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A general coding problem is formulated. The special cases are the coding problems of the
distortioniess coding theory, of source coding with a fidelity criterion, and of the source coding
with side information, respectively. All sources examined in the paper are assumed to be discrete
in time and stationary. Also the sources, the statistical properties of which are described by finitely
additive probabilities, are admitted. The paper is devoted mainly to the problems of the distor-
tionless coding. Further a generalization for the pairs of information sources is given. The corres-
ponding coding theorems are established and the important properties of the resulting quantities
are studied. Some applications are given concerning statistical problems of the random processes.
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INTRODUCTION

Practically all information-theoretical quantities can be derived from a properly
chosen set of postulates. However, to obtain a reasonable interpretation of these
quantities based on the set of the postulates needs, in general, very sophisticated
arguments. A natural interpretation is provided by the coding theorems of informa-
tion theory. The coding theorems constitute a bridge connecting these quantities
with the practical problems concerning an optimal characterization of a sequence
of letters randomly chosen from a given alphabet.

The paper consists of five parts. The first part deals with a general formulation
of the coding problem. We are starting with four examples motivating our approach.
The first two are taken as the distortionless coding problems (cf. [34] and [40]).
The third example concerns the rate distortion function, i.e. the source coding with
a fidelity criterion [22]. The last one deals with the source coding with side informa-
tion [1]. All coding problems mentioned in the examples are shown to be the special
cases of a general coding problem, which is formulated in Section 2.

In the first part the arguments are given for the existence of the information
sources, the statistical properties of which are described by finitely additive pro-
babilities. The ergodic theory of finitely additive invariant probabilities is developed
in the second part of the paper. Actually, only the ergodic decomposition theorem
will be used in the subsequent sections. But the structure of ergodic finitely additive
measures seems to be of the separate interest, too.

The third part deals with the distortionless coding problem for discrete in time
stationary information sources with a general alphabet. The results extend those ob-
tained in {40] and [41].

The fourth part of the paper is devoted to the information-theoretical quantities
defined for the pairs of information sources. The coding theorems are established.
The resulting quantities generalize the notions of inaccuracy [18] and of I-divergence
[21], respectively. ’

The methods used throughout the paper do not exceed the frame of the ergodic
theory of invariant set functions. Therefore in the last part, devoted to the applica-
tions, we are dealing only with such problems, the solutions of which are obtainable
within the framework used in the first four parts of the paper.

The paper is finished by an Appendix. In the appendix, we investigate another
method for proving the main results concerning the asymptotic rate. The method
provides another natural interpretation of the quantities introduced in the third part.



PART I: PRELIMINARIES AND THE GENERAL CODING PROBLEM

1. Basic Notations and Terminology

The following notations will be used throughout the whole paper. Let A denote
an arbitrary set. The symbol $(4) will be used to denote the family of all subsets
of the set 4. The symbol y, will designate the indicator function of the set A. For
finite A only, card (A) will mean the number of elements in A. If B denotes another
set, the symbol A® will be used to designate the set of all mappings which map the set
B into the set A.

The basic space of all possible messages will be represented by the set X' of all
doubly-infinite sequences z = {z;}4%, of letters (i.c. elements of) in X. The set X,
called the alphabet, will be a separable metric space. The set I of all integers repre-
sents the discrete time. If X is a finite set and card (X) = n, we shall identify X with
the set {1,2, ..., n}. If X is countably infinite, it will be represented by the set N
of all positive integers. The symbol #(X) will denote the o-field of Borel sets in X.
Let us note that Z(X) = B(X) for at most a countable alphabet X.

The o-field in X* will be the usual product o-field. This means it is generated by
the field o7y of all finite-dimensional cylinders in X*. A finite-dimensional cylinder is,
by definition, any set of the form

(L1) [El; ={z:zeX", {z;}}, € E}

with J = I and 0 < card (J) < o0. Here, the set E is a Borel measurable subset
of the space X”, in symbols E € #(X”). Clearly, for an at most countable set X, B(X”) =
= P(X’). In accordance with (1.1) we shall use the following notations:

(12) [El, =[Eli. if J
(1.3) [El, =[E] i J={0....n—1},

{i, . i+n-1},

It

(1.4) [z}, =[%]; for XeXx’.
Further, let us set
(1.5 Py = {[x];,: % X"},

If X is at most countable, the family 25" is a countable partition of X' for any i e
and n e N. However, this fails to be true in the general case. The members of the
family

(1.6) P.=0{P¥ iel, neN}
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are said to be elementary cylinders. For a countable alphabet X the family 2y
generates the product o-field as does the field «/y; in symbols

(1.7) o(Px) = o(x).

In any case the o-ficld (/) will be denoted by F. To simplify the notations the
following conventions are addopted. Let us have a mathematical object ¢ related with
the alphabet X. If X = {1,2, ..., n}, we shall write Ox = 0,. If X = N, the sub-
scripts are omitted. E.g. &,, &,, <, etc.

All stationarity properties are defined relative to the coordinate-shift transforma-
tion Ty of the space X'. The latter is defined by the property that

1.8 Tyz); = z;4, for zeX', iel.
(1.8) (Tx2); = 2144

A measure p defined on the o-field Fy is called Tx-invariant (or shift-invariant)
provided u(Tx'E) = u(E) holds true for any set Ee #y. The latter fact will be
symbolically denoted by p = puTy ' (cf. e.g. [13]).

The product toplogy in the space X7 is always metrizable and yields a separable
metric space ]:17]. For at most countable X, the corresponding distance function
can be given by the formula

1 P . Lo
max{&;;zi#zi, lEI}, if z42,
(19) g(z, ;5/) = { 1+ |I]

0, if z=12"22¢eX.

The equality %, = #(X") is an immediate corollary to the definition of the product
topology. If card (X) < oo, the metric space (X7, ¢) is compact by Tichonov’s
theorem. In any case the transformation Ty is a homeomorphism of the space X!
onto itself. Some more information concerning the topological properties of the space
X' will be given in Section 9.

The ergodic theory of finitely additive probabilities will differ from the o-additive
theory. The basic notions of the ¢-additive theory are the notions of quasiregularity
and of regularity, respectively. As far as concerns the notion of the quasiregularity,
we shall addopt for countable alphabets the definition of Winkelbauer [40]. A point
z e X' is said to be quasiregular provided there are the limits

(1.10) #(4) = lim n"ngx,,(T,{z) , AePy.
n—+ow Ji=0

A quasiregular point z € X' is called regular if there is an ergodic probability measure
4, on the o-field # such that (1.10) takes place. It turns out that the measure p.
is uniquely determined by the regular point z. Let us recall that a Ty-invariant
probability measure p is called ergodic if and only if

(1.11) E=T;'EeFyx and uE)>0 imply w(E)=1.




We shall often use a seemingly weeker form:
(1.12) E)e{0,1} forall Ee %y such that
p(EAT; 'E) = 0

In the context of the present paper the definitions are equivalent and the latter one
is sometimes easier to work with. Here and in the sequel the symbol A will denote
the symmetric difference:

EAF = (E—~F)u(F - E).

Turning back to (1.10) we can casily conclude that g, is finitely additive and Ty-in-
variant on the family 2. It is o-additive if and only if
(1.13) SuA) = (de2y;, iel,neN).

The conditions (1.13) imply that the formula

/‘[:[E]i,n = }:;_ﬂ:[ﬂi,u . Ee q;(xn)
ek

uniquely determines the set function g, on the family o(#%") for any ie I and ne N.
The Kolmogorov Extension Theorem (cf. e.g. [ 13], Chapter 9) then provides a unique
o-additive extension of g to a shift-invariant probability measure (denoted by the
same symbol g.) on the o-field #y. Let us note that (1.13) is obviously satisfied
when card {X) < . As was pointed in [37], the conditions (1.13) fail to be true
for X = N (cf. also Section 3). This in turn implies that the quasiregular points
do not determine, in general, a c-additive probability measure.

If X is uncountable metric space, the family 2y does not generate the o-field
F x. Hence even the validity of (1.13) does not assure the existence of a probability
measure on %y extending the set function p, defined on the family #5. However,
we can assume that the metric space X' is complete (performing its completion,
if necessary). Then the notion of the quasiregulatity can be redefined in the sense
of Fomin (cf. e.g. [26], Sect. 7).

Summarizing, a stationary discrete information source (briefly a stationary
source) will be identified with a finitely additive, not necessarily o-additive, Ty-inva-
riant probability defined on the field <7x. In the paper we shall not distinguish the
source and the corresponding set function.

2. The General Coding Problem

We shall start with some well-known illustrating examples. Then we shall formulate
the general coding problem.

Example 1. Let X = {x,, x,, ..., xy}. Let p be a probability N-vector (P> P2 - -
..., D), P: being the probability of the outcome x;; i = 1,2, .. ., N. A sequence



x@_ ., x™ of outcomes is obtained by means of the repeating the random experi-
ment (X, p) n-times independently. We want to characterize this sequence by binary
sequences, with the length of the binary sequence as small as possible. The asymptotic
behaviour of the minimal length of such binary sequences is given in the following
simple form of the source coding theorem.

Theorem 2.1. There exists a nonnegative real number H such that for arbitrary
& > 0 the sequence x*, ..., x™ of outcomes of n independent trials can be charac-
terized by 0—1 sequences of length n(H + &) with probability as close to unity as
wanted, if n is large enough, but cannot be characterized, with any fixed positive pro-
bability, by 0—1 sequences of length n(H — &) if n is large enough. Further we actu-

ally have
N

(2.1) H=~7Y plog py.
k=1

The statement of the theorem can be shown to be valid for discrete memoryless
source with the finite alphabet X. Let us recall that a discrete memoryless source
produces the sequences of independent indentically distributed random variables.
Hence, given the finite set X and a probability vector p as above, we define the measure
on ‘B(X”) simply as the product measure:

p'(x) =[] p(x;) for x=x;,x5 ...,%,.
i=1

Example 2. Let X be a countable set. Assume we are given a ¢-additive Ty-invariant
probability measure p on the o-field #y (i.e. a stationary source) and a positive
number ¢ such that ¢ < 1. Since u = uTy’, the formula

(22) #(E) = u[Ei,, EeB(X")

defines a probability measure , on the o-field B(X") independently of what iel
was chosen. Let us define

(2:3) L,(e 1) = min {card (E) : E = X", ¥ 5, {%} > 1 — &} .
XeE
Theorem 2.2. [41]. The limit ‘
(2.4) lim n~*log, L,{&, 1) = Vi)

exist except at most a countable set of numbers &. The function V(1) monotonically
increases for ¢ — 0 to a limit, which will be denoted by ¥(u:) and called the asymptotic
rate of the source p.

A “coding theorem-like “form of Theorem 2.2 is the following one:




" Theorem 2.2 [40]. On the space of all stationary discrete information sources
with a given at most countable alphabet X there is one and only one non-negative
extended real-valued function V such that
(1) V2> 0V0 <e< 1VieldngeNVn 2 ny36 = P[u(u &) > 1 — €]

et [card (&) < 2"V
(2) ¥A>030 <y < 1Ve <yVieldnge NVn 2 n,¥é < 25"

with w(u &) > 1 —e,

(a) card (&) > 2"W~H if V() < o,

(b) card () > 2"* if V(u) = 0.

Example 3. Source coding with a side information (cf. [1]). We are given two
finite sets X, Y and the transition probabilities p(y ] x) for xe X, ye Y. We set

Py [x) =TT e(r: ] )
fory = yy¥s, <. o5 ¥ X = X, X3, ..., X,. The transition probability p(« | -) represents

the fact that the Y-outcomes are correlated with the X-outcomes, respectively. A set
B < Y"is said to s-decode the sequence x € X" if

PrBlx)=1-=.
Let
P(B) = {x : xis e-decoded by B} .

We assume we are given a probability measure P on X and a probability measure
QonY,ie. weare given two memoryless sources. It is assumed further that P and Q
never vanish.

Theorem 2.3. [1]. There is a function T(c) of non-positive real numbers ¢ such that
the limit
lim n™" log S,(c. &) = T(c)

exists and is independent of ¢ for any choice of ¢. Here
- S,(c,e) = min {Q"(B) : B = Y*, n" log P(P™(B)) 2 ¢} .

Example 4. Let us consider a discrete memoryless source with the finite alphabet
X =1{0,1,...,J — 1} and a finite reproducing alphabet Y = {0,1, ..., K — 1}.
We assume that the source is determined by a probability J-vector p = (p(0), p(1), ...

.., p(J = 1)). Assume p(i) > 0. Let ¢ : X x Y~ R{ be a single-letter distortion
measure satisfying the conditions:

for any je X, min {o(j, k) : ke Y} = 0.
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Put
ol y) = ¥ olxi v3)

for x = xx5, ..., %, €X", ¥ = y¥5, ..., y,€ Y" For fixed d = 0 and for any set
B, < Y" we shall define a subset H(B,, d) of X" by the relation
H(B,, d) = {xeX": o(x, B,) = nd} .

n

For R > 0 let us set
PYR, d) = min {p"(H(B,, d)) : B, = Y", card (B,) < ¢"*} .

1t is natural to say that an error occurs when x € H(B,, d). Thus the problem formally
described above can be interpreted in the following way. We are given the encoding
rate R. Within all coding sets B, with a fixed code-iength we look for the B, with the
smallets probability of an erroneous decoding, the error being expressed by means
of a single-letter distortion measure g.

Theorem 2.4 [22]. Let Q be the set of all probability J-vectors q. Let R(q, ») bé the
rate distortion function of the discrete memoryless source uniquely determined by
vector q. Let

FR)=min{I(q:p):qe Q, R(q,d) = R} .
For any R, R(p, d) < R < max R(q, d),
a€Q
0 < F(R — 0) < liminf[—(I/n) log p'(R, d)] <

< lim sup [—(1/n) log P'(R, d)] < FR + 0) < .
n—roo

If F; is continuous in R, then

0 < lim [—(1/n) log P"(R, d)] = FiR) < .

Now we shall formulate a general coding problem. All coding problems mentioned
in the above examples will be shown to be the special cases of the general problem.

Let X and Y be two, not necessarilly distinct, separable metric spaces. Let & denote
an abstract set (usually & = R,). For any fixed n e N, the set & determines a one-
parameter family {y :ce &}, where either Y : Y" —» X" is Borel measurable
or Y™ : B(Y") » B(X"). Further we are given two set functions K& : #(X") » R,
and K : B#(Y") > R,. Let ¢ < R, x R; be a fixed binary relation, let {c,},ev
be a fixed sequence of real numbers.

We shall formulate now two versions of the general coding problem. They are
in a sense dual.

11




General coding problem (I): The n-sequences x € Y{"(B) for Be (Y") are said
to be e-decodable by means of the set B. We arc interested in the minimum “size”
of a B which satisfies a prescribed bound for the “size of W{"(B). The “sizes” are
measured using the functions K and K{®, respectively. Hence we are interested
in the quantity:

Sy = min {K{(B,) : B, e A(Y"), (KB, ) € 0} .

General coding problem (II): Given a bound for the “size” of the set B of the
codewords itself, we are interested in the minimum “size” for {”(B). The “sizes”
are again measured using K{ and K{". Hence we are interested in the quantity:

Syt = min {KSO(W™(B,)) : B, e 2(Y"), (K(B,). ¢,) e o} -

Let us note that in all cases the dependence on n of the constants ¢, can be removed
using a modified version of the corresponding function K,. Hence the corresponding
coding theorem can be formulated in the following form:

General coding theorem: There is an extended real valued function T% = T*(g, )
(« = I, TI) such that
limn 'log Sf = T%e =L 1I).
e
The strong converse (cf. [42]) states that the function T'is independent of & for any
choice of the constant ¢, hence it depends only on the functions K™ and K, res-
pectively.
First of all we shall show that all coding problems met in the above examples are
the special cases of the general coding problem.
1. Let X =Y=1{1,2,...,N}, let ¢, =1 — 3 for any neN. The mappings
W™ are assumed to be the identity transformations. The relation ¢ is specified by
xey iff x Z y. Finally, let us choose

K(B) = p'(B). BeB(X").
K$Y(B) = card (B), Be B(X").
Then
S = min {card (B) : B < X", p"(B) 2 1 —~ &} .
However, we can choose K and K{" conversely, and then
S» = min {card (B): B = X", p"(B) = 1 — &} .

