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Dynamic Systems and Theory of Simulation 

E V Ž E N K I N D L E R 

The paper contains the definition of dynamic system and related conceptions so that they 
reflect the properties of the technique of simulation. The mathematical theory of simulation has 
been designed in [1] in four phases; the first phase has been presented in details in [2], the second 
one in [3]. In the present paper basic terms of the third phase — theory of dynamic systems — are 
declared, namely dynamic systems, based dynamic systems, dynamic attributes and dynamic 
classes. Subsidiary terms as events and dynamics are also presented; they serve to classify pragma
tically dynamic systems. The development of the basic definition is described. 

1. INTRODUCTION 

In [1] a theory of simulation has been designed, based on traditional theory of sets. 
The necessity of such a theory has been implied in order to eliminate some mis
understandings about the definition of terms system and model used in the theory 
and practice of simulation, to clear some obstacles in deciding whether some lan
guage is a simulation one or whether some simulation language is a discrete event 
simulation language or continuous system simulation one and to reflect the richness 
of several hundreds of simulation languages which have been implemented and used 
and which represent a plentiful source of system abstraction. The designed theory 
has been structured into four phases: theory of static systems, theory of static models, 
theory of dynamic systems and theory of dynamic and simulation models. The first 
phase has been elaborated very detailly in [2]: the theory of static systems has been 
built hierarchically from the lowest of static attributes, over the middle level of static 
classes, up to the highest level of static systems. Static systems have been classified 
in order to reflect various aspects of computer modelling and to enable proving 
of important theorems. In the same paper the theory of subsystems and of system 
enlargements has been presented for static systems, too. 



In the present paper the corresponding notions of the theory of dynamic systems 
are defined. As dynamic systems have a lot of important properties bound with their 
existence in time, which cannot be introduced for static systems, we have presented 
only the definitions concerning the basic hierarchy of attributes, classes and systems, 
while the theorems and the theory of subsystems and enlargements have been omitted. 
Instead of them specific notions for the theory of dynamic systems are presented, 
as events and dynamics of dynamic systems and new conception has been defined 
under the term based dynamic system which permit to classify the system compo
nents into transactions and activities (permanent elements) and to distinguish the 
dynamic systems into continuous ones and discrete ones. 

In the present paper the same conventions concerning the terminology and the 
formalization are used as in [2]. The only exclusion is that instead of the term of 
attribute set of a class or of a system a more convenient term characteristics has been 
introduced. The acronyms of introduced notions have more letters than the correspon
ding acronyms introduced in [2] for static systems; thus a formal unambiguity has 
been ensured for a case of handling static and dynamic systems parallelly. 

2. UNFORMAL PROPERTIES OF DYNAMIC SYSTEMS 

The known concepts of dynamic systems introduced in the literatute have no 
value in the theory of simulation, because they do not permit to study the structural 
properties of dynamic systems and they exclude either continuous systems (those 
which permit a change in any moment of their existence which is an interval of real 
numbers) or systems with discrete changes. The dynamic system in simulation is 
structured into a set of classes; any class contains elements with "similar" properties 
(called commonly attributes): the similarity consists of the same name and of the 
same range of the values of such a property. 

The simulation languages have introduced a practice that one element cannot be 
present in more than one class. In the modern universal language SIMULA 67 that 
practice has been eliminated by a hierarchical structuring of classes. Thus the axiom 
that the domains of two different classes must be disjoint has been eliminated of the 
presented theory. But in a relation with several implementation rules of modern 
programming languages permitting to incorporate effectivity in run time and in 
memory and security in computation we can observe that dynamic systems satisfy 
the following rules: 

2.1. A class cannot change the number of its attributes. 

2.2. An element cannot leave one class and enter another one. 

2.3. An element cannot leave the system and then return to it. 

2.4. The relativistic effects are neglected; namely the concept of contemporary 
events is substantially important. 



In a contrast with the mentioned restrictions the following properties have been 
permitted and commonly applied: 

2.5. An element can enter the system after the beginning of the existence of the 
same system and it can leave the system before the end of its existence. 

