the variable Ax(t) is to be solved. Analogously as in [ l - 3], the resulting algorithm 
can be denoted as the modified quasilinearization algorithm. For a = 1 we see that 
the classical Newton-Raphson method is obtained. Let us remark that in this case 
the descent property (9) need not necessarily hold. 

As discussed in [4], the choice of the right-hand sides in (6) —(7) is crucial in the 
derivation of the modified quasilinearization method. This special choice causes, on 
the one hand/the quadratic properties of dP and, on the other hand, is responsible 
for the modified quasilinearization method being a Newton-like method. Any other 
choice would not lead to a Newton method. 

The problem is simplified by introducing the auxiliary variable 

(14) y(t) = Ax(t)ja , 0 = . = 1 . 

Then (12) —(13) take the parameter-free form 

(15) (pxy + (pxy + q> - 0 , 0 g f ^ 1 , 

and 

(16) fx(0) y(0) + f = 0 , gx(1) y(i) + g = 0, 

Km y(0) + hx(1) y(l) + h = 0 . 

This boundary problem can be solved without assigning a special value to a. 
The assumption of the regularity of (px enables to resolve (15) as 

(17) S> + (pl^xy + <Pi1(p = o, o ^ f ^ i , 



226 and to use some of the known methods for its solution. For example, the method 
of particular solutions [1 — 3], the method of complementary functions [12], or the 
method of adjoints [12—13] can be applied. If the regularity of <px is not guaranteed, 
one can expect serious troubles connected with the nonuniqueness of the solution, 
branching of the solution, etc. Some hints in this respect are given for the static 
problem (nonlinear equations) in [11]. 

If the solution y(t), 0 g t g 1, of (16)-(17) is known, the varied solution is given as 

(18) x(t) = x(t) + a y(t), O ^ f g l . 

For this one-parameter family of solutions the performance index P becomes a func
tion of the stepsize a. Clearly 

(19) PjO) = - 2 P ( 0 ) . 

Hence, there exist a point a* such that 

(20) Pa(a*) - 0 . 

As the determination of the exact a* might take excessive computer time, Miele 
et al. [ 1 - 3 ] suggest the noniterative procedure starting with a = 1. The stepsize 
a is considered to be acceptable only if 

(21) P ( a ) < P ( 0 ) . 

Otherwise, the previous value of a must be reduced, e.g., invoking a bisection process, 
until (21) is met. 

3. SUMMARY OF THE ALGORITHM 

The described numerical procedure can be summarized as follows: 

Step 1. Choose e > 0 and the nominal function x(/), 0 :g t g 1. 

Step 2. Compute <p, 0 ;S t ^ 1 and/ , g, h. Evaluate P according to (3). 

Step 3. If P < e, then stop the computations; else go to Step 4. 

Step 4. Compute q>x, q>x, 0 :g t g 1, and fx(0), gx(i), hx{0), hxW. Solve the linear 
two-point boundary-value problem (16) —(17). 

Step 5. If Newton-Raphson method is requested, set a = 1 and go to Step 7; else go 
to Step 6. 



Step 6. Starting with a = 1 perform a bisection process on a until (21) is met for the 227 
modified quasilinearization method. 

Step 7. Set 

(22) x(t) A x(t) + a y(t) , 0 ^ t ^ 1 , 

and go to Step 2. 

4. ILLUSTRATIVE EXAMPLES 

The further presented examples were solved on an IBM 370/135 computer. The 
algorithm was programmed in PL/1 and similarly as in [ 1 - 3 ] double-precision 
arithmetic was used. As the stopping condition the value e = 10"2 0 was used. The 
same value was used also as a singularity level for the determinant of cp±. Finally, 
all variables through this section let be scalars. 

As in [ 1 - 3 ] the bisection limit N = 10 is imposed to prevent extremely small 
changes. 

The linear two-point boundary-value problem (16)-(17) was always solved using 
the method of adjoints, e.g., see [12 -13 ] . Some examples are of rather simple struc
ture and were constructed to admit analytical solutions. However, they are quite 
sufficient to illustrate the situations which can be encountered when solving general 
problems. Thus a principal comparison of the modified quasilinearization method 
(MQM) and the Newton-Raphson method (NMR) is established. 

Example 1. Consider the differential equations 

exp (x t + x2) - x2 - x2 = 0 , 

xt — x2 = 0 , 

subject to the boundary conditions 

xx(0) = 0 , x.( l) = sin 1. 