Hence the distortionless coding problem of the Example 1 can be viewed as the special
case of both coding problems. The same argument can be used for the problem of the
second example.

12



2. Let X, Y be finite sets as in the Example 3. For any &, 0 < & < 1, we shall set
Y(B,) = {x : x is e-decodable by B,}
Let x ¢ y iff x = y. Finally, let us set
K% —pr, KD~ on,

The constants ¢, depend on a fixed nonpositive number ¢ through the relation ¢, =
= ¢". Then

SI

min {Q"(B,): B, = Y", P'(y(B,) = ¢} =
min {Q"(B,) : B, < Y", n"" log P"(y"(B,)) = ¢} .

Hence the source coding problem with side information is a special case of the general
coding problem (I).

3. Let us consider the Example 4. Now the parameter set is R{. Given B, < Y"
and d € R} we define

YP(B,) = {x :xex" o(x B,) = nd} .

Let R > 0 be given. The constants ¢, are then defined by ¢, = ¢"®. Choose K
as the n-th power of the given probability J-vector p. Take K¥ as the counting
measure on the finite set Y”. Then

S = min (PY(Uu(B,) : B, = V", curd (B,) < %}

~In the paper we shall deal mainly with the problems of the distortionless coding.
Further we shall study the cases in which both criteria K, arise from information
sources.’ Let us note that none of the examples given above deals with such a situa-
tion. In Section 4 we shall show, however, that it is possible to prove the coding
theorems in much more clementary setup.

3. Existence of Finitely Additive Probabilities

This problem was discussed by the author in [37]. The problem was reduced
to the problem of the existence of finitely additive probabilities on the o-field B(N)
of all subsets of the set N of all positive integers. There were given simple examples
of such set function in [37]. However, these set functions have no natural interpreta-
tion. The aim of this section is to give another justification for finitely additive pro-
babilities in N, based on the notion of the quasiregularity. It follows from (1.10)
that only one-sided sequences are to be considered. Let z € N¥. We shall say that a set

13




A = N possesses the z-density (and we shall write A € #(z)) provided there exists
the limit

(1) B(A) = lim ! 3.

n~ow

If ze N' is a quasiregular point, then the definition of the clementary cylinders
together with the finite additivity of ., imply that h_(A) exists for all finite sets A < N.
Thus we are restricted ourselves to the set @ — N” defined by the relation

(3.2) Q N {{z:zeN" 3n(A4)} : card (4) < w0} =

©
= N{z:zeN", 3n,{k}}.
k=1

We shall classify the points in Q by partitioning it into the following three disjoint
sets:
C,={z:zeQ,supz; < o},
jeN

C,={z:zeQsupz; = o,
lim limk™‘card {j: 1 £j <k z;>n— 1} =0},
n—=+o k—w

Cy=Q~(C,uC,).

Proposition 3.1. (1) Let ze C; U C,. Then #(z) = B(N) and h, is a o-additive
probability measure on #(z). (2) Let z € C;. Then #(z)is a logic of subsets of N with
respect to the set-theoretical operations of union and complementation. The set
function £, is a finitely additive non s-additive probability on #(z).

Let us note that a family % of subsets of a given set X is called a logic if it has the following
three properties:
(i if Eeg® then E°= X-— Ee %,
Gi) fEFe¥ and ENnF=10 thrn FU Ee &,
(ii) if E,Fe ¥ and Ec F then F— Ec %.

Proof. The properties (i) and (ii) of logic obviously hold true for the family #(z)
for any z, ze Q.

(1a). Let ze C,. let K = sup {z; : je N}. Given a set E = N there is a partition
of it in the following form:

E=[En{L2 .. . K}JU[EA{K+LK+2, .. 1].

By the definition, En {1,2,...,K} e £(z). Since z; S K for j=1,2,...,En
n{K + 1,K + 2, ...} € £(z) and the z-density of this set equals 0. Hence E € #(z)
by the property (ii). The s-additivity of h, is obvious.

14



(1b). Let z & C,. When denoting by a, the limit

(3.3) limk™card{j:1 <j<k,z; >n— 1},
k= oo
we have h({n,n + 1, ...}) = a,. Since ze C,, lima, = 0. Moreover a, = a,,,
©
for any neN. Consequently, we have h.{n} =a, — a,.; 20 and ) h{n} = 1.
The proof now follows because of the relation m=t

h(E) = T hufu), Ec ().

(2). Let ze C5. Then h({n,n + 1, ...}) = a, converges to a positive constant
L(0 < L £ 1). Since the decreasing sequence {{n, n + 1, ...}}m-; has a void inter-
section, the set function h, cannot be c-additive. Finally, the property (iii) of #(z)
can be proved easily using the mathematical induction. This finishes the proof
of the proposition.

Remark 3.2, Let z € N7 be a quasiregular point with the coordinates
1 if i=0,
z; =
i if i>0,iel.
The corresponding one-sided sequence is in Q with lim a, positive and equal to unity. Hence
z€ C;. Let us define a set A(z) < N recursively by the following list of instructions:

print the first positive integer (1),

do not print 2 subsequent (2,3),

print 3 subsequent (4, 5, 6),

do not print 6 subsequent (7—12),
print 3 X 4 subsequent (13—24),

do not print 6 X 4 subsequent (25—48),
print 3 X 4 X 4 subsequent, etc.

Let

n
by = ”*I.lemy (), n=1,2,...
I=

Assume {¢;}2 ; bearecursive subsequence of the sequence {5, } 2. , defined inductively as follows
¢y =by; if ¢;=b, then c;;q=by,.

Then

c; =

13 if i isodd,
2/3 if i iseven.
n
Thus the sequence {(1/n) 3" 24z (/)}s>, contains an oscillating subsequence, i.e. 4(z) ¢ Z(z).
=1

Let us note that to any recursive sequence z € Cj it is possible to construct sets A(z) which are
not members of #(z). L
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The latter remark implies that the family of sets, to which a finitely additive pro-
bability can be reasonably assigned, forms merely a logic of sets. Generally speaking,
an extension of a finitely additive set function defined on a logic to the o-field generat-
ed by this logic is not possible. However, the following proposition is valid:

Proposition 3.3. Let z € C;. Then there is a finitely additive probability /z, on the
o-field B(N) such that

h(4) = h(4) for Ae £(z).

Proof. Let us consider the linear space I”(N) of all bounded sequences of real
numbers. The norm will be the usual supremal norm. The space f(N) of all conver-
gent sequences is a normed linear subspace of [*(N). By definition,

£(2) = (414 < N0 1) e A (V)

The limit can be considered as a bounded linear functional on the space %(N)
By Hahn-Banach Extension Theorem (cf. e.g. [8]) there is a bounded linear functional
Lim on [*(N) such that

Lim {a,} = lima, for {a,}eX(N).
If E <= N then {yg(n)};%, € I”(N). Let us set
W(E) = Lim {1}

The set function u is a finitely additive probability. Moreover, it can be easily shown
that

Lim {a,} = j a, p(dn), {a,}el®(N).

N
The integral on the right-hand side of the latter relation is a finitely additive integral
(cf. e.g. [8], Chapt. IIT). Given E < N, the sequence {n~* > 1e(z) =1 is in I”°(N).
The relation e

i) = [ 7St uton)

determines a set function ki, on the o-field ‘.B(N) such that the proposition is valid.
The proof is complete.

Remark 3.4. A completely different approach can be investigated within the frame of the
constructive theory of probability (cf. e.g. [33]). In this approach it is assumed that the quasi-
regular points are only the random sequences. The resulting set functions are always g-additive
on a o-field, the notions of g-additivity and of the o-field being constructively redefined.
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4. The Main Tools

The basic method used to prove the coding theorem 2.2 was investigated in [27]
and further developed in [41]. We shall use a modification of this method as the
main tool for proving our statements. In this section, unless explicitely stated the
opposite, we shall confine ourselves to an at most countable alphabet X. The im-
portant results will be stated for the purpose of the later reference.

Let us start with the notion of the entropy rate for a stationary source p with
a countable alphabet (cf. e.g. [40]). The entropy rate H(y) is defined as the limit

(4.1) H(p) = —nlir: n"jlog #{Zos -+, Zu—y] p(dz) .

Let us note that the quantity H(u) is actually nothing but the entropy of the homeo-
morphism Ty as defined originally in [19]. The main idea consists in the introducing
a measurable function g, on X such that

@2) Hw) = — j log 9,(2) (d2) .

If we assume H(u) < oo, the latter relation means that the function g,(z) is integrable,
more precisely, that the function log g,,(z) is integrable. Hence, according to the
individual ergodic theorem, there is the limit

(4.3) h(z) = — lim (l/n)nillog g(T'z) ae[p]

i

satisfying the equality
(44) j y(z) 1(dz) = H(z) .

Theorem 4.1 [41]. If ;¢ is a stationary source with H{u) < co then the sequence
— (1/n)log n[zo, . - -, Z4-1] converges in mean (w.r. to p) to the function Iy(z).

The following necessary facts from the ergodic theory are based on the notion
of regularity as defined in the first section. For the original contribution see [20].

Lemma 4.2 [41, Lemma 2]. Let Ry denote the set of all regular points in b'ch
Then Rye #x and u(Ry) = 1 for every stationary source g with the alphabet X.

Lemma 4.3 [41, Lemma 3]. For every ergodic source g,
4.5) wzizeRy, p, =p} =1.

17




Lemma 4.4 [41, Lemma 4]. For any nonnegative measurable function f on the
space (X', Fx) the integral { f d. is a measurable function of the variable z on Ry,
and

(46) J fdu= f . [ '[ / dy:J #(dz)

for all stationary sources p.

Lemma 4.5 [41, Lemma 5]. If p is a stationary source with finite entropy, i.e.
if H(u) < oo, then

4.7) u{zize Ry, h(z) = H(u)} = 1.
The following version of McMillan’s theorem for countable alphabets is an
immediate corollary both to Theorem 4.1 and the last lemma.
Theorem 4.6 [41, Theorem 2]. If u is a stationary source with finite entropy,
then the sequence
— (Ifn)log fzq, . s Zpmy]

converges in mean (W.r. to z) to the function H(y,), i.e. to the entropy rate of the
ergodic component g, of the source given.

Let p be a finite-alphabet source, i.e. there is a positive integer k such that
(4.8) p{1,2. LK) =1
For any stationary source satisfying (4.8) we have the inequality
(4.9) H(y) < logy k

(cf. (4.1)). In this case the McMillan’s theorem stated above enables to prove two
basic lemmas desired for the proof of the coding theorem 2.2. However, if the alpha-
bet is infinite, it may happen that H(y) = o0. Hence Theorem 4.6 is not directly
applicable. The proof is then performed using an approximation property of the
entropy rate, as proved by Sinaj [36] and Parthasarathy [28]. Let 7, be the mapping
of N'onto {1,2, ..., k + 1}! defined by the properties that

z; if z; 2k
4.10 z);={" P=
(4.10) (s {k+1 if z;>k; zeN', iel.

Theorem 4.7 ([36], [28]). Let p be a stationary source with the alphabet N.
Let ut; * be the finite-alphabet source induced from g by the mapping 7, (k = 1,2, ...
...). Then

H(uty ') € H(pry) (k=1,2,...)
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and
(4.11) H(u) = tim H(ur;l).

k=

To motivate the further discussion we shall give now the main idea of the proof.
Let

Il
I
P
)
=
Jasl]
=~
I
)

Go=A{[10 . [k [k + Lk +2, 3]

Then {; < ... <{, < ... <{ (cf [32]). But H({) = H(p) and H(Z) = H(pry ')
Hence a general result of [36] applies (cf. also [32]. p. 15, Proposition (b)).

If X is an uncountable metric space, the partition {[x] : x € X} is uncountable,
hence it cannot be a generator in the sense of Rochlin [32]. This in turn implies
that the approximation property of Theorem 4.7 cannot be used in the general
case. Hence, we are forced to consider the finite partitions of the alphabet, thus
obtaining finite-alphabet sources. It will be proved in the third part of this paper
that this approach gives the same resulis in the special case of a countably infinite
alphabet as the approach of Winkelbauer [41] described above.

PART II: ERGODIC THEORY OF FINITELY ADDITIVE
PROBABILITIES

5. Preliminary Discussion — The Markovian Case

In this section we shall study some questions connected with the denumerable
Markov chains. The purpose of this investigation is to illustrate some problems of
the ergodic theory of finitely additive probabilities. At the same time, the Markov
chains will provide a lot of interesting examples concerning the information-theore-
tical quantities studied in the subsequent parts of the paper. An exhausting reference
concerning Markov chains may be found in [7].

Let us start with the following special type of a finite Markov chain. The states
will be identified with the elements of the finite set {1,2, A k}. The one-step
transition probabilities p;; are assumed to form the following k x k-type stochastic
matrix:

(010 ... 00\

001 ...00
(1) P=|

000...01

\10¢...00/
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The symbol p{? will be used to denote the (i, j)-th entry of the matrix P"; to p{}’s

ij
we are referred as to the n-step transition probabilities. The matrix P has the follow-
ing property:

(5.2) P* =1 (the identity matrix),
hence
(5.3) Pl =P,

The classification of the states follows from the above propertics of the matrix P.
Let (i, j) be any pair of states. Due to (5.3) there are positive integers n, and n,
such that p{; > 0 and p{’ > 0, respectively. Hence the corresponding Markov
chain is irreducible, its state space consisting precisely of a single essential set of states.
Moreover, the matrix P is obviously indecomposable. The relation (5.2) can be re-
written in the form

=1, j=12.. k.
Thus
o« o "
oy =50 =,
n=1 n=1

i.e. all states are recurrent. From (5.3) it follows all states are periodic with the same
period d; = k, j = 1, ..., k. The ergodic theorem for Markov chains implies that

limp$P = d;' = 1fk; j=1,2,... k.
As well-known, for irreducible periodic Markov chains the above limit determines
uniquely a probability k-vector p = (py, ..., p,) such that

(5.4) pP =p.

Any probability vector p satisfying (5.4) (if it exists) is said to be absolute stationary
distribution of the Markov chain corresponding to the matrix P. Hence, in our case,
the absolute stationary distribution is the uniform distribution on the set {1, 2, ..., k}
of all states.

Recall now the usual construction of the Markov chain corresponding to the
initial distribution p and the transition probability matrix P. First of all we shall
define the set function P = P(p, P) on the family of all elementary cylinders in the
space {1, €. ., k}¥ by means of the formula

n—1

(5'5) P([im e in—l](),n) = I’i.,lI:_Il Pi, i,
for ig, ..., 4,-1e{l, ..., k}. Using Kolmogorov Extension Theorem (cf. [13],
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Chapter 9) the set function P can be extended to a ¢-additive probability measure on
the o-field generated by the family of all elementary cylinders. Let

X(z)=1z2, for ze{l,..,k}¥; neN

be the coordinate random variables. The sequence {X,},., is the Markov chain
corresponding to the initial distribution p and the matrix P, respectively. The statio-
nary behaviour of the transition probabilities itself does not assure that the Markov
chain {X,,},,;o is stationary with respect to the shift-transformation T in the space
{1, ..., k}". Let the matrix P be given by (5.1). Then we have the following criterium
of stationarity.

Lemma 5.1. The Markov chain {X,,},,;o corresponding to the initial distribution
p = (p1s P2 - ... p,) and to the matrix P is stationary if and only if

(5.6) pi=p,= ... =p(=1jk).

Proof. The “if” part follows from (5.5) and (5.6). Indeed, a random process is
stationary if and only if the corresponding product measure is invariant.
Conversely, let {X,},50 be stationary. Especially

P(fnn + 132) = P [on 4 1) = B([nn + 1a).
However,
P([n,n + 1] 2] = puy
and, on the other hand,

P([n, n+ 1]2,2) = Pp-2

provided 3 £ n £ k — I. The remaining possibilities can be examined by use only
of the minor changes. Consequently p, = ... = p, = 1/k.