2.6. The systems can exist in various sets of moments, among others in intervals, 
in discrete sets and in finite unions of such sets. 

In the following parts the mentioned terms are defined and formalized. We use 
the same symbols as they have been introduced in part 1 and 2 of [2]. 

3. DYNAMIC ATTRIBUTES 

Dynamic quasiattribute is an ordered pair </.,/> such that n is a text a n d / is 
a function defined at a subset of the Cartesian product of a nonstandard set and a set 
of real numbers. 

quattr(a) = 3n 3f3p(a = <« , /> A nsST A gen(p) A function(f) A domo/n ( / )s 

£ p X St) . 

If a = <«,/> is a dynamic quasiattribute, we define its name as n, its function a s / , 
its range as the range of/, its definition set as the domain of/ and its domain resp. 
its existence as the projections of its definition set. We say that an element x is present 
in a at time t or that a is defined for x at time t if <x, f> is in the definition set of a. 
We write a(x, t) instead of f(x, t). 

name(a) = n 

func(a) = / 

ran(a) = range(func(a)) 

def(a) = domain(func(a)) 

dom(a) = {x | 3 . « x , r> 6 def(a))} 

ex(a) = {t | 3 x « x , t> e def(a))} 

pres(x, t, a) = <x, f> e def(a) 

If the range of a dynamic quasiattribute is a subset of a standard set we call that 
quasiattribute standard dynamic attribute. If the range of a dynamic quasiattribute 
contains none or elements of a nonstandard set the quasiattribute is called dynamic 
pointer. A quasiattribute is called dynamic attribute if it is a standard dynamic 
attribute or a dynamic pointer. 

sattr(a) = 3P(stand(P) A ran(a) £ P) 



ptr(a) = gen(ran(a) — {none}) 

attr(a) = sattr(a) v ptr(a) 

Inasmuch we do not handle other attributes than dynamic ones in the present paper, 
we shall use to omit the word dynamic in case the meaning of the text is clear. 

4. DYNAMIC CLASSES 

Dynamic class is an ordered triplet <w, P, G> where n is a text, P is a subset of the 
Cartesian product of a nonstandard set and a set of real numbers and G is a set of 
attributes with different names and with their definition set equal to P. 

CIass(A) = 3n 3P 3G 3Q(A = (n,P,Gy A nz 2T A P <^ Q * 01 A gen(Q) A 

A (a) (a 6 G -+ attr(a) A def(a) = P A (b)(b eG A b * a-+ 

-» name(a) 4= name( 

Let A = <«, P, G> be a dynamic class. We define its name as n, its definition set 
as P, its characteristics as G and its domain resp. existence as the projections of its 
definition set. We say that an element x is present in a dynamic class at time t if 
<x, f> is in its definition set. 

Name(A) = n 

Def(A) = P 

Char(A) = G 

Dom(A) = {x | 3 « x , t} e Def(4))} 

£x(A) = {t | 3x«x, 0 e Def(A))} 

Pres(x, t, A) = <x, r> £ Def(A) 

Corollary. Let a be an attribute of the characteristics of a dynamic class. A. Then 
pres(x, t, a) = Pres(x, t, A), ex(a) = Ex(A) and a'om(a) = Doin(A). 

Similarly as for dynamic attributes, also for dynamic classes the word dynamic 
will be omitted in the present paper. 

5. DYNAMIC SYSTEMS 

A dynamic quasisystem is a set of dynamic classes: 

QSYS(Z) = (A)(AeI^ Class(A)) 



We define its definition set resp. its domain, existence and characteristics as the set 
union of the definition sets resp. domains, existence and characteristics of all classes 
which are in it. We say an element x is present in a dynamic quasisystem at time f 
if <x, f> is in its definition set. 