The analytical solution 

xx(f) = sin t, x2(t) = cost, O g t g l , 

was obtained via MQM and NRM always with the same number of iterations (rang
ing from 5 to 35 iterations depending on the nominal estimate). 

Example 2. Consider the differential equations 

(2xjx2 - x^)3 + 32x2(fx2 - x2)3 = 0 , 

*i - x2 = 0 , 



2-8 subject to the boundary conditions 

x . ( 0 ) - 3 , x.(l) = 6 . 

The analytical solution 

x.(f) = (f + l ) 2 + 2 , x2(t) = 2t + 2 , 0 = t = 1 

was reached by the NRM in 11 iterations starting with 

x.(t) = 3/ + 3 , x2(t) = 0 , 0 = t = t . 

However, the MQM was not successful due to the excessive number of bisections. 

Example 3. Consider the differential equations 

sin (xx + x2) - x2 — x2 = 0 , 

x1 — x2 = 0 , 

subject to the boundary conditions 

x.(0) = TT/2 , xx(l) = TI/2 - sin 1 . 

Also now the analytical solution 

Xj(t) = 7i/2 - sin f, x2(f) = - cos f, 0 _ t g 1 , 

is known. This problem was solved for various initial solution estimates. For example, 
starting with 

Xl(t) = JT/2 , x2(t) = t - 1 , 0 = t = 1 , 

the MQM was inefficient, while NRM has converged in 25 iterations. Analogously, 
starting with 

Xl(t) = 1 , x2(t) = t - 1 , 0 = t = 1 , 

the MQM was again not successful, while NRM reached the exact solution in 16 
iterations. 

Example 4. Consider the differential equations 

X! - 10x2 = 0 , 

x2 - 10x3 = 0 , 

(sin2 x3 + k cos2 x3) x3 + 5xxx2 — 0, 

subject to the boundary conditions 

x1(0) = 0 , x2(0) = 0 , x2(l) = l . 



This problem was solved for various values of the parameter k causing the problem 
more or less "implicit". The initial solution estimate 

Xl(t) = 0 , x2(t) = t, x3(0 = 0 , O ^ l ^ l , 

was always applied. 

a) If fc = 0, the problem was solved by both methods in 2 iterations. 

b) If k = 0-5, the NMR diverged and in the MQM the bisection limit was reached, 
i.e., both methods were not successful. However, using "better" solution estimate 

(23) Xi(t) = 8. , x2(f) = t, x3(t) = 0 , 0 jg t £ 1 , 

the NRM again diverged, while MQM converged in 16 iterations with overall 31 
bisections in various iterations. 

c) If k = 0-8, the NRM again diverged and MQM converged in 7 iterations with 4 
bisections in the second iteration. 

d) Also if fc = 0-9, the NMR has diverged, while using the MQM the solution 
is reached in 6 iterations with 3 bisections in the second iteration. Applying the 
initial solution estimate (23) the behaviour of both methods was identical and they 
converged in 6 iterations. 

e) Finally if fc = 1, the NRM diverged and MQM converged in 7 iterations with 
3 bisections in the second iteration. See also [2, Example 3-5] in this respect. 

5. CONCLUSIONS 

The possibility of the numerical solution of implicit two-point boundary-value 
problems using the so-called modified quasilinearization method was explored 
in detail. Moreover a comparison of this method with the classical Newton-Raphson 
method was performed. This comparison has shown that generally the following 
four classes of problems are encountered: 

I. Problems cannot be solved by any of these methods. 

II. Problems can be solved by the NRM, but cannot be solved using MQM, resp. 
MQM requires higher number of iterations. 

III. Problems solvable by the both methods, the behaviour of which is identical, 
i.e., a = 1 during each iteration of MQM. 

IV. Problems can be solved using MQM, but cannot be solved using NRM, resp. 
NRM requires higher number of iterations. 

To be quite fair it would be also necessary to take into the account the total com
puter time required. It is namely clear that one iteration of MQM lasts longer due 
to the possible search for a. However, this circumstance was neglected when formulat
ing this to the certain extent logical classification. 



Especially Example 4 illustrates the various possibilities, which were not pointed 
out in the original papers [1 — 3]. Moreover, one can further see that such classifica
tion of a particular problem can depend also on the initial solution estimate. Further 
details concerning the computer implementation of both methods are to be found 
in [8]. 

(Received October 9, 1978.) 
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