A natural infinite-dimensional analogue to the matrices P introduced in (5.1)
is the infinite-dimensional matrix P defined entrywise by the properties that

1 if j=i+1,
(5.7) pi; = ! . ..
0 otherwise; i,j=1,2,....

The matrix P is again indecomposable. However, all states are now transient, non-
recurrent and aperiodic. The idea used in the proof of the precceding lemma implies
that the corresponding Markov chain (see the construction be]ow) is stationary if
and only if

(58) Pe=pr= .

Hence there is no ¢-additive probability working as the absolute stationary distribu-
tion. Usually this difficulty is avoided by admitting also o-finite measures as the
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stationary distributions. An alternative approach admits finitely additive probabili-
ties within the family of the absolute stationary distributions. However, there are
infinitely many finitely additive probabilities on the o-field EB(N) possessing the pro-
perty (5.8) (cf. [37] and Section 3 of the present paper.). We should like to choose
such one from which the finite-dimensional cases mentioned above could be derived.
Let p on PB(N) be one of the extensions /1, of the z-density h, (cf. (3.1) and Proposition
3.3) with z being the sequence of all positive integers. This choice is justified by the
following statement.

Lemma 5.2. Let us consider the Markov chain with the stationary distribution
h, and the transition probability matrix P defined by (5.7)A For any k, k € N, there is
a mapping ¢ : N — {1, ..., k} (called the collapse of the states) such that the col-
lapsed process is a stationary finite Markov chairt. The corresponding product
measure P is the Markovian measure P = P(p, P) where p = (1/k. ..., 1/k) and
the stochastic matrix P is given by (5.1).

Proof. Let us consider the partition of the state space N of the original Markov
chain into the residue classes modulo k. The put

oy =j+1 if lelkn+j:in=12 ..}

forj=0,1,...,k — 1. Thenforany j,0 £j <k — 1,

Pior =n{kn+jin=12 .} =k",

hence p = (i/k, ..., 1/k). The one-step probability of remaining within a given
collapsed state {kn +j:n=1,2,...} =j+ | is zero. If we are in the state
labeled by j, the one-step probability of the transition into the state labeled by
j + 1 (mod k) equals unity. Hence the new transition matrix is that given by (5.1).
The lemma is proved.

Now we shall give the idea of constructing a finitely additive Markov chain given
a finitely additive initial distribution and the stochastic matrix P defined by (5.7).
Here, the importance of the set function /i, will be manifested once more. Let us
define the transition function p(.,..) : N x B(N) — [0, 1] by the property that

(5.9) p(n. A) = z.(n + 1).

Clearly p(n, {n + 1}) = 1. Consequently, the transition function p(., ..) induces
the matrix P. Moreover,

.[p(n, A) h(dn) = h{4), Ae2(z).
If Ae P(N) — 3(2) then . )
(s.10) )= | L5 )t

Sy hi=

22



(cf. the proof of the Proposition 3.3). Hence
Jp(n, A) h(dn) = fo(tl + 1) h(dn) = foe1(n) h(dn)

where A © k= {n:n + keA} (if there is no such n, we shall sct 4 © k = 9}.
But the right-hand side of the latter relation equals /(4 © 1). The invariance

property
Lim/(n) = Limf(n + m), m=0

of the Banach limits implies, by the definition of i, the equality

fi{d©1) = k(d).

Therefore
(5.11) [p(n, A) hfdn) = i (A), AePN).

The relation (5.11) means that i, is invariant with respect to the transition function
p(.,..). Note that this property fails to hold, in general, for such initial distributions
which are not resulting by the Banach limit procedure.

The relation (5.5) is meaningless for finitely additive initial distributions, because
it reduces to the tautology 0 = 0. Instead of (5.5) we shall use the well-known con-
struction of a Markov process due to I. Tulcea. For the sake of simplicity, we shall
confine ourselves to finite-dimensional cylinders with a low dimension. The ideas
will, of course, work for arbitrary finite-dimensional cylinders. E.g. the measure of the
two-dimensional cylinder [A4, x 4,], , is given by the formula

(5.12) Pl Ay x A]) = L [L P, 42) p(nu,dn,)] Fidno).
Now

P[4, x N](,) = JPN UMP(MN) p(no. dnl):l B (dny) =
) f U pl ‘*"‘)] Fildme) = f Pl As) fdno) = () = P([As]er)

The latter equalily is a consequence of (5.10). The equality of the first and of the
last member in the latter relation implies that by means of the formula (5.12) (and
of its analogues for larger dimensions) it is obtained a consistent family of finitely
additive probabilities. Hence we are given a finitely-additive process. Let {X,},20
be the sequence of the coordinate variables. Then

Prob (X, € 4,
= P(Xg€ Ay, Xy€dy, Xoe 4,)[P(Xge 4o, Xy € A)]7!

Xo€ Ao Xy€4y) =
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with 0/0 interpreted as 0. Using (5.12) the right-hand side of the latter relation equals

j' . [ J plnn 2) ol dn1)] Fi(dno) { f plne 1) E,(dno)}—\ _

- th(no) UA tai(ma) plno, dn,)] Fidn) {fxﬁo(no) fa(my) E,(dno)}Al .

Using the definition of the transition function one obtains for the last member the
expression:

jXA.,("o) Yadno + 1) xa{no + 2) hdng) x {J‘XAQ(WO) %a,(no + 1) E,(dno)}Al =
- iju(no)xA,el(»zo) Lune o) o) {jmno) ta,01(n0) E,(dno)}ﬂ -

1

= JXAon(Alel)n(Azez)(”O) hi{dng) x {J-XAOA(MBI)(”O) ’?'z(d"o)}f =
=h[A 0 (4, ©1)n (A4, ©2)] {h[don (4, 01 7L
Consider first the case 4; € #(z), i = 0, 1, 2. Then we obtain the expression
hfA, n (4 ©1) " (4, © 2} {h]do n (4, © D
because i, = h, on ¥(z). The relative frequency of the transition from the set A,

into the set 4, does not depend on the relative frequency of the transition from 4,
into 4;. In symbols

card {j:l S jSn, jedy j+1ed, j+2eA,) x
x{card {(j:1 S j<n jedoj+1led)) ' =
=card{j:1£j<n j+1ed, j+2e4,)} %

x{card{j:1<j<n j+led}} ",
Consequently,

hldon(4 0 1) (4, © D] {h[4s 0 (4, 01)]} 7" =
=4, 01)n(4,0)]{h(4, 0 1)} =

=P(X,e4,,X,e4,){P(X; € 4,)}”" = Prob(X,e 4,

X,ed,).
Hence we obtained the equality
Prob (X, e 4, | Xqe Ag, X; € 4;) = Prob (X, e 4, | X, € 4,)
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valid for all A¢, 4;, A, € 2(2)4 For general A;'s we have

BfAon(4; @ ) (4, @ )] {h[JAds 0 (4,0 D} =
= J% j}::l ZAO(JA) ZA,el(j) }(Azez(,/) ."(d”) X {ﬁ_’ 121 XAo(j) Xmel(j) l‘(d")}_ 1 .

Since fa(n) u(dn) = Lim a(n) for any a(s)ei”(N), we have [a{n + k) p(dn) =
= fa(n) u(dn). Hence the same argument as before applies to obtain the equality

%Jil X,u,(j) X,ue[(f) XAlez(f) X {j; ix XAL,(.II) XA,@l(j)}rl =

= % an Yas01(7) 14.020)) {% 21 XA,OI(j)}_ .

It follows from the last equality that
Prob (X, e A, | Xo € Ag, X; € 4;) = Prob(X, e 4, | X, € 4,)

for all Ay, A, A, € P(N). Note that the markovian property was established using
the invariance properties of the Banach limits. On the other hand, if we should use
finitely additive initial distributions which were not defined by means of the Banach
limits, the markovian property could possibly fail to hold.

The functionals of the Markov processes are not, generally speaking, Markov
processes. Lemma 5.1 showed that for a specijal type of the functional the induced
process is again a Markov process. Now we shall prove a more general statement.

Proposition 5.3. Let {X,,},,;O be the finitely additive Markov process with the
distribution P = P(h,, P). Let ¢ be a finite partition of the state space N. If for any
Ce{, Ce Z(z), then the induced probability measure P, on the space {1, ...
..., card (C)}N corresponds to an ergodic finite Markov chain. The measure P; is
given explicitely by the formula P, = P(q, Q) with

qi=h(C), i=12 ..., card({);

qi; = [h(C)] ! lim1 card {k:1 £k
o il

A

n (kk+1)eCx Cj.

Proof. The way of inducing the measure P, by means of the finite partitions of the
state space is given in Section 10. From Lemma 10.2 it follows that the induced
measure is ergodic. Hence we have to prove only the markovian property of the
induced measure. Using the relations established above together with the invariance
property (5.11) we compute
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gy = Prob (X, € C|Xo € C)) = P(Xq€ Ci, X; € C) [P(X,e CY] " =

= [nfCc)] ™ Jim L card tkit2kzn(kk+1)eCx C}.
n—=o

Note that h,(C;) = 0 implies g;; = O for all j. Thus, if there are some new states
with h,-probability vanishing, we have to reduce the state space by excluding these
states. Let us denote by c;; the limit on the right-hand side of the last relation.

Since the induced measure P; is ergodic, the matrix Q = (g;;) is such that the
lincar system

q=9Q

has the unique nontrivial sofution. The proof will be complete when showed that
the vector q of the conclusion is a solution. Substituting for q into the above linear
system, we obtain the following system of equalities:

hz(cj)=‘hj+42j+ et Qs J=1,000k

with k = card (£). The latter relations are valid because of (C; x C;) n (C; x C;)) =
=0 for any i,j # j’, and because for any 1e{1, ..., k} there is certainly je
e{l,...,k} such that I + 1 e C;.

The last statement of this section will concern with an ergodic property of the
Markov chain {X,},,0 with P = P(k_, P).

Proposition 5.4. For any 4 € #(z) and for all ke N,

1

lim ( ¥ prA) () = i(4).

= \J1 j=1
Proof. Clearly

0ifniln ... 1n0 0. .\
LS pi_[00 dfn . dntfno ...
nj=1 “loo o

Consequently
{2 ) Lo ) 'IXA(I) I/n (}(A(Z) + .+ ;(A(n + l))
- Zl PIya(e) = . Zl PJ (;{A.(Z) = 1/n (x4(3) o 2a(n + 2))] .

nj= j=

For n - oo, any component of the last column vector converges to /1,(A) because
of Ae #(z). Thus

fim - Zl PI () = haA) i) -

nroo N j=

The conclusion foliows.
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The above discussion motivates the following main problems:
(1) The ergodic decomposition of a finitely additive invariant probability.
(2) The concepts of the ergodicity in a finitely additive setting.
(3) The characterization of the structure of the ergodic set functions within the family
of all additive invariant probabilities.

6. The Decomposition Problem

Let (Q, &) be a measurable space, let T: Q — Q be a measurable transformation,
ie. T7'% < &. Assume we are given a T-invariant probability measure on &.
The measure y is said to be idecomposable if

= opg + (L — o),

with p,, p, invariant implies g, = p, = p. In the frequently occuring situations
the concepts of indecomposability and of ergodicity coincide. The set of all T-in-
variant probability measures is convex and the ergodic probabilities are indecom-
posable. Because of these facts the problem of the ergodic decomposition can be
viewed as a special case of the following problem:

Let M denote an arbitrary convex set in a locally convex linear space. Let E denote
the set of all extremal points in M.

(1) Find the sufficient conditions for M to be nonvoid.

(2) Find the conditions under which any element m € M can be represented by an
integral with respect to a probability measure concentrated (in some certain
sense) on the set E.

The classical solution is due to Krylov and Bogoljubov [20]. Their main results
are stated in Lemmas 4-2 — 4-4 with a compact metric space X and regular Borel
probability measures. Let us note that Lemma 4.4 gives as a special case the relation

61) W(E) = j (E) ). E < 2()

The proofs of these statements did not use convexity arguments (cf. e.g. [26]). For
countably infinite alphabet the basic space N'is no more a compact metric space.
But any Borel probability measure defined in a complete separable metric space is
regular. This in turn implies that the whole space can be approximated by a compact
subspace, the probability of this subspace being as close to unity as wanted. The ideas
of the extension of the theory to noncompact metric spaces are given in [26].

For the abstract measurable spaces the ergodic decomposition was obtained by
Blum and Hanson [5]. Their proof did not use convexity arguments. However, the
sufficient conditions assuring their proof is working involve convexity assumptions
(cf. the condition (c) below).
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Let &, denote the subo-field of & consisting of all T-invariant sets; in symbols
Sy = {E:EE.S”, T'E = E} .

Let M(.?) denote the set of all T-invariant probability measures on & . The usual
Kolmogorov o-field in M(&) will be designated by the symbol #[M(5)], thus

(6.2) .7/[]”(9”)] = a({{p :/teM(.S/’), [l,(A) < I} 011, A ey}).

Let E(#) denote the set of all T-ergodic probabilities in M{). The aim of the ergodic
decomposition is given u € M() to find a probability measure 4 on the o-field

H[E()] = E(&) n #[M(P)]

such that

(6.3) W(E) = J W(E) A(dv) -
E()

The sufficient conditions for the performability of the Blum-Hanson proof are the
following ones (cf. [9]):

(a) let py, i, € M(%). The assumption that
YE e %o i(E) = 1y(E)
implies the relations
VEe & [LI(E) = ,uz(E) N
(b) VAe ¥ V0 <t <134, €, such that
{viveE(#),v(d) s t; ={vive E(&),v(4,) =1};
(¢) if Vve E(¥), W(A) = 0 then u(4) = 0 for any u, pe M(¥).

The conditions (a) and (b) are proved in [5] to be the immediate corollaries to the
individual ergodic theorem. The condition (c) depends, in general, on the topological
properties of the space €.

Remark 6.1. The decomposition theorem in [5] was actually stated in a form
seemingly different from the required (6.3). Indeed, the decomposing probability
measure fI was defined on the o-field

#={{viveE(¥),WE) =1} :Ec%,}.
On the other hand, using the condition (b) it can be easily shown that
7 = H[E)].
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7. Stone Spaces and the Ergodic Decomposition

Let Q be a compact Hausdorfl' totally disconnected space. This means the field
% of all clopen sets in  constitutes the basis for its topology. The space Q is called
the Stone space. Actually, it is the Stone space of its own basis ¥ and ¥ is its own
Stone field (cf. e.g. [31]). Let U denote an automorphism of the field €. Then there is
a homeomorphism h of the space Q inducing U:

Uc=1n"'C, Ce%

[31]. As well-known, & = 6(%) is the Baire o-field in @ (cf. e.g. [13]). Since both h
and h~' map Baire scts into Baire sets, the automorphism U can be extended to
a c-automorphism (denoted by the same symbol U) of the o-ficld &. Let M(%),
H[M(&)], E(#) have the same meaning as in the preceeding section. In the present
context, the set E(&) of all ergodic measures coincides with the set of all indecompos-
able ones (cf. [30]).

Lemma 7.1. If & is the Baire o-field of a Stone space @, if U is an g-automorphism
of the ¢-field &, then the condition (c) of Section 6 is satisfied.

The assumptions of the lemma imply that any 4 € M{.%") is a convex linear combina-
tion of the ergodic measures. The lemma follows immediately. The proof of the state-
ment follows the lines of the argument given by Chocquet as described e.g. in [30]

Theorem 7.2, Let Q be a Stone space. For every continuous function f on  the
integral [fdv is #'[E(¥)]-measurable function of the variable v on E(¥). For
every measure pe M(S) there is a unique probability measure 2 on the o-field
H[E(S)] such that

Proof. 1.Let Ce% . Cis a clopen set, thus its indicator function is continuous.
Using the method of Blum and Hanson (which is working according to the Lemma
7.1) there is a unique probability measure /i on the o-field 24 [E(&)] such that

3 He) = J‘n et = J‘Ew) [L o O] HE) = J‘E(V) HHE).

2. The rest of the proof consists of the extension of (7.2) to the space of all conti-
nuous functions on Q. The proof involves only the standard arguments including
the Stone’s general version of the Weierstrass theorem and the limit theorems of the
Lebesgue integral.