DEF(Z) = U Def(A) 
Ael 

DOM(Z) = U Dom(A) 
Ael 

EX(I) = u £X(A) 
Ael 

CHAR(Z) = U Char(A) 
Ael 

PRES(x, t, Z) = <x, f> e DEF(Z) 

Let us mention that an empty set is also a dynamic quasisystem; in this case we take 
U E(A) as to be the empty set. 

Ael 

Corollary. Let I be a dynamic quasisystem and Ael. Then Pres(x, t, A) -• 
-> PRES(x, f, I). 

A dynamic system is a non-empty dynamic quasisystem Z satisfying the following 
conditions: 

5.1. (x) (f.) (t2) (t2 e EX(Z) A t± < t2 A PRES(x, tu I) A ~PRES(X, t2,Z) -> 
->(f)(f>f2->~PRES(x,.,!))); 

5.2. (A) (x) (i.) (f2) (A e Z A t2e EX(Z) A Pres(x, f., A) A ~Pres(x, t2, A) -» 
-* ~PRES(x,t2,Z)); 

5.3. (a) (x) (t) (a e CHAR(Z) A ptr(a) A pres(x, t, a) -* PRES(a(x, t), t, Z) v 
v a(x, t) = none). 

Condition 5.1 corresponds to 2.3, condition 5.2 corresponds to 2.2 and 5.3 corres
ponds to a certain closeness of the dynamic system relating to its pointers; a similar 
property characterizes the static systems among the static quasisystems, as it has 
been presented in par. 4 of [2]. 

In the present paper the word dynamic will be omitted also in connection with the 
terms quasisystem and system in the following text. Let Z be a system and x any 
element of its domain. Then the following theorems hold. 

Theorem 1. If A e Z, t2 e EX(Z) and ft < f2 such that Pres(x, tu A) and 
~Pres(x, t2, A), then for any t > t2 there is ~Pres(x, t, A). 

Proof. According to 5.2 there is ~PRES(x, t2, Z). According to the corollary 
presented in this paragraph there is PRES(x, tu Z). Because of 5.1 there is ~PRES(x, 
t, Z) for any f > f2. The mentioned corollary then implies ~Pres(x, t, A). 



Theorem 2. If a e CHAR(S), t2 e EX(S) and 11 < t2 such that pres(x, tu a) and 
~pres(x, t2, a), then for any t > t2 there is ~pres(x, t, a). 

Proof. The definition of CHAR implies that there is a class A of S such that 
a e Char(A); it must satisfy Pres(x, tu A) and ~Pres(x, t2, A) because of the corollary 
presented in par. 4. The preceding theorem states that in this case ~ Pres(x, t, A) 
for any t > t2; according to the metioned corollary, it is ~pres(x, t, a), too. 

For Ex(A) £ EX(S) in case of A e S, we can modify theorem 1 so that instead 
of t2 e EX(S) we put t2 e Ex(A). Because of similar reasons we can modify theorem 
2 so that we put t2 e ex(a) instead of t2 e EX(S). Thus any class of a dynamic system 
and any attribute of its characteristics must satisfy a very similar condition to 5.1. 
It is not true, that if a quasisystem satisfies 5.2 and 5.3 and its classes resp. attributes 
of its characteristics satisfy the mentioned conditions, the quasisystem is a system. 
We can illustrate it at the following example: the quasisystem has two classes with 
disjoint nonepty domains; the existence of the first class is the union of the intervals 
(0, l) and (2,3), the existence of the second class is the union of the intervals (1, 2) 
and (3, 4). Every element of the domain of a class is present in it during its whole 
existence; we can assume arbitrary standard attributes and some pointers in the 
characteristics of any class with the range being a subset of the closure (see [2], par. 2) 
of the domain of the same class. 

6. EVENTS AND DYNAMICS 

Let a be an attribute, t0 an element of its existence. We say that a set U is a history 
of f0 in a if U is a nonempty subset of the existence of a, contains only numbers less 
than 10 and no element of the existence of a is greater than the supremum of U (in St) 
and less than t0. History in a class resp. in a quasisystem is defined similarly. 

h/st(U, t0, a) = t0e ex(a) A U £ ex(a) A U * 0 A (t) (t e U -* t < t0) A 

A ~3f(f eex(a) A sup (U) < t < t0) 

Hist(U, t0, A) = t0e Ex(A) A U £ Ex(A) A U + 0 A (r) (t e U - t < t0) A 

A ~3t(t e Ex(A) A sup (U) < t < t0) 

HIST(U, t0, S) = t0e EX(S) A U £ EX(S) A U * 0 A (t) (t e U -* t < t0) A 

A ~3t(t G EX(S) A sup (U) < t < t0) 

If a e Char(A) then hist(U, t0, a) m Hist(U, t0, A), because ex(a) = Ex(A) (see 
Corollary of par. 4). It is not true that AeS would imply the equivalence or any 
implication between Hist(U, t0, A) and HIST(U, t0, S) as we can illustrate on the 
example of a system S with two classes A and B so that Def(A) = « x , 1>, <y, 3>} 



and Def(B) = {<z, 2>}, where x 4= y * z: Hist({l}, 3, A) but not H/ST({1}, 3, Z) 83 
and H/ST({2}, 3,1) but not H/st({2}, 3, A). 

Let a be an attribute. We say x to change a at time f0 if pres(x, f0, a) and if there 
is a history U of f0 in a such that a(x, t) is defined and different from a(x, t0) for any 
feU . 

change(x, f0, a) = pres(x, t0, a) A 3U(h/st(U, t0, a) A (t) (t 6 U -» 

-> pres(x, f, a) A a(x, f) 4= a(x, f0))) 

Theorem 3. Let Z be a system and a e CHARtl); then change(x, f0, a) is equivalent 
with pres(x, t0, a) A 3V(H/ST(V f0, Z) A (f) (f e V-> pres(x, f, a) A a(x, f) 4= 
* a(x, t0))). 

Proof. Because of a similarity of logical expressions defining change and equi
valent with change according to the theorem it is only to demonstrate that U of the 
definition can be replaced by V of the theorem and vice versa, namely that HIST(U, 
t0, Z) and hist(V, t0, a). Let A e Z such that a e Char(A); ex(a) = £x(A) c EX(Z). 
U c ex(a) and thus U £ EX(Z). U #= 0 and for any f e U there is t < f0. Let tt 

be an element of U. If f e £x(A) = ex(a), then it is not possible that sup (U) < f < f0. 
Let us suppose that there is t e EX(Z) — Ex(A) such that sup (U) < f < t0; then 
ft < f < f0, Pres(x, t0, A), Pres(x, tu A) and ~Pres(x, t, A), and thus PRES(x, f0, Z) 
and PRES(x, tu Z). Because of 5.2, ~PRES(x, t, Z), but 5.1 then implies ~PRES(x, 
t0, Z) which is a contradiction. Thus there is no f e EX(Z) - Ex(A) such that sup (U) < 
< f < f0 and therefore U is a history of f0 in Z. From the condition (f) (f e V -* 
-* pres(x, t, a)) of the theorem, V £ ex(a) follows. V =t= 0 and for any f of V there 
is f < f0 because of HIST(V, t0, Z). t e ex(a) implies f e EX(Z) and thus there is no f 
of Vfor which the relation sup (V) < f < f0 would be satisfied. Therefore Vis the 
history of f0 in a. 

Let Z be a quasisystem." We say x to enter Z at time f0 if x is present at f0 in Z 
and there is a history U of f0 in Z such that x is not present at f in Z for any 
f e U. We say x to leave Z at time f0 if x is not present in Z at f0 and there is a history 
U of f0 in Z such that x is present at f in Z for any f e U. 

ENTER(x, t0, Z) = PRES(x, t0, Z) A 3U(H/ST(U, f0, Z) A (f) (f e U -» 

-* ~PRES(x,t,Z))) 

LEAVE(x, t0, Z) = ~PRES(x, t0, Z) A 3U(H/ST(U, f0, Z) A (f) (f 6 U -» 

-* PRES(x, t, Z))) 

We say that at time f an event of a system Z is present if f is the minimum of EX(Z) 
(in case it exists) or if there is an element of DOM(Z) such that it leaves or enters Z 
or changes some attribute of CHAR(Z) at f. We define dynamics of a system as a set 
of all times when events are present in it. 