We shall use the theorem to find the ergodic decomposition of the finitely additive
invariant probabilities. The result was obtained in [25]. Let Q denote an abstract
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nonvoid set, let o7 designate a field of subsets of Q. The symbol T will be used to
denote an automorphism of the space (2, &), i.e. a one-to-one mapping of Q onto
Q such that T™ '/ < o and To/ < o/, respectively. An additive T-invariant pro-
bability u on the field & is said to be ergodic, if there is no sequence {A,,};‘f:l < o
and no J positive such that the following three conditions are satisfied:

(7.3) (1) timp(d,A4,)=0,

m.n

(2) tmp(4,AT™'4,)=0.

(3) s<u4,)<1—-68, neN.

Theorem 7.3 [25]. The set M(s#) of all T-invariant additive probabilities on o is
nonvoid. To every pe M(m‘) there corresponds a unique c-additive probability
measure i on the Kolmogorov o-field [ E(#)] such that

(4 fay= [ ).
E(s)

The main idea of the proof consists in the investigation of a Stone space such that the
g-additive Baire probabilities correspond to the finitely additive probabilities on the
field o/. Olshen [25] used the Stone representation of a Boolean algebra. The proof
contains an interesting equality E(%) = E(&), where % is the field of all clopen sets
in the corresponding Stone space and & = a(%), respectively. We shall prove this
statement in a more general form.

Proposition 7.4. Let Q be an abstract nonvoid set, let s/ be a field of subsets of
and let & = (/). Let T be a g-automorphism of the o-field &. Then E(«#) = E(&),
i.e. for o-additive measures, a measure is ergodic in the sense of (7.3) if and only if it
is ergodic in the usual sense (cf. (1.11) and (1.12)).

Proof. 1. Let u ¢ E(&). Then there is an invariant set E, and a number ¢q, 0 <
< ¢y < 1 such that w(Eq) = ¢o. Given ¢ > 0 there is a set 4 € & possessing the
property that p(E, AA) < ¢ (cf. [23], § 13, Theorem D). Consequently, there is
a sequence {4,}> < & with the property

(A, AEg) < 1/n,
co — tn < p(d,) < co + 1n.
Assume ng, € N is large enough to satisfy the inequalitics
O<co—1lfn<co+1n<1.
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Let B, = A, +,—1(n = 1,2, ...). Then
(7.5) 0<co—1Ifn<puB)<co+1ln<i, n=12 ...
Since lim u(B, AE,) = 0, we have

(7.6) lim u(B, AB,) = 0.

mn
Actually, if we define o(4, B) = j(4 AB), then ¢ is a pseudometric on &, hence
a convergent sequence is a Cauchy sequence. Further

u(TB,, AEy) = ,u(TB,, ATE,) = /t(T(B,, AE,)) = ;1(8,, AE,),
therefore the triangle inequality yields

(1.7) lim u(TB, AB,) = 0.

The relations (7.5), (7.6) and (7.7) imply that u ¢ E(o/). Hence E(s#) = E(&).
2. Conversely, il u ¢ E{#), there are § > 0 and a sequence {4}, < &/ such that

lim u(4, A4,) =0,

ma

lim p{A, ATA,) = 0,

d<pud)<1 -6 (n=12,...).
Let A = limsup T"A,. Then A €% and ,u(A ATA) = 0. On the other hand, 0 <
<6 £ u{A) £ 1 — 6 < L Hence p ¢ E(¥). The proof is finished.

8. On the Coneept of Ergodicity

Theorem 7.3 can be proved also by representing additive not necessarily g-additive
measures as the elements of the space L%, corresponding to some L, space. This idea
is due to Hewitt and Yosida [14]. This alternative approach can be used to prove
Theorem 7.3 by means of the general Chocquet’s representation theorem. For
o-additive measures this was done by Feldman (cf. [30]). We shall not give the
alternative proof of the decomposition theorem, but we shall use the general method
to obtain some interesting results concerning the ergodic finitely additive probabilities.

Let (£, &, m) be a o-finite measure space. The symbol M(m) [M *(m)] will denote
the set of all bounded signed [positive] additive set functions on the o-field # vanish-
ing on every set E € & for which m(E) = 0. Let us consider the linear space Lw(m)
of all equivalence classes of the essentially bounded (with respect to the measure m)
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F-measurable real functions. Let U denote the isometric isomorphism of the space
M(m) into the normed conjugate L% (m) of L,(m) (cf. [14], Theorem 2.3). Let

4] = L7720, 5(1) = 1} .

(8.1) B = {f*:f*eLl(m),
Then B is a convex w*-compact set. By Krein-Milman theorem (cf. e.g. [8]) B is the
closed convex hull of the set dB of its extremal points, in symbols

B =5 (0B).

The set B is closed in B, hence a compact subset of B. We shall denote it by the
symbol S. Thus S is a compact Hausdorff space. Let us recall the well-known cha-

racterization of the space S:

(8.2) f*eS iff VEeF [*ypel{0,1}.
The mapping V: L, (m) — C(S) defined by

(83) WD) =751), feLalm)

is an order preserving isometric isomorphism (cf. [14], Theotems 4.2 and 4.3).
Clearly, by (8.3) and (8.2), to cvery set E € # there corresponds a clopen sct £ = S
such that
Ve = Xz -
Let
o ={E:EcS, gz = Vi for somz Ee #}.

The o-field 6(7) is the Baire o-field in S [14]. The adjoint mapping ¥* : C*(S) —»
— L%(m) is an isometric isomorphism, too [15]. Consequently, the composition
U.o V*~! is an isometric isomorphism of the space M(m) onto the sct C*(S) of all

Radon measures on S.
Let T denote an automorphism of the measurable space (2, #). The correspond-
ing linear operator T : L,,(m) — L(m) is defined by the property

(®4) (Tf) (@) = /(Tw), feL(m).
Let T, be induced from T by the isomorphism V:
TVf) = V(Tf), feLo(m).

Since VL, (m) = C(S), T, maps C(S) into C(S). By the symbol 7; we shall denote
the adjoint of Ty, i.e.

(T,1%) () = h¥(Tch), h* e C¥(S).

32



A transformation of the space C*(S) corresponding to the automorphism 7 can be
introduced also in another natural way. Let T* be the adjoint of T, i.e.

(T4 (1) =1(T1) . f* e Li(m).
Let T, be induced from T* by the isomorphism V*~*:
(V1) = 1 (THf*), f*e Li(m).

However, both constructions give the same result in the sense of the following
lemma. Let

(8.5) M{(m, T)={u:peM*(m), p(Q) =1, p=puT '}.

Lemma 8.1. The following three statements are equivalent:
(1) weM{(m,T),
@ v U = Tiv+ (U,
() v Uy = Tov*~'(U) .

The proof is elementary and therefore it is omitted.
Assume we are given an arbitrary Radon measure h* € C*(S) on S. Then there is
a unique signed Baire measure Wh* on S such that

(8-6) I¥(h) = L h(s) (Wh*)(ds), heC(S)

(cf. [8]-Riesz representation theorem). Let Z denote the composition of U, V*~!
and W in this order, i.e.

(8.7) Zu=w[V='Uun)], neM(m).

In [14] it is proved that each bounded positive finitely additive set function on a ring
of sets uniquely decomposes into the s-additive part and a pure charge. Let us recall
that a finitely additive set function is said to be a pure charge provided that any
g-additive positive measure majorized by it vanishes everywhere. The correspondence
between the Hewitt-Yosida and the Lebesgue decompositions is established in the
following theorem.

Theorem 8.2. Let g€ M*(m). Let
(8.8) Zi =y + py

be the Lebesgue decomposition of the measure Zu into the Zm-absolutely con-
tinuous part g, and a Zm-singular part y,, respectively. Then the formula

(8.9) p=Z""p + 27,
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establishes the Hewitt-Yosida decomposition of the set function u.Z 'y, is the
g-additive part and Z~ 'y, is the pure charge, respectively.

Proof. Let the formula (8.8) does not establish the Hewitt-Yosida decomposition.
Then there are nontrivial Hewitt-Yosida decompositions

(8-10) Z7 =l + (i =1,2),

where 4§ is the g-additive part and !} is the pure charge corresponding to Z7'u;
(i = 1, 2). Now Zy§ is Zm-absolutely continuous and Zy} is Zm-singular; in symbols

(8.11) ZuS < Zm, Zuil Zm

(cf. [15]). Let us consider i = 1. By the assumption, y; < Zm. On the other hand,
1, contains a Zm-singular part Zu!, a contradiction. Hence p; = Zp§, i.e. Z 'y, =
= u§. This proves the c-additivity of Z™*p,. A similar argument for i = 2 shows
that the set function Z 'u, is a pure charge. The theorem follows because of the
uniqueness of the Lebesgue decomposition.

The following lemma makes sense only for ¢-additive measures. Let (Q, #) be
a measurable space, let T be a measurable transformation of 2. Assume g and v
are two T-invariant probability measures on &.

Lemma 8.3. Let v = v, + v, be the Lebesgue decomposition of the measure v with
respect to the measure p. Then vy = voT ~'and v = v, T~', respectively.

The proof follows the lines of the usual proof of the Lebesgue decomposition
theorem (cf. [13]). The only new fact is that the density f of v with respect to u + v

is now invariant, i.e. / = /o T[v] (cf. [30], the result is due to Feldman).

Theorem 8.4. Let (2, #, m) be a probability space with m = mT~"', where T
is an automorphism of the measurable space (Q, #). Let p e M{(m, T) be indecom-
posable (i.e. ergodic). Then u is either ¢-additive or a pure charge.

Remark 8.5. Given two invariant pure charges, their linear combination is again
a pure charge [14]. Since a linear combination of invariant set functions is again
invariant we have, by the theorem:

oMy{(m, T) = E(#) U ¢P.Ch,,
where the symbol on the left-hand side designates the set of all indecomposable

elements in M (m, T) and the symbol on the very right of the relation denotes the
set of all indecomposable pure charges.

Proof of the theorem. Let us define the mapping 7:S — S by the property
that

h¥(hot) = (Th*)(h), N*eC*(S).
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Here, T denotes one of the operators 7; and T, introduced above. Clearly 7 is conti-
nuous and Th* = h* if and only if (Wh*) <! = Wh*. It can be easily shown that
to the indecomposable elements of My (m, T) there correspond the ergodic probabi-
lity measures on (S, o(<7)). Lemma 8.3 both with the definition of the ergodicity
imply that the Lebesgue decomposition of the measure Zu corresponding to an
indecomposable g must be trivial. Hence, by Theorem 8.2, the Hewitt-Yosida
decomposition of u must be trivial. The theorem is proved.

9. The Method of Maximal Compactification

In the special case of @ = X' with an at most countable set X we have still another
possibility for the study of the properties of finitely additive probabilities by means of
the corresponding s-additive ones. The main fact used here is that the space X' is
a complete separable metric space, which is totally disconnected in the distance
function g (cf. (].9)).

Lemma 9.1. Each totally disconnected Ty-space X possesses a Hausdorff compacti-
fication.

The only thing to prove is the complete regularity of the space X. Using the fact
that the indicator functions of the sets belonging to the basis in X are continuous,
one can easily check the complete regularity.

The space X is actually homeomorphic with a dense subset of its maximal compacti-
fication ([ 17], p. 226, [8], p. 300).

Lemma 9.2. The maximal compactification of a totally disconnected space X is
a totally disconnected space.

Indeed, let ¥ be the basis for X. The continuous extension of the continuous
function y¢ on X is the indicator function yg of the set C, which is the closure of C
in the topology of the maximal compactification. To show that the family {C : C € ¢}
is the basis for-the maximal compactification it suffices to prove that is a field. Since
¢ = ¢pe@ and @ is closed with respect to the finite intersections, it suffices to prove
the following

Lemma 9.3. Let Ce %, let C° =X — C. Then C n C° = ¢.

Proof. Let x e C n C° Since x € C, there is a net x, € C such that x, converges
to x in the topology of the maximal compactification. Similarly, since x € C°, there is
a net y, e C° such that y, — x. Let f denote the continuous extension of yc. Since
X, X, f(x,) = f(x). But f(x,) = xc(x,) = 1, hence f(x) = 1. Similarly, f(y,) —
- f(x). But f{y,) = 0, hence f(x) = 0, a contradiction yielding the desired conclu-
sion.

Let us consider now the space (N’, 7). Let BN denote as usually its maximal
compactification. Let & be the corresponding field of subsets of BN”. For any A € <7
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let us define the g-additive probability measure p, by the property that
wo(A) = p(A), Aol
For any # < o) let
URB)={E:Eeo(d), VnIF,eB3G,eB,F, "E, G, \ E}.
For any ordinal number « less than the first uncountable ordinal Q we shall set

B, =) UB), Bo=d.
A<a
Then
o) = U (U %%,).
a< A<a

Let us note that the latter statement represents the well-known transfinite construc-
tion of the o-field generated by the field /. This way of introducing the o-field
a(&Z) in BN allows us to define a set-transformation of the space N induced by
the shift Tin N'. Let

TA=T A, Aes.
Let
TO =T, for B, =.

If « < Qis an ordinal, we shall set

{T“’E if Ec®,,)<a;

T(a)E = ©
1 U T@YF, if there is no 4 < o with E€ &, ;
1

n=

with F, e %, 7 E. Finally, let us define

a=1»
TE=TWE, Ee%,, a<Q, Eeo(d).

Hence, by the transfinite induction, it is possible to obtain a simultaneous extension
of both the measure y, and the transformation T} to the (Baire) o-field o(.7).

10. Elementary Properties of Finite Partitions

The finite partitions will be the main tool in the subsequent parts of the present
paper. Therefore it is worthwile to mention some elementary facts concerning the
finite partitions in advance.

Let A denote an arbitrary nonvoid set. A finite collection {Cl, R Ck} of nonvoid
pairwise disjoint subsets of the set 4 whose union is the whole of A4 is said to be
a finite partition of the set A. If { and & are finite partitions of the set A, the symbol
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{ v & will be used to denote the finite partition of the same set 4 defined by
(10.1) {veé={CnD:Cel, Det}.

Given two partitions { and & we shall write

(10.2) & 0 (vE=(.

The relation > partially orders the set of all finite partitions of the set 4 given.
Let { be a finite partition of the set A"(k = 1,2, ...). Then {" will denote its n-th
Cartesian power, i.e. a finite partition of the set 4" consisting of all sets expres-
sible in the form

C'x ...xC(Clel, i=12..,n).

The simplest properties of the finite partitions used throughout the paper are summed
up in the following

Lemma 10.1. (1) Let { < /4 be a finite partition of the space X'. Then there are
ig €1, ng € N such that VC e { 3E(C) € #(X"°) with the property that

C= [E(C)]io.'lo .

(2) Let { = #(X") be a finite partition of the space X". Let [{],, = {[C]:,: Ce{}.
The collection [¢],, is a finite partition of the space X’ for all i ¢ J.

(3) Let { = #(X") be a finite partition of X". Then there is a finite partition &, ¢ <
< #(X) such that & > {.

Let us recall that the symbol Zy was introduced to denote the set of all finite
partitions of the alphabet X into the Borel sets. If { © &/ is a finite partition of the
space X7,

Ti ={TiC:Cel}, iel.

Clearly, for { € Zy,
n—1

(10:3) yo T [o = [EToom-
=

The following property of the partially ordered set (Zy, >) will be frequently used.
Let(,leZy. Then{ v (eZyand { v &>, & v { > & respectively. Hence Zy is
a directed set by means of the relation >.

Now we shall introduce a general schema of the induction of the finite alphabet
sources using the finite partitions of the alphabet. This way will be fixed throughout
the whole paper.

Let { € Zy. The notation { = {C,, ..., C;} will mean that
(1) card({) =k,

(2) the elements of { are numbered in the following fixed one-to-one manner.
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Let {x,, x,, ...} be a countable dense set in X. Let { € Zy with card ({) = k. Let
C, be that C € { for which x, e C,
a; =min{k:xeX - C},
(10.4) C, be that C € { for which x, € C,
a,=min{k:x,eX = (C; v C,),

Co=X—u{Cj=1,..,k—=1}.

Given { = {Cy, ..., C;} € Zyx we shall definc the mapping 7, : N' > {1, ..., k}
by the property that

(10.5) (tp2); =j if z;eC; for zeX', iel.

Since r[‘a/k < &y, the mapping is measurable. Hence given a stationary source,
ie. a finitely additive shift-invariant probability u on the field o/x the notation

ut; ' makes sense. Clearly

pr({L LK) =1

Thus for any { € Zy the induced measure ,uz;_’ is a g-additive probability on «7,.
We shall denote by J its unique extension to the o-field & = o(s#,). Clearly
(pey ) Tt = pr; *. The ergodicity properties are related in the following

Lemma 10.2. The source e M(s/x) is indecomposable if and only if for every
{ € Zy the finite alphabet stationary source [, is ergodic with respect to the trans-
formation T,

In one direction the proof is trivial because of the coincidence of the concepts
of the indecomposability and of the ergodicity for o-additive probabilities. The proof
in the opposite direction follows using the method of the proof of Proposition 7.4.

PART III: RATES ASSOCIATED WITH A SOURCE

The coding theorem was established in [40] and [41] (cf. also Theorem 2.2’ or
Theorem 2.2 of the present paper). The aim of this part is to study the quantities
called the entropy and the asymptotic rates, respectively, in a more general setup,
i.e. for finitely additive sources with an abstract alphabet X. This means that the
symbol X will denote an uncountable separable metric space. The basic notions are
modified. For the special case X = N they will be shown to give the original quan-
tites. Hence our approach constitues an alternative point of view concerning the
entropy and the asymptotic rates, respectively.
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11. The Notion of the Entropy Rate

Let X = N. Let p denote a g-additive T-invariant probability measure on the o-field
F = o(sZ). The relation (4.1) can be rewritten in the form

(1.1) H(w) = - "lin;; X 1[5 logulx]

(cf. (1.3) and (1.4)). Here the symbol log means log, and we shall adopt the usual
convention 0.log 0 = 0. As mentioned earlier, the decisive role plays the family

{[x]:xeN"}

being the n-th Cartesian power of a generator. Since for an uncountable metric space
this fact fails to hold, the relation (11.1) cannot be used to define the entropy rate.
Even for X = N it is impossible to use the relation (11.1) for finitely additive pro-
babilities on &7, because the above family is not finite. Hence we are forced to modify
the concept of the entropy rate.

Let { € Zy (cf. Section 10). Then define

(11.2) HGu D) = = tim L 5 4B, log u[E],
noo N Eeln

where p is any Ty-invariant finitely additive probability on the field o/, of all finite-
dimensional cylinders in X’ Since p = uTx", we have u[E];, = p[E] (cf. (1.3)),
thus the right-hand side of (11.2) does not depend on i€ 1. The entropy rate H(p)
is then defined as the supremum

(11.3) H(w) = sup {H(u, {) : (e Zy} .
Note that by (10.3) we have

H(u, 0) = — lim }l Yu(E) log u(E) ,

where the summation is taken over all sets E belonging to
the finite family V T5’[{Jo.;. This fact together with the elementary properties

of the finite pdrlmons as stated in Lemma 10.1 show that H(u) is nothing but Sinaj’s
modification of the concept of entropy of the automorphism Ty (cf. [35]).

The entropy rate of a finitely additive source can assume any value from the interval
[0, o] (cf. also Remark 12.2 below). The following two examples illustrate the
extremal cases.

Example 11.1. Let % denote the ultrafilter in P(IN) containing the filter of all
complements of finite subsets of the set N. Let p be the pure charge on ‘,B(N) defined
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by the properties that

. 1 if EeZF,
uEy=1 1 "¢
0 if E¢F.

Let i denote the discrete memoryless source uniquely determined by the pure charge
u, i.e.

E=Tlw; w=p for iel.

ie

(The infinite-dimensional product of finitely additive probabilities exists and it is
again a finitely additive probability [8].) Clearly, ji(E) e {0,1} for all Ee 4. Hence,
for any {, (e Z,

H(iZ, ) = H() = — ;C/t(E) log u(E) = 0.

The left-hand side equality follows from the fact that 7 is a memoryless source.

Finally,
H(g) = sup H(fi,{) =0.

Example 11.2. Let p = P(h,, P) be a stationary Markov source (cf. Section 5).
We shall show that H(u) = co by showing that for any given positive integer k there
is a finite partition ¢, of the set N such that

H(w, &) = log k.

Let ke N be given. Consider the first k* positive integers and divide them into k
disjoint classes constituted by the different rows of the following schema:

L 2 4 6 e 2k =2
3 2k 2k +12k+3

5 2k + 2

7 2k + 4 : :

: : . K2 -3k -2
2k -1 R il I

Then continue in the same way with the subsequent k? positive integers. The juxta-
position of the (infinitely many) subsequent partitions yields an infinite schema
with exactly k rows. The rows are identified with the new states, say Sy, S,, ..., S

Now

A

lim card{m:1 <m<nmeS} _
nrocard{m:1 S mZnmeS;}
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for all pairs (i, j), hence
gi=q(S)=1/k; i=12 ..,k

(cf. also Proposition 5.3). From the construction of the partition it follows that the
one-step transition probability matrix Q of the collapsed process is

1k ilk ... 1k
Q=| : : :
1k ik ... 1]k
Therefore the coliapsed process is an ergodic Markov chain (cf. Proposition 5.3 and
Lemma 10.2). A well-known result concerning the entropy rate of the ergodic Markov
chains gives
k

H(#> Ck) = Z qi H(Qm s qik) = log k
=1
(cf. [2]). Consequently,

H(p) = sup H(p, 0) z sup H(u, §i) = .
€, k

12, The Integral Representation of the Entropy Rate

The results of this Section are contained in the author’s paper [37]. Here we shall
give only the formulation of the main result and several comments concerning its
proof. Note that the result and the proof in [37] were given in the case X = N.
However, they can be transmitted to the general case of a separable metric space X
without any effort. ’

Theorem 12.1. The entropy rate H(y) of a finitely additive Ty-invariant probability
1 defined on the field &/ can be represented by an integral in the form

(12.1) H(g) = J’M HO)A)-

(cf. Theorem 7.3).
In [37] it was proved the relation

(12.2) H(7p) = J PRCLERES
E(sx)

by means of Theorem 7.3. The remaining part of the proof was devoted to the
justification of a general form of the limit theorem concerning with nets instead
of the sequences. The direct method used in [37] can be replaced by the following
considerations. :
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1. H(u) = co. Then the monotone net {H(fi;)};.z, has no upper bound. By (12.2),

the monotone net
{]. noo an}
E(afx) ezx

has no upper bound. Consequently, the monotone net { H(¥,)},.z, , with f-probability

positive, has no upper bound. Let the symbol lim,, denote the limit of a net indexed
by the elements of the directed set Zy. Then

Hls) = sup H(7) = g, H(z)
{eZx
and

limz, H(¥) = sup H(¥.) = H(y) = =
feZx
with positive ji-probability. Hence

limZxJ. H(5,) (dv) = co.
E(a x)

Consequently

limg, H(&) = limy, f

E(s/x)

H(7,) p(dv) = j limg,, H(7.) A(dv)

E(a/X)

both sides being infinite. Thus the relation (12.1) follows in this case.

2. Let H(u) = H < co. Then the monotone increasing net { H(ji;)};.z, is bounded
from above by the constant H. Let &/ denote the field of subsets of Z, consisting
of all initial segments with respect to the relation > and their complements. Let

2(B) = 1 if B is the complement of an initial segment,
0 if B isan initial segment; Be /.
Then

'(' x; p(dg) = lim,, x;
Zx

for any convergent net {x},., or real numbers (cf. Proposiiion 3.3 and its proof).
Hence, it suffices to prove the following Fubini theorem-like relation

[ 1. emen]oeo= [ [[ noneoa.

The last relation follows immediately from a general form of the Fubini theorem
for finitely additive set functions [24].
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Remark 12.2. Let {o;} be any sequence such that
@
(a) 20, Yo,=1,
=1
@
() H({o}i2y) = — Y oyloga; < 0.
i=1

Let {u'?};2, be any sequence of stationary o-additive sources, all with the same at

most countable alphabet X.

Let
u(E) = pP[E], EeB(X")

(cf. (1.3)). Let H(uS",) denote the entropy of the probability distribution u§?, on

B(X") = P(X"). Then we have
H(u?) = lim »lfH(pff'),, .
w1
The assumption (b) together with the latter relation and the inequalities
St H(2) 5 HOE 2) S T acHGE) + A((z)2)
yield the relation
(12.3) H(ilal_um) éiai H(®).

This fact is well-known. Now let {u?}2., be any sequence of the finitely additive
sources, all defined on the same field Ay. Let { € Zy. We shall set

n—1
H(i, {) = — Yu(E)log (E), Ee _\/OT,;J[c]O,. .
j=
Then we have the inequalities
@0 X 0 i © )
Lo H(4®, 0 £ BT an®,{) < ¥ H(1D, ) + H({e}i2) -
i= i=1 i=1
Hence
el . 0 . «© R
Y o H®, ) < H(S au®,0) < 3 o BO, 0).
i=1 i=1 i=1
Consequently, for any { € Zy,
o0 N 0
S H(E0,0) = H( 30, 0).
i= i=1
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But this in turn implies that the relation (12.3) takes place even in this general setup.
This fact can be used to obtain finitely additive sources with any nonnegative value
of the entropy rate. Indeed, let us consider the pure charge of Example 11.1. Given
any a € (0, 1) and given any h e [0, oo] let us take a discrete memoryless o-additive
source u) with H(u"} = hfo. Denoting the pure charge by u®), we have

H(op® + (1 — o) @) = « HE®)y + (1 — o) H®) = h.

13. A Further Property of the Entropy

The construction of the associated o-additive Baire probability measure to any
given finitely additive probability, especially to any given finitely additive information
source leads to the seemingly evident fact that there is no need to study finitely addi-
tive probabilities. This opinion is supported also by the result of this section.

We shall employ the notations used in Section 8. Let p e M{ (m, T). The entropy
in the sense of Sinaj [35] is the supremum

Hy) = sup [— lim }; Zu(E) log H(E)] .

=0

n—1
Here, the sum is taken over the elements E of the finite partition V T~! { and the
i=0
supremum is taken over all finite partitions { such that { = . The corresponding
Baire probability measure si denoted by Zu and its entropy by H(Zu).

Proposition 13.1. For any € M (m, T) we have

(13.1) H(w) = H(Zy).

The o-field & in the corresponding compact Hausdorff space S is generated by the
field 7 of all clopen sets in S. As well-known,

sup H(Zy, ) = sup H(Zy, {) .
(@ {ey
Using this equality and the construction of Zu as given in Section 8 it is easy to
obtain (13.1).

Remark 13.2. The representation of the finitely additive probabilities by means
of the space LY (im) has one very serious disadvantage. The space L,(m) is not separ-
able, hence the corresponding space C(S) is not separable. This means that the
compact space S itself cannot be metrizable (cf. e.g. [8]).
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Thus using the C*(S) representation of L% (m) we obtain better properties of the set
functions (namely the o-additivity), but, on the other hand, we loose the good
properties of the basic space. Especially, when considering the metric space X7’
which is a Lebesgue space [32], the corresponding space S is not a Lebesgue space.
Indeed, the o-field & is not more countably generated, hence the approximation
arguments (cf. Theorem 4.7) fail to hold.

14. The Asymptotic Rate
Let p e M(a/y), let { € Zy. Then we shall set
(14.1)  (a)AE) = B[E);, for Ec{l,...,card({)}*, n=12,...

(cf. Section 10 for the symbol ). Since i = uT5?, the relation (14.1) holds indepen-
dently of which i e I was chosen. In accordance with (2.3) we shall define the n-di-
mensional &-length of the source ji;, in symbols L,(e, /i), by the relation

(14.2) Ly, i) = min {card (E) : E = {1, ..., card (Q)}",
(A)E)y>1—¢}; O<e<].
The coding Theorem 2.2 yields the quantity

(14.3) V(i) = lim lim L log L,(e, it;) -

c0 nom N
In accordance with the remark finishing Section 4 we shall study the properties
of the quantity

(14.4) V(u) = sup V(i) ,

LeZx

which will be called the asymptotic rate of the source u. Let us denote
= - 1 =
V(i) = lim lim sup - log L,(&, /i)
!

V(i) = ]in; lim infﬁ log Ly(e, it;) -
We shall make use of the following auxiliary quantities:
(143) V() = sup (), V(E) = sup V(&)

teZx tezx
Let us note that for invariant u we have V(i) = V(fi,) for all { & Z, (cf. [40]), hence
(14.6) V(g) =V(w) =V, peM(y).
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15. Basic Lemmas on the Asymptotic Rate

We proceed to the main results on the asymptotic rate by proving first two basic
lemmas, which are the counterparts of Lemmas I and 1L in [41].

Lemma 15.1. If e M(dx), if ¢ is a finite real number, then the assumption that
(15.1) A{viveE(sty), HV) <S¢} =1
implies the inequality
(15.2) ' V() sc.

Proof. 1. First of all we have to show that the set in (15.1) is measurable with respect
to the o-field H[E(y)] (cf. (6.2)). It follows immediately from the definition
of H(v, {) that it is a # [E(s/x)]-measurable function of the variable v on E(/y).
Now

H(v) = sup; H(v, {) = limz, H(v, ().

If H(v) = oo then given n€N there is a partition ¢, € Zx such that H(v,{,) Z n-
Clearly, there are infinitely many such {,’s because of the inequality

H(v,{) < logcard () .

Hence H(v) = lim H(v, {,). If H(v) < co then the set {H(v,{): { € Zy} is bounded

from above by H(v); H(v) being exactly the least uppet bound. Hence it is possible
to find a sequence {i,} = {H(v,{): { € Zy} converging to H(v). Hence H(.) is a
H [ E(sf x)]-measurable function of the variable v on E(sZ).

2. We shall show that for the set function satisfying the assumptions of the lemma
the equalities

(15.3) if{z:zeR, Hu)<c} =1, feZy
take place. For the sake of simplicity in notations we have used R; as an abbreviation

for Reyeaq)» the set of all regular points in the space {1, . .., card {{)}" (cf. Section 1).
Using Lemma 4.4 we have

(154)  Rfz:zeR, Hiw) <} = J'R u{z : Hlp,) = ¢} B(dx) =

= L; [,[ Yisettuo (V) (A y)] {dx)
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Using the idea developed in detail in [37] we conclude that the right-hand side
of (15.4) equals the integral

(15.5) J‘Ew“ [J Aty ge (V) ‘—’g(d)’)] Adv).

The assumption (15.1) implies
(15.6) MyiveE(y), Hi) <S¢} =1, (eZy.

Let A = {v:ve E(«y), H(v,) < c}. The relation (15.6) implies that the integration
domain in the outer integral in (15.5) can be replaced by the set 4, thus the integral
(15.5) equals the following one

(15.) j Um( o) v;(w)] (@)

But for each ved, v{z:H(u) < c} =1 (cf. [37]). Combining (15.4)~(15.7)
together with the latter equality we obtain (15.3). Henceforth, for any { € Zy, Lemma I
of [41] applies to the source ji;:

limsup*logld,,(e,ﬁg)§c for 0<e<1l, {eZy.
aoon
Thus

lim lim sup £log Lfe, V) Sc for &eZy,
n

&0 "

Vigg) se, {eZy.
The theorem follows using these inequalities both with (14.5).

Lemma 15.2. If pe M(s/y) and if ¢ is a finite real number, then the assumption
that

(15.8) a{v:veE(sdy), HY) 2 ¢} =1
implies the inequality
(159) OERS

Proof. First we shall use the fact that

sup H(y, ) = limz, H(w, ) (cf. [37]).