EVENT(t, Z) • t - min (£X(Z)) v 3x(ENTER(x, f, Z) v LEAVE(x, f, Z) v 

v 3a(a e CHAR(I) A change(x, f, a))) 

OrN(Z) = {t | EVENT(t, I)} 

It would be possible to define entering, leaving, events and dynamics also for 
attributes and classes, but such notions have no importance in the considerations 
presented in this paper. 

We say that a system is continuous if its dynamics is equal to its existence and the 
existence is an interval of real numbers. We call a system discrete if its dynamics is 
nowhere dense in Si. A system is non-degenerated if its dynamics has more than one 
element. 

7. BASED DYNAMIC SYSTEMS 

Any subset of a system is a quasisystem. This trivial consequence of the definitions 
presented above has no importance for proving theorems but it enables to apply 
definitions introduced for quasisystems in par. 5 for subsets of systems. We say that 
an attribute is constant (in time) if any element of its domain is present in it at any 
time of its existence and if its value does not depend on time. 

const(a) = def(a) = dom(a) x ex(a) A (X) (tt) (t2) (x e dom(a) A f. e ex(a) A 

A t2 e ex(a) - a(x, tt) = a(x, t2)) 

Let Z be a system, M its subset. We say that M is a pseudobase in Z if any class 
of it contains only such elements in its domain which are present in the system at 
any time of its existence. 

PSB(M, I) m M £ Z A (x) (x e DOM(M) -> (t) (t e EX(Z) -> PRES(x, t, Z))) 

Corollary. PSB(®, Z); if PSB(M, Z) and PSB(N, Z) then PSB(N u M, Z). Any 
system has its maximal pseudobase, containing any other pseudobase of the same 
system as its subset. 

Let M be a pseudobase in Z. We say that an attribute is internal in Z relating to M 
if it is a pointer of the characteristics of some class from M and if its values are 
none or are present in the domains of classes of M. We say that an attribute is external 
in Z relating to M if it is a pointer of the characteristics of some class from M and 
if its values are not present in the domain of any class of M. We say that a set of attri
butes is internal in Z relating to M if its elements are only attributes internal inZ 
relating to M; similarly a set is external in Z relating to M if its elements are only 
attributes external in Z relating to M. 



int(a, M, I) = ptr(a) A a e CHAR(M) A (X) (t) (a(x, t) 4= none -+ 85 

-> PRES(a(x, t), t, M)) 

ext(a, M, I) = ptr(a) A a e CHAR(M) A (x) (0 (~PR£S(a(x, t), t, M)) 

lnt(X, M, I) = (a) (a e X -> int(a, M, I)) 

Ext(X, M, I) = (a) (a e X -> ext(a, M, £)) 

We say that a pseudobase of I is its base if all pointers of the characteristics of its 
classes can be divided into two groups so that one group contains only external attri
butes in I relating to the pseudobase and the other group contains only internal 
attributes in I relating to the pseudobase, which are constant. 

BASE(M, I) 3 PSB(M, l) A 3X 3Y(/nt(X, M, I) A £xt(Y M, I) A 

A (a) (ptr(a) A ae CHAR(M) - Y-* aeX A const(a))) 

Evidently, every system has one base - an empty set. It need not have a maximal 
base, containing every of its other bases; we can simply illustrate it by a system compo
sed of two classes A and B, where in Char(A) there are only some pointers which 
are not constant and the values of which are in Dom(B), and in Char(B) there are 
only pointers with symmetrical properties; moreover, let {A, B] be a pseudobase. 
Then {A} and {J3} are bases but {A, B] is not a base. Because of such cases, we must 
introduce the following definition: 

A based dynamic system is an ordered pair of a dynamic system and its base. 