{eZx
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Using the monotonicity of the net { H(y, {)},.z, we obtain the following statement:
V6> 03l eZy Ve > Loy L€Zy,
c— 6 < H(¥) < H(v).
It was proved in [37] that for all { € Zy we have
v{z:zeR,, H(w)=HF) =1.
Therefore for { > {, we have
V{z:izeRy H(u)>c— 68} =1.
Now

iz ze R, H(u.) > ¢ — 8} =J. v{z:zeR, H(p,) > c — 6} p{dv) =

E(/x)
= J’ v{z:zeR; H(p) > c — 6} a(dv),
A
where A = {v:ve E(s/y), H(v) 2 c}. For each ve A we have H(V)) > ¢ — & for
any 8 > 0 and { > {(), thus
V6 > 030 € Zy V> Loy L€ Zy
jz:zeR, Hp)>c -8} =1.
Applying Lemma 11 of [41] with ¢ = i, ¢ = ¢ — & we conclude that
V() > e~ 5 for o).
Let us assume, contrary to the conclusion of the lemma, that

sup V(it) < c.

leZx
Then there is a finite real number K such that
sup V(i) <K <c.
Take 6 = ¢ — K < 0. Then there is {o(6) € Zy such that for all { € Zy, { > {o(3),
V(g)>c—-d=K.
Hence we obtain

K < V(g) = sup V(i) < K,

leZx

a contradiction. The proof of the lemma is complete.

48



The main theorem concerning the asymptotic rate deals with its connection with

- the entropy rates of the ergodic components of a stationary source given. For this

purpose, let us recall the definition of the essential supremum. Let(Q, &, pt) be a pro-

bability space. Given any measurable function f on @, we shall define its essential
supremum as the number

ess.sup f(w) = inf {t: p{o : fw) £ 1} = 1}.

weR(n]

Theorem 15.3. The asymptotic rate of a source ue M(2/) equals the essential
supremum of the entropy rates of its ergodic components; in symbols

V(u) = esssup H(v).

veE(o x)[A]

16. The Proof: via Ergodic Theoy

The following proof of the Theorem 15.3 will use exclusively the tools within the
ergodic theory of invariant set functions, as described in Section 4 and Part II. In the
Appendix another proof will be given, which will provide an intuitive meaning for
the asymptotic rate. This proof will use the methods of the information transmis-
sion theory.

1. Letusset h = ess. sup H(v). Since H(v) is a measurable function of the variable
v on E(#y), the notion of the essential supremum makes sense. Let us assume
V() > h. Then there is a finite real number ¢ such that V(i) > ¢ > h. This means
that

(16.1) inf {t: a{v : H(v)

Indeed, if t < c then {v: H(v) £ 1} = {v: H(v) £ c}, therefore

IIA

=1} <ec.

py:HE) S} 2 pv:HE) St}
Taking t < ¢ such that A{v : H(v) £ 1} = 1 we conclude that
(16.2) plvive E(aty), HO) < c} = 1.
(Clearly, by (16.1), there is at least one ¢ with the required properties.) Now Lemma

15.1 applies because of (16.2), consequently ¥ (i) < c. Since V(i) = V(1) = V(u),
we have .

V() = V) £ ¢ < V()

a contradiction. Hence the converse inequality V(i) £ h must always take place.
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2. Let us assume that the strict inequality V(u) < h is valid. Then we can choose
a finite real number ¢ such that the inequalities V(i) < ¢ < h are valid. This means
that

(16.3) inf{r:p{v:Hp) st} =1} > c.
Let us denote by E(c) the set
{v:ive E(y), Hv) = c}.

If A(E(c)) = 0 then A{v : H(v) < ¢} = L. But the latter fact contradicts (16.3), since
every ! satisfying the relation A{v : H(v) < t} = 1 has to satisfy the inequality ¢ > c.
Consequently, A(E(c)) = « > 0.
Let us consider the case « = 1. Then
ﬁ{v:H(v) = c} =1,

hence by Lemma 15.2 we obtain the contradictory inequalities

V) =V ze> V.

The case 0 < o < 1 will be reduced to the former one. Let 0 < ¢ < 1. Define the

AL A

probability measures 2’, i” on E(dx) by the properties that
, 1
#(E) = L 0(E 0 E(E),

H(E) = —— [A(E) = st (B)], E ot [E(ot)].

Then

fo=ap +(1—a)p".
Now by Theorem 7.3 there are stationary sources ', u”
= oy + (1 — o) p". Indeed, let

such that u =

W) = j WA) (dv), Ae sty

E(al x)
the source p” being defined analogously by means of the measure fi”. Using twice

the Extension Theorem for measures we conclude that

B=ogy+ (1 -0, (eZy

Now a'{v:H(v) = ¢} = ™' p(E(c)) = 1. Hence ¥(i') = ¢ by Lemma 15.2. Now
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for every { € Zy we have the inequality
S | _ L1 -
lim inf ~ log L,(e, ;) 2 lim inf - log L,(g/ot, /if)
n n n n

valid for all 0 < & < a {cf. [41], p. 144). Hence
V(m) z Vi), leZy.
This finally gives the desired contradiction:

V() = V() 2 ¢ > V().

The theorem is proved.

17. The Basic Relations between the Rates

In order not to confuse the notations, we shall use the symbols #(x) and ¥"(n)
for the entropy rate and the asymptotic rate, respectively, as they were defined
in [41].

Theorem 17.1. Let pe M(s/). Then V(i) = H(y). If, moreover, u is an ergodic
source, then V(i) = H(p).
Proof. Let u € M(y). Then the inequality stated in the theorem is a corollary
both to Theorems 12.1 and 15.3. Indeed,
H(p) = H(v) i(dv) £ ess . sup H(v) = V().
E(sfx) veE(#x)[R]

Let { € Zy. Then V(i) = ¥°(ji;), by the very definition of V(ji). If ;i € E(##), then
[ is an ergodic finite-alphabet source (cf. Lemma 10.2). Consequently, ¥ (i) =
#(ji;) (cf. [40], Theorem 9.1). But for finite alphabet sources the concepts of the
entropy rate coincide, hence #(&;) = H(j;). The theorem is proved.

Remark 17.2. Theorem 9.1 used in the proof of the preceeding theorem actually
states more than was really used: :

.1
lim ~log L,(e, fi) = ¥(e) = (£, (e Zy.

Hence we have

(17.1) sup lim log Ly(e, ) = V() = H(),

leZx n R
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the relation being valid for any ergodic source p. The relation (17.1) motivates the
notion of the strong stability, introduced and examined in the next section.

Example 17.3. Let us consider the decomposable stochastic matrix

1212 0 0
A=[1/2172 0 0

0 0  1/100 99100

0 0 1100 99/100

Denote by {Y,} the corresponding Markov chain. The indecomposable submatrices
of the matrix A are denoted by the symbols A and A®) respectively, i.e.

A - (112 1/2) A@ _ (1/100 99100\
12 12)° 1/100 99/100/

/ /

The Markov chains {X{"} and {X{®’} determined by the matrices A®"? and A®
are ergodic. Denote the absolute stationary distribution by p™ and p™®, respectively.
Then (cf. [2])

H{XPY) = iV H(1[2, 1/2) + p87 H(1[2,1[2) = 1,
H({XP}) = pi® H(1/100, 99/100) + p5>’ H(1/100, 99/100) =
= H(1/100, 99/100) ~ 0-06 .
Since pt'’ and p® are the absolute stationary distributions, any probability 4-vector
P =(opi", api?, (1~ o) pi¥, (1 — 2)p5”)

with 0 < & < 1 is the absolute stationary distribution of the Markov chain {Y,}
corresponding to the original transition probability matrix A. Now

H({Y,}) = « H{X("}) + (1 - o) H({X;}).
Hence, for 0 < a < 1, H({Y,}) ranges within the interval
006 < H({Y,}) < L
(cf. (12.3)). On the other hand (cf. Theorem 15.3), we have
V(1) = max [H((X)), (X)) = 1

regardless of what value of « was chosen.
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18. Strongly Stable Sources

The proof of the simplest form of the coding theorem (cf. Theorem 2.1) is based
on the following statement:

Lemma 18.1. Let 7, be the (apriori) probability of the observed sequence x*,. ..
..., x® of independent trials. Then

Vg > 0V6 > 03n,Vn = ny

(18.1) P{|~1lognn—Hf§n}>1~5.
n

A generalization of this theorem for ergodic sources is just the well-known McMillan’s
theorem [23]. These statements show that in a sequence of independent symbols (or
in an ergodic sequence) the quantity of information per symbol is asymptotically
stable. This means that the average quantity of information is, with probability as
close to unity as wanted, nearly a constant, if # is large enough.

The following concept of stability makes sense for arbitrary, even nonstationary
sources. Let p be any finitely additive probability on the field &y. For { € Zy, we
shall set

(18.2) Li (e, 1, 0) = min{card (&) : E = ¢, Y pu[D];, > 1 — &}
Det

for iel,neN,0 < ¢ < 1, respectively. The source p is said to be strongly stable
provided there is a nonnegative (possibly infinite) real number H such that for all
iell0<eg<,

(18.3) sup lim ! log Ly (e, 1, {) = H .
leZx n~o I

The relation (17.1) together with Theorem 17.1 imply that an ergodic source is
strongly stable and the corresponding number H equals its entropy rate. For statio-
nary sources, the following statement is valid:

Theorem 18.2. Let pe M(&/ X). Then the source u is strongly stable if and only
if H(u) = V().

Proof. 1. Let u be a strongly stable source. By Theorem 17.1, V(i) = H(p) for
any stationary source . Let the strict inequality V{(u) > H(u) takes place with
positive probability, i.e. let

av:veE(x), H(v) < V(v)} >0.
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Then there is a finite real number ¢ such that ¢ < V(i) and
My:veE(yy, HV)<c}=1-a>0.
Moreover, a > 0. Indeed, if « = 0, then
ﬂ{v : \'EE(&,{X) N H(\') < c} =1.

Hence we should have the contradictory inequality ¥(u) < ¢ by Lemma 15.1.
Repeating for 0 < o < 1 the argument used in the proof of Theorem 15.3 we find
a source p, € M(o/) such that

lim ! log L(e, 1, ) S V(n) S e < V(w), (eZy.

n N

The latter inequalities are valid independently of what & was chosen, hence V(y) <
< V{(uy) £ ¢ < V(u), a contradiction. Thus we have obtained the relation

(18.4) pyiveE(y), HY) =V()} =1.

On the other hand,

(18.5) H(x) = J H() A(dv).
E(ax)

From (18.4) and (18.5) we conclude that

i = |

E(e/x)

H) f(dv) = j V() A(dv) = V) A(E() = V().

E(Ax)
2. Conversely, let V(i) = H(y). Since V(v) = H(v) for all ergodic sources v,
we obtain the following equality:

ess. sup V(v) = J\ V(v) a(dv) .
veE(sx)[A] E(otx)

This in turn implies

(18.6) aviveE(ay), V(v) = V(w)} = 1.

Actually, if there was an 0 < a < 1 with the property A{v:veE(ay), V(v) =
= V(u)} = o, then we should have

() = (1~ @) H(x) + o« HG') < V(3)

(for the symbols u' and u” cf. the proof of Theorem 15.3). Using Lemma 15.2 and
(18.6) we obtain

lim inf ! log L(e, 1, ) 2 V(n), (eZy.
n n
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On the other hand

V(1) 2 lim sup 1 log L,(&, u, )
no R
for all { € Zy and 0 < & < 1, respectively. Hence the strong stability of the source u
follows with H = H(u) = V(u). '
There arises a natural question whether there are nontrivial stationary nonergodic
sources possessing the property of strong stability. The affirmative answer is given
by the following example:

Example 18.3. Let us consider the stochastic matrix

2313 0 0
A=(1/434 0 0
0 0 3414
0 0 1323

The indecomposable submatrices
A _ 2/3 13 AG _ 3/4 1]47
1/4 3/4 1/3 2/3
determine the ergodic Markov chains. The absolute stationary distribution p(i)(i =
= 1, 2) of the ergodic matrices A® and A® are given by
p" = (3/7, 47y, p» = (4/7,3/7).
Note that for any @, 0 £ o £ 1, the probability 4-vector
p = (32/7, 407, 41 — 2)[7, 3(1 — 2)[7)

is the absolute stationary distribution corresponding to the matrix A. The entropy
rates of the ergodic subchains are

HY = 3(7.H(2[3, 1[3) + 4/7. H{1/4, 3/4),
H® = 4]7. H(1/4,3/4) + 3/7. H(2[3,1/3) = H = H .

Hence the entropy rate of the Markov source corresponding to the original matrix A,
is given by the relation

H(A) = aHD + (1 -~ ) H® = H .
On the other hand

V(A) = max (HV, H?) = H .
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Consequently, H(A) = V(A) = H, i.e. the Markov source determined by the matrix
A is strongly stable. On the other hand, the matrix A is decomposable, i.¢. the state
space consists of two essential sets of states. Thus the Markov chain cannot be ergodic.

19. On o-Additive Sources with a Countable Alphabet.

In this section we shall return to the original setting of [40] and [41]. Thus we are
given the alphabet X = N. The original method of obtaining the examined quantities
was performed in two steps:

Step 1: The proof of a general form of McMillan’s theorem for countably infinite
alphabets (cf. Theorem 4.6)

Step 2: Using this form of McMillan’s theorem the basic lemmas are proved
yielding the necessary tools for the proof of the coding theorem.

Our method differs from the original one. It can be described also in two steps:

Step 1: Using finite partitions the problem of the convenient form of McMillan’s
theorem is reduced to the finite alphabet sources.

Step 2: Consists merely of the single definition by means of a supremalization
process.

The second method seems to be far simpler. However, the proof of the statement
that both methods provide the same quantities, needs a nontrivial statement we
shall start with.

Let us consider the entropy rate .#(/.L) as was defined by (4.1). A necessary and
sufficient condition for the finiteness of J#(y) is the finiteness of the alphabet en-
tropy, i.e. the condition

(19.1) "élﬂ[k]o.l log H[k]o,L < .

As well-known, in this case #(u) = H(y) (cf. [32]). However, three are also well-
known examples in which #/(i) = oo and H(g) is finite [32]. The sources satisfying
the condition H(p) = #(n) possess the following extended approximatiou property:

Theorem 19.1. Let u be a o-additive source satisfying the condition #/(i) = H(u)
Let the sequence {7,};%.; of mappings be defined by the relation (4.10). Then the
sequence ¥(ut; ') monotonically increases to the asymptotic rate #'(u) of the source s.

Proof. The monotonicity property of the sequence ¥ (ut; ') can be easily verified.
Hence, it suffices to prove that

{19.2) V(w) = sup ¥V {uri )
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Since p is g-additive, we have
U= J. i p(dz)
R
(cf. Lemma 4.4). Hence ([41], Theorem II)

v (u) = essm sup H#(u) -

H(p,) = li;n Hprit)

(cf. Theorem 4.7). From the ergodic decomposition of the source u we obtain espe-
cially

ut =J pzrk_lp(dz), k=1,2,...
R

thus
¥ (uryt) = ess. sup #(u,17 ).
zeR[u}
Consequently
¥ (1) = ess . sup #(,) = ess . sup [sup H(pty V)] = ess.sup (i '),
zeR[u] zeR[ p] zeR[p]
ie.

7 (n) 2 sup [ess sup Hpri V)] = sup V().
Let us assume contrary to (19.2) that the inequality
¥ (u) > sup ¥ (uz ) = V
k

takes place. From the definition of the essential supremum we conclude the existence
of a positive 6 such that

plz () s V+8) <1,

|

Hence there is at least one k, such that

1138

{z:#(r Y SVH) <

(19.3) plz (o) S V46 < 1.
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On the other hand,

ess.sup #p,7p 1) = inf {# s plz: A7) £ 03 = 1}
zeR{ul

This in turn implies that
V() Ssup ¥ (ury ) =V< V+ 8k =1,2,...).
k

Hence given k there is ¢, (with 1, < V + 5) such that
wz Ay S} =1,
Especially, for k = k, there is t,, < ¥ + & such that

(19.4) plz () St} =1,

But the inequality #,, < V + & yields a contradiction, by (19.3) and (19.4). The
theorem is proved.

As an immediate corollary we obtain an affirmative answer to the question posed
at the beginning of this section:

Theorem 19.2. Let p be a stationary g-additive source with at most countable
alphabet. If either
(1) there is a natural number k such that

({1, ‘,,,k}l) =1,

or, (2) there is no such k, but the source satisfies the condition H(u) = #/() (espe-
cially the condition (19.1)),
then V() = #(p).

Remark 19.3. The absence of the pointwise partitions of the alphabet, which can
serve as a generator causes that for the general alphabet X the approximation theo-
rems 4.7 and 19.1 fail to hold. It would be interesting to find some simple partitions
generating the o-field Fy, if there are any.

PART IV. RATES ASSOCIATED WITH PAIRS OF SOURCES

20. Statement of the Coding Problems

Let us start with the general coding problem as introduced in Section 3. We shall
consider the following special case. Let X = Y be a given finite set. Let u be a station-
ary source with the alphabet X. Then define

K (E,) = u[E,], E,cX"
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(cf. (1.3)). The parameters & will be independent on n, and & € (0, 1). ¥ will be the
identity mappings on X" onto itself for any &, n = 1,2, .... Finally, (K{(E,), €) € ¢
if and only if K{(E,) > 1 — e. This means that we shall deal with the n-dimensional
e-codes for fixed ¢, e€ (0, 1). The criterion K{"(E,) will be derived from another
stationary source v with the same alphabet X (the properties of the source v will be
specified later):

KPOE) =Y % E, cX'(=7Y").

Our aim will be to derive the coding theorem for the quantity

(20.1) Si = min {XEE"% “E, e X", p[E]>1~- e}.

A coding theorem together with its weak converse will be proved, i.e. the limit
.1
lim = log S!
non

will depend, in general, on & Under the additional constraint that p is ergodic,
we shall obtain also a strong converse, i.e. the above limit will not depend on e&.

In general, the criterion K is not necessarily arising from a stochastic process.
This means that instead of a consistent family {v,; neN} of finite-dimensional
distribution of a process we can consider a family ¢ = (0,),y of finite measures
(each g, defined on the o-field B(X"), n = 1,2, ...). We shall consider the following
special family o = (o,) with

o, {%} = @ , XeX".
v[x]

The resulting quantity will be
(20.2) Sy = min {v,(E,) : E, = X", p(E,) > 1 — ¢} .

It is intuitively clear that the quantity just obtained can serve as a measure of discri~
mination between the processes p and v, respectively. The problem will be studied
more in detail in the last part of the present paper.

To motivate the choice of the two above given coding problems, let us recall some
facts from [18]. Let X be a finite set, let p, q be two probability vectors on X (to
avoid complications it is assumed that q is strictly positive on X). In [18] therc was
introduced the notion of inaccuracy following the formula

(203) H(p, q) = - T p(x) log 4(x) .
Note that
(20.4) H(p, q) = H(p) + I(p, q)
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where H(p) denotes the usual entropy of the probability vector p and I(P, q) is the
well-known I-divergence [21]:

X
(20.5) I(p ) = ¥ p(x) log 2&).
¥eX q(x)
These facts remain valid without changes for the discrete memoryless sources. The
coding theorems for the quantities (20.1) and (20.2) will provide a generalization
of the notions of inaccuracy and I-divergence to stochastic processes.

21. The K-Entropy and the K-Rate

We shall impose the following conditions upon the possible pairs (g, v) of sources:
(1) pis a stationary source, i.e. p € M(Fy);

(1) v is a stationary k-Markov source, positive on all elementary cylinders in the
space X', in symbols v e M(F¥; k);

X being a common finite alphabet. The quantities Si defined by (20.1) and (20.2)
were studied by Potschke [29] in case u is ergodic. Note that the positivity of v can be
replaced by the condition that p,’s are absolutely continuous with respect to the
corresponding v,’s. However, it is only an unessential difference. Therefore we shall
prefer the presented form of the condition to avoid more complicated a.e. con-
siderations.

The markovian property is fairly more stringent. It is imposed due to the fact
that a corresponding form of McMillan’s theorem is needed for the proof of the
coding theorems. A general form of McMillan’s theorem under the markovian
assumption was obtained by Shu-Teh C. Moy (Generalizations of Shannon - McMil-
lan Theorem. Pacific . Math. 11 (1961), 705—714). Theorem 21.2 below is a special
case of this general result. Recently Perez introduced a condition (actually a very
strong condition) assuring the validity of McMillan’s theorem for the generalized
entropy without the markovian assumption (cf. e.g. Generalization of Chernoff’s
result on the asymptotic discernibility of two random processes. In: Progress in Sta-
tistics (J. Gani, K. Sarkadi, and L Vincze, Eds.) Vol. II., North-Holland, Amsterdam
—London 1972, 619—632, and Asymptotic Discernability of Random Processes.
In: Proceedings of the Prague Symposium on Asymptotic Statistics (J. Hdjek, ed.),
Prague 1973, Vol. II, 311—322). The related problems will be studied by the author
in a separate paper.

We define the K-entropy (called the B-entropy in [29] and [38]) of the pair (u, v)
by the formula

n

(21.1) K v) = — li:n ! J.Iog [z, .o z,,] p{dz)
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(cf. (1.5) and (1.6)). Because of the invariance of the measures p and v the limit
in (21.1) always exists and condition (II) implies it is always finite. If we had used
the formulation of (II) by means of the absolute continuity, the finiteness of the
limit in (21.1) could be assured by means of some regularity conditions similar to
that given by Bahadur (cf. ]:3] and the papers cited therein). The main properties
of the K-entropy were studied in the author’s paper [38]. Here we shall describe
only the main ideas, in many aspects similar to that of [27] and [41].

Theorem 21.1. [29]. If the pair (, v) of sources satisfies the conditions (I) and (1I)
and if, moreover, y is an ergodic source, then

(21.2) o {z iz e X', —lim 1 log v[zy, ..., z,] = K(x, 1)} =1.
» n

Theorem 21.1 is nothing but a version of McMillan’s theorem. The next limit
theorem concerns with the I-entropy d(u, v) defined by the relation

(21.3) d(u, v) = K(u, v) — H() .
(cf. (4.1)).

Theorem 21.2. [29]. If the conditions of Theorem 21.1 are satisfied then the se-
quence
l log”[z" s Zn]
no vz, ...z,

converges in probability (with respect to ) to the I-entropy d(y, v).

Theorem 21.2 is weaker that Theorem 21.1, because it states only stochastic con-
vergence. However, only this type of convergence is needed for the proof of the
coding theorems (cf. e.g. the proofs of lemmas I and II in [41]).

Since v is a k-Markov source, we can define an % y-measurable function g on X!
by the relation

g(z) = — log V([Zk+1] I [sz . z,‘]) .

The condition (II) implies that the function g is bouded, hence u-integrable. Conse-
quently, the individual ergodic theorem of Birkhoff applies for u and g. Accordingly,
there is a p-integrable Ty-invariant function ¢, such that

(21.4) lim }—nil g(Tiz) = gz) ae. z[u],

n Hj=0

K(p,v) = fg dp = fév dp.



The first equality in (21.4) follows from the definitions of K{u, v) and g making use
of the markovian property of v (cf. [29]). Actually a stronger result was obtained
in [29]:

(21.5) —lim % logv[zy, ..., z,] = 92) ae. z[u].
"

In [38] it was proved the following important lemma:

Lemma 21.3. The function §,(z) equals a.e. [¢] the K-entropy K(u,,v), where p,
is the ergodic component of any stationary source y; in symbols

wzizeRy, K(u,v) = §f2)} =1; peM(Fx).

The first immediate corollary to the lemma is the theorem on the integral represen-
tation of the K-entropy. ’

Theorem 21.4 [38]. Let (u. v) be a pair of sources satisfying the conditions (I)
and (I]). Then

(21.6) K, v) = J K(ps, v) u(dz) .

Lemma 21.3 was the key step in deriving the desired generalizations of Theorem
21.1 for stationary non-ergodic sources.

Theorem 21.5 [38]. Let (4, v) be a pair of sources satisfying the conditions (I)

and (IT). Then the sequence (—1/n)log v[z,, ..., z,] converges a.e. i to the K-en-
tropy K(u,, v); u. being the ergodic component of the stationary source y; in symbols

u {ZZZERX, —Iim—l—logv[zl, oz = K(u:,v)} =1.
n R

In accordance with (14.2) we shall denote the quantity Sy defined in (20.1) by the
symbol L(e, i, v). Note that if g = v then

L&, 1, v) = min {card (E,) : E, = X", u[E,] > 1 — &} = Lye, ) .

The coding theorem together with its strong converse was obtained in [29] under
the additional constraint that u be ergodic:

Theorem 21.6 [29]. Let (1, v) be a pair of sources satisfying the conditions (I} and
(II). Let p be an ergodic source. Then

(21.7) lim 1 log L(s, 4, v) = K(ir,v); 0<e<1.
»on
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Now we shall prove a version of the coding theorem without the ergodicity assump-
tion. The method will be similar to that given in [41] (cf. also [38] and the third
part of the present paper).

Lemma 21.7 [38]. Let (u, v) be a pair of sources satisfying the conditions (I) and
(II). If ¢ is a finite real number, then the assumption that

p{zize Ry, K(u,v) S ¢} = 1
implies the inequality
1 .
lim sup —log L,(¢, g, v) S ¢ for 0 <e<1.
n n
The dual version of Lemma 21.7 is the following

Lemma 21.8 [38]. Under the assumptions of the preceeding lemma, the relation

plzze Ry, K(u,,v) 2 ¢} =1
implies the inequality

lim inf}- log L(e,u,v)2c for O <e<t.
n

n

Using these two lemmas together with some elementary properties of L,(e, i, v)
derived in [38], the following theorem was proved:

Theorem 21.9 [38]. Let the pair (u, v) of sources satisfy the conditions (I) and (II).
Then the inequality

lim sup 1 log L,(gy, g, v) < lim inf—l— log L,(e,, 1, v)
n n n n
holds for 0 < ¢, < ¢; < 1; consequently, the limit
.1 '
lim ~ log L&, u, v) = Vi(u, v)
non

exists except at most a countable set of numbers e. The function V(u, v) monotoni-
cally increases for & — 0 to a limit, which will be denoted by the symbol V(g, v) and
called the asymptotic K-rate of the pair (u, v) of sources.

The equivalent form of Theorem 21.9 is the following:

Theorem 21.10. There exists one and only one nonnegative real-valned function
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V on the set M(Fx) x M(Zy; k) such that

(1 Vi>0V0 <e<13n,Yn = ny3E, c X"
1
[1(E) > 1 — €] et [ ) AL 2"[”“'““1];
Xk Vp{X
@ Vi>030<n<1V0<eZLy3n,Vn = nyVE, < X"

u(E,) > 1 — & implies

i} < V=31
Sk V,{X}

This means that given any 4 there is an arbitrarily good n-dimensional code (i.e.
a code with the probability of the erroneous decoding less than any &) with the pro-
perty

1log Y ’i'Lf} < V(u,v) + A
no sk ve{X}

provided n is sufficiently large, but on the other hand, there are no good n-dimensional
codes for which
7
Liog 3 13 <y, 0)
n Sk v,,{x}
provided n is sufficiently large. Thus Theorem 21.10 is a coding theorem (statement
(1)) together with its weak converse (statement (2)). If p is ergodic, we obtain also the

strong converse. This theorem states actually a little bit more than the original
theorem (cf. (21.7)):

Corollary 21.11. If the conditions of Theorem 21.9 are satisfied and if, moreover,
u is an ergodic source, then

lim 1 log L(e, 1, v) = V(u,v) = K, v); O0<e<1.
n RN

Using Lemmas 21.7 and 21.8 we can obtain similarly as in [41] the following
theorem, connecting the quantities V(g, v) and K(g, v) in the stationary non-ergodic
case:

Theorem 21.12. The asymptotic K-rate ¥V(u, v) equals the essential supremum
of the K-entropies K(i., v); 4, being the ergodic component of the stationary source
45 in symbols

V(u, v) = ess sup K, v) .

zeRx[n]
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22. The Asymptotic I-Rate

Throughout this section we shall assume that the pairs (g, v) of sources satisfy
the conditions (T) and (II) of Section 21. The aim is to prove a coding theorem
for the quantity S, defined by (20.2). Hence the family o = (d,).y Will be defined
by the properties

o, {%} = p{x}v,{x}; xeXx";

a(E) = L o3} ; EeB(X7).

Let E, = X" be an n-dimensional e-code. If for some X € E, we would have p1,{X} = 0,
the corresponding term 0/0 in the sum

2, t{ %}a{%}

XeEn

could be interpreted as 1, because we are interested only in the minimum of such
sums. Moreover, if E, is an ¢-code and X € E, with ,{X} = 0, then E, — {x} will
remain an e-code. The quantity S; will be denoted by the symbol (e, u, v), i.e.

(22.1) L{e, p, v) = min {v,(E,) 1 E, = X", n(E,) > 1 — ¢}
and called the n-dimensional I-divergence (at level &) for the pair (g, v) of sources.

The coding theorem and its strong converse were proved in [29] for y ergodic

Theorem 22.1 [29]. Let the pair (, v) of sources satisfy the conditions (I) and (II).
Let u be an ergodic source. Then

(22.2) © —lim 1 logL(e, p,v) =d(u,v), 0<e<l1.
non

(cf. 21.3)).
First of all we shall generalize Theorem 21.2 and then we shall proceed to the proof
of the coding theorem along the lines of the preceding section.

Theorem 22.2. Let the pair (i, v) of sources satisfy the conditions (I) and (II).
Then

(22.3) ulz:zeRy, lim L log Mz 2] =d(u, P =1.
non vz, .. z2,]
Indeed

L log—uf[zi' g (., v)

L fal =
nzg, ..., 2,]

= l_log Wz m] K(uz, v) + H(p,)
no v[zy, ooz

1
< ;log ulzy, o, z,] + H(ws)

+ 'l logV[zy, ..+, 2] — K(tz» ¥)
n
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Theorem 4.6 applies to the first term on the right-hand side of the latter inequality.
Hence, this term can be made arbitrarily small with probability 1 when choosing n
large enough. Similarly, theorem 21.5 applies to the remaining term and this proves
the theorem.

Note that if u is ergodic then the above theorem yields an improvement of Theo-
rem 21.2. Namely, the stochastic convergence is replaced by the a.e. convergence.

We can repeat word by word the proof of Theorem 22.1 as given in [29] just using
now Theorem 22.2 instead of Theorem 21.2 and obtain

Theorem 22.3. Let the pair (u, v) of sources satisfy the conditions (I) and (II). Then

n R

.1
(22.4) " {z 1z € R, —lim = log (&, 1, v) = d{p., v)} =1.
Now we shall prove the basic lemmas needed for the coding theorem.

Lemma 22.4. Let the pair (g, v) of sources satisfy the conditions (I) and (II). Let ¢
be a finite real number. The assumption that

wlz:zeRy, d(p,v) S} =1
implies the inequality

lim sup[— llogl,,(c, i, v)] <e¢, O<e<1.
n

n

Proof. From the definition of L,{¢, u, v) we conclude there is a set F, < X" such
that

wlF) > 1 = &, v(F,) = L{e, u,v)
(because there are only finitely many subsets of X" at all). Theorem 22.2 gives

VO<e<1Vd>03n,V, = ng

u z:zeRX,llogﬁ[jM<d(uz,v)+5 >1-—c¢.
no vz, e, 2,)
Let

EP = {:"c (XeE Eﬁ < 2"<C+6>}.
’ ’ vi{%}
By the assumption we have
HAEY > 1 — ¢
Now
WF) ZWE0EP) = T p{f) > 2700 Y 5] 5 27— 2e)

FeFnnEn(D XeFpnEn(D)
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When choosing n, sufficiently large, we obtain the following statement:
. 1
V6 > 03ngV¥n 2 np — —logl(e, 1, v) <c + 5.
n
But this implies the desired inequality because of the arbitrariness of 8.