BSYS(Z) = 31 3M(Z = <£, M> A SYS(l) A BASE(M, I)) 

If Z = (I, M> is a based system, we call I its essence and M its main base; we 
write £SS£(Z) = I and MBASE(Z) = M. The elements of DOM(/VIBAS£(Z)) are 
called activities of Z and the elements of DO/V.(ESSE(Z)) - DOM(A1BAS£(Z)) are 
called transactions or Z. Pseudoactivities of Z are the elements of the domain of the 
maximal pseudobase of its essence. Every activity of a system Z is its pseudo-
activity but not vice versa (for example if the main base is an empty set). We say 
that a based system is of type A if its main base is equal to its essence. We say that 
a based system is of type Tif its main base is empty. We say that a based system is of 
type A Tif it is neither of type A nor of type T. 

8. DISCUSSION AND CONCLUSION 

We could define notions introduced for dynamic systems also for based dynamic 
systems, according to a rule that if F is a function defined for quasisystems in par. 5, 
then FB is defined for based dynamic systems as FB(Z) = E(£SS£(Z)). But those 
definitions have no importance for developing the theory of simulation. 



In [1] the conception of dynamic system has been introduced so that it was defined 
as a mapping of a subset of M into a set of static systems. That conception has led 
to the detailed elaboration of the theory of static systems in [2], but in order to formu
late that the mentioned mapping satisfies the conditions mentioned in par. 2 the 
definition of dynamic system had to be completed by an auxiliary notion of dynamic 
attribute; one axiom had to be expressed that at time t of the existence of the system 
the value of any static attribute for its argument x is the same as the value of a dynamic 
attribute for arguments x, t. Such a doubling was contrary to the estetics and elegance 
of mathematics and therefore the conception of dynamic system has been modified 
in [4]: dynamic system has been introduced as a set of dynamics classes, where 
dynamic class has been defined similarly as in the present paper; the only exception 
has been that a dynamic attribute has been defined at the cartesian product of its 
domain and of the existence of the system. In order to permit systems the maximal 
pseudobase of which is not equal to the whole system, the definition had to be com
pleted by a predicate presence with two arguments: an element of the system domain 
and an element of the system existence. 

Therefore dynamic system has been defined as an ordered pair of a set of dynamic 
classes and of its presence, satisfying certain axioms; the definition could be enlarged 
so that dynamic system is an ordered triplet, where the third member is its main 
base. Such definition are more elegant than the original one, but the values a(x, t) 
of attributes have no importance in case x is not present at t; namely in any axiom 
of model we had to put the presence of the concerned element at the concerned 
moment into the premise. 

Thus the definition presented in this paper has risen. We have separated the deve
lopment of the theory of dynamic systems from the theory of based dynamic systems 
because of the simplicity of the structure of the entier theory of simulation: the con
ception of dynamic and simulation model does not depend on the main base and thus 
it is more convenient to introduce all necessary terms independently on any concep
tion of base. The conception of based system enables however to classify dynamic 
systems relating to their transactions and activities and to exply some techniques 
of use of simulation languages (e.g. neglecting the activities if using SIMULA: even 
a system which has the maximal base can form the essence of a based system with the 
empty main base). 

The notion of dynamics enables to distinguish between discrete systems and conti
nuous ones, independently on the decision whether a discrete system exists during an 
entier interval of real numbers or only in moments of its events. We have not in
corporated any traditional concept of continuous attributes as that of continuous func
tions, because it is not a principal problem of the difference between the continuous 
and discrete systems, between continuous and discrete simulation and between 
continuous system simulation languages and discrete event ones; we can state that 
excepting degenerated systems the continuous systems (according the presented defi
nition) figure in continuous simulation and the universes of semantics of continuous 



system simulation languages, while discrete systems (according to the presented 
definition) figure similarly in discrete simulation and appropriate languages. The 
relation between continuous systems and their images in the discrete systems of digital 
computer is the subject of the theory of dynamic and simulation models, which has 
not been included into the present paper more. 

(Received May 11, 1978.) 
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