Lemma 22.5. Let the pair (;t, v) of sources satisfy the assumptions of the preceeding
lemma. Let ¢ be a finite real number. Then the relation

w{z:zeRy, d(u,v) 2 ¢} =1
implies the inequality

1
Iimim’[—— —log (e, 1, v)] Zc, O<e<l.
n

n
Proof. By Theorem 22.2,
YO <e<1V¥6>03n,V¥n = n,

u {z 1z € Ry, llog E—[zl—"—'iz"]— > d(p,, v) — 5} >1-—e.
n

vz, .., z,,]
Let us set
E(2) =!X:%e X", /‘n{x} > zn(c—a) .
’ va{%}
The assumption of the lemma yields again the inequality
UEP) > 1 — €.
Consequently,
Lo ) S v(EP) = ¥ w{E) < 27 I (ED) < 270,
2)

XeEp(

ie.

—llogl,,(s,,u,v)> c—d.
n

Since & was chosen arbitrarily, the desired inequality follows.

Now let us state some elementary properties of the quantities /, similar to the
properties of the quantities ¥, established in [38]. The proofs are simple and there-
fore omitted.

Lemma 22.6. 0 < ¢, < &, < 1 and for any n € N we have the inequalities
1 1
— —log I(eg, 11,v) Z — = log I (€3, 1, v) .
n n

67



Lemma 22.7. Let 0 < { < 1, let #1, 42, 1t be stationary sources such that
p==0u + Ly,

Then for all ¢, { < & < 1, we have the inequality
. 1 . 1
limsup | — ~log (e, pty,v) |  limsup | — = log L{e — ¢, p, v) |-
n n n n

Lemma 22.8. Let 0 < {" £ 1, let u, ¢y, i, be stationary sources such that
p=tu+ (=g,

Then for all ¢, 0 <& < {’, we have the incquality

n

lim inf [— llog L(e, s v):l = lim inf [— 1 log I(e[t’, 1, v)}
n » n

Repeating the proof of theorem I in [41] (cf. also the proof of Theorem 15.3 and [38]
for analogous idea) we obtain the main theorem.

Theorem 22.9. Let pair (u, v) of sources satisfy the conditions (I) and (II). Then the
inequality

lim sup l:— ]—log Ly, 1, v)] < lim infl:— 1 log I,(&, 1, v)]
n n n

n

holds for 0 < &, < g; < 1; consequently, the limit
.1 .
—lim = log1,(e, u, v) = I(n, v)
n n

exists for all except at most a countable set of numbers ¢. The function I,(4, v) monoto-
nically increases for ¢ — 0 to a limit, which will be denoted by I(1, v) and called the
asymptotic I-rate of the pair (u, v) of sources.

Let us give again an equivalent statement.

Theorem 22.10. There exists one and only one nonnegative real-valued function §
on the set M(Fx) x M(F x; k) such that
) YA>0V0 <e< 13nyV¥n = ny3E, = X",
[AE,) > 1 — €] et [v(E,) <27 miemn=41];
®)] VA>030<n<1VY0 <¢=#n3n,V¥n = nyVE, < X".

[#E,) > 1 — €] implies [v,(E,) > 27w *4]
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This means that the quantity I(u, v) determines the rate of the exponential con-
vergence of I,(g, i, v) to 0. This fact will be used in the last part of the present paper
in connection with the problems of the asymptotic optimality.

Corollary 22.11. If u is an ergodic source, then

—Iimllogl,.(s, vy =1I{u,v) =d(w,v); 0<e<l.
n R

It is again an improvement of the coding theorem given in [29] because it states
also the equality

I(u,v) = d(w, v) .
Finally, we have the following analogue of Theorem 21.12.
Theorem 22.12. The asymptotic I-rate of any pair (u, v) of sources satisfying the

conditions (I) and (II) equals the essential supremum of the I-entropies d{u,, v);
1, being the ergodic component of the stationary source y; in symbols

(22.5) I(y, v) = ess sup d(,, v) .

zeRx[al

At glance, it would seem to be possible to define the I-rate in the stationary non-
ergodic case by means of the formula

(22.6) ¥, v) = V{u, v) — V(p).

The necessary and sufficient conditions for the equalities V(y, v) = K(u, v) and
I{u, v) = d(u, v) will not be studied in detail. We shall confine ourselves to the
following statement.

Proposition 22.13. Let g be a strongly stable source (cf. (18.3)). Then
I(u, v) = I*(p, v) .
Proof. Since p is strongly stable, we have

V(w) = H(g)
(cf. Theorem 18.2), i.e.

ess sup H(p,) = J; H(pu,) p(dz) .

zeRx[ul

Consequently,

He) = [ HGp02) e o,
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i.e. H(p,)is almost everywhere a constant, namely V{u). This in turn implies

I*(n, v) = ess sup K(u,, v} — H(p) = N s;x;; [K(e., v) — H(p,)] =
zeRy{p

zeRx[pl
= ess sup d(u, v) = I1(1, v) . R
zeRx[u]
The proposition is proved.
Other statements of a similar character can be proved following the same manner
(cf. also Section 18 for a detailed discussion in the special case p = v).

23. The General Case

Here we shall turn back to the notations used in the third part of the present
paper. The necessary notations concerning finite partitions are to be found in Section
10. The symbol X will denote a separable metric space. The conditions (I) and (II)
are to be replaced by the following ones:

(') peM(sty);
(II') the source v e M(&/y) is such that for any { € Zy, ¥, satisfies the condition (II)
of Section 21.

The condition (II') is clearly satisfied if v arises from a sequence of independent
identically distributed random variables, the common distribution being possibly
only finitely additive. As the Markov source examined in Section 5 shows, it is
expected that the Markov sources satisfying the condition (II') will be of a very special
type.

Nevertheless, the ideas developed in the third part of the paper are working when
confined to the pairs (u, v) satisfying the above conditions. Here we shall only sum-
marize the results omitting their proofs. Only the important differences will be stated
explicitely. Otherwise, the proofs may be obtained simply using the ideas developed
in [37] and the present paper. Let

(23.1) RY(u,v) = sup K(it, %) = K(u, v)
eZx
R*(p, v) = sup d(it, ¥;) = d(u, v);
leZx
S %) = sup V(i 7) = Vi )3
tezx
S*(u, v) = sup I(jt, ¥) = I, v) .
{eZx
Let SE = L,, S? = I,. We shall make use of the quantities
S, v) = sup 5, 7).,
feZx
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where

S¥g,, ¥) = lim lim supl log Sie, B, 7)) i=1,2;
=0 n n
and of the quantities S'(u, v) defined similarly by means of lim inf.

Theorem 23.1. Let (g, v) be a pair of sources satisfying the conditions (I') and
(I'). Then

Ri(, v) = J Ri(x, vy p(dw); i=1,2.
ot x)

The relations

Ri{ja, v;) = Ri(7, 7) f{d), LeZy; i=1,2;
E(d )

follow as in the proof of the main theorem in [37]. However, the fundamental
lemma of Feinstein ([8], Lemma I.3) has to be replaced. For i = 1, we shall use

Lemma 23.2. Let { = {Cy, ..., C;} = B(X). Let
f = {Dv Dz’ Czs ey ck}
with D, " D, = 0, D; v D, = C,. Then
Y 1y(D)log v,(D) £ ¥ 11(C) log vy(C) .
Det =4
For i = 2, we shall use

Lemma 23.3. Let {, £ be as in Lemma 23.2. Then
log 11(5, g, V;) 2 log 11(5; s Vg) .

Lemma 23.4. Let the pair (u, v) of sources satisfy the conditions (I') and (IT'). If ¢
is a finite real number then the assumption that

A e (o), Ri(x,v) S ¢} =1
implies the inequality
Su,v)e; i=1,2.
Lemma 23.5. Under the assumptions of the preceeding lemma, the assumption that
2 1w e E(aby), Ri(x,v) 2 ¢} =1
implies the inequality
S{wv)yze; i=12.
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Finally, we have again the formula

(23.2) Si(p, v) = esssup Ri(, v).
eE(st x)[A1

24. The Interpretation of the Coding Theorems

Let p be a stationary (possibly finitely additive) source on the space (X', #/x), X
being a separable metric space. The sequence of the coordinate variables defined by
the property that X,,(z) = z,, n €1, is the stationary process with the state space X
and the distribution p. Let { € Zy. Any finite partition { of X can be interpreted as

n—1
a measurement performed on the process {X,,}. The partition V T~%{ corresponds
i=0

to the subsequent repetitions of the measurement { in times 0, 1, ..., n — 1. Hence
H(p, {) can be interpreted as the uncertainty of the process {X,,} discovered when
performing the given measurement {. To compute the actual uncertainty of the
process {X,} it is natural to consider the quantity

(24.1) sup H(u, 0) .

LeZx
But this is exactly the entropy rate of the process {X,}. A similar natural interpreta-
tion can be given also to any of the quantities (23.1).

PART V: A STATISTICAL INTERPRETATION

25. The Notion of the Asymptotic Optimality

The methods proposed for the investigation of the asymptotic optimality of the
sequences of tests fall into two categories.

There are “local” methods dealing with the asymptotic efficiency mainly. A se-
quence of alternatives is chosen in such a way that the probability of type II error is
bounded away from 0 and 1, and the speed of convergence of this sequence of alter-
natives to the null-set is measured somehow. The speed is taken as the optimality
criterion.

On the other hand, there are “nonlocal” methods. A fixed alternative is chosen.
The rate of exponential convergence of the probability of type II error is considered.
The size is either held fixed and bounded away from 1 or it is allowed to approach 0
exponentially with a prescribed rate.

The choice of the exponential convergence is justified both by the reasons of in-
ference [6] and by its computational simplicity.

In this part we shall make use of the natural logarithms. Note that there are no
problems when reformulating the results of the preceding part in this fashion.

Throughout this section we are given the finite set {1,2, ..., k} of all possible
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experimental outcomes and the family & of all stationary Markov sources with the
alphabet {1,..., k} and with entrywise positive transition probability matrices,
respectively. The set of all such matrices will be denoted by @, hence

P ={P,:0e0}.

Note that the assumptions imply that for any 0', 0 € @ the finite-dimensional distri-
butions Py , and Py, of Py and Py are mutually absolutely continuous even the
same fails to hold for Py and Py themselves. This in turn implies that the quanti-
ties I,(e, Py:, Pg2) as well as the quantities d(Pgi, Pg2) (cf. Theorem 21.2 and (22.1))
are always finite. The unique stationary distribution of the matrix 8 will be denoted
by p’ (if 0 = 0", we shall write p = p'”; for the existence and uniqueness cf. [2],
Theorems 6.3.1 and 6.3.2), Moreover, any Markov source determined by a matrix
0 e @ is regular ([2], p. 185), hence ergodic ([2], Theorem 6.6.2). As already men-
tioned in Section 5,

k k K
(25'1) H(Pe) = ZP? H(Gi) = - ZP? Zlgij log 0;; -
=1 =S

Let 6',0%€ 0, 0 + 0% Then P, and Py satisfy the assumptions (I) and (II)
of Section 21. Hence we can make use of the asymptotic properties of the quantity

1(e, Pas, Pga) = min {Pp2 o(E,) 1 E, = {1, 2, ..., K}, Py f(E) > 1 — ¢} .

To simplify the notations we shall write P, for P, , if there is no danger of confusion.
Let us interpret the set Ej as the critical region of a test ¢, for testing the problem
Pyt ¢ Pyz . Then I(e, Pyi, Py2) represents the minimum probability of type II error
subject to the constraint that the level does not exceed the value . Consequently,
Corollary 22.11 represents a generalization of Stein’s lemma (cf. [3], Section 6,
and [297]).

Let Oy + 0, O, = O. Let ¢, be a sequence of tests for the problem @, : §' with
0' € @, = @ — O,. More exactly, given any n e N, the test ¢, is proposed for the
n-dimensional problem

n

0 = {Pyp,:0°¢ Oy} : Py,
for 0' € @,. The probability of type I error will be denoted by a2(6), i.e.
(252) a9(0) = Py{o, tejects 0} =

= Pyu{(zts - 20} 1 0215 ..y 2,) Tefects Py}
For any e O,

(253) B2(6) = 1 — 02(0).

The function function g(-) defined on @, is called the power function of the test @,
For any 0' € ©,, B2(6") is the probability of type II error when testing the problem
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O, : 0. The size of the test ¢, will be denoted by af, i.c.
(25.4) af = sup {af(6°) : 6° € O} .
The following notions were introduced in [39] for the independent identically

distributed case (i.e. for probability measures of the product type).
A sequence ¢, of tests is said to be of rate 4,0 £ A £ oo, provided

(25.5) limsupof < 1 incase 4 =0,
n

(25.6) lim supl logaf < —A incase A >0.
n

n

According to this definition, a sequence ¢, is of rate 0 provided that the size is
bounded away from 1. Otherwisc A is the rate of the exponential convergence
of — 0. The second situation is typical in the problems of nonlocal asymptotic
optimality (cf. [3], [4], [6] and [39]). Let @, denote the set of all sequences ¢, of
rate A. A sequence @, € @, is said to be exponential rate optimal (ERO) at an alter-
native 0 if

(25.7) fim 1 log B2(6') = —B

n R

holds with the best possible constant B, i.e. with B such that for any sequence
Yne Dy,

(25.8) Jim inf - log B2(6') = —B.
n R
Hence
(25.9) B = B,(#", ©,) = inf {—lim 1'nf1 log [)’f(@‘)} .
Pne@ 4 n n

Corollary 22.11 deals with the simplest testing problem 6° : 01, i.e. @, = {0°}, and
@, € Py

fim 1 log BY(6") = —d(Pgo, Pys) -
L

Using a well-known explicit representation of d(Pgo, Py:) (similar to (25.1)) we obtain
also an explicit expression for the K-entropy K(Pg, Pg1). Let I(67, 6}) denote the
I-divergence of the probability vectors 62, 6;; i = 1,2, ..., k, ie.

k
167, 03) = 3. 63, log (65,/65;) -
Jj=1
Then

k k k
(25100 d(Po, Pyr) = Y PO 169, 61) = X 5V Y. 65, Tog (65,/01) -
i=1 i=1 j=1
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Now since Pyo is ergodic, we have the equality
(25.11) K(Pgo, Pgi) = d(Pgo, Py:) + H(Pgo) .
From (25.11), (25.1) and (25.10) it follows that
(1) K(Pe Po) = 500 H%,01) = — 305 0 g0}
i= i= i=
For any @' < @ let us set
d(e’, 0) =ei'g;"d(Pg», IAR
a9, 0') = j,“g,d(Pﬂ’ Py

We shall say that an alternative 6* cannot be discriminated from the set @, if for
any sequence ¢,,
af(6') < of .

Let 8, be the set of all such 6’s. Clearly &, > 0, and if @, = {0°} then H, =
= {6°}. Forany 4,0 < A4 < oo, let

(24.13) 0,=1{0:0€0, d6, 9,) < 4},
0,=1{0:0e0, d(6, 0,) < 4} .

Note that any sequence ¢, of rate 4 for @, is of the same rate 4 also for the extended
hypothesis &,. A more general result for A > 0 is established in the following

Lemma 25.1. Let ¢, be a sequence of rate 4, 0 £ 4 < o0. Then for every 6' € &
we have
lim sup «?(6’) < 1 incase 4 =0;
n

(25.14) lim «$(0") = 0 incase 4>0.
For every 0' e @

(25.15) Jira infi log B2(6") = —d(8,,6") .

Proof. (25.14) for A = 0 s trivial by the very definition of &,. Let 4 > 0. Assume
we are given 0' € &, and a subsequence {m} = {n} such that

lim sup B2(6") < 1.
&
Consider the problem 8" : §° for ° € &,. Then

Jim inf ~ log a2 (0°) Z —d(Py, Pyo) .
koo
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Since 0" € &, we have d(8", &,) < A. Hence there is §° € @, such that d(Pg:, Pgo) <
< A4, ie.

lim infl logog (6°) > — 4
koom

contradictory to the assumption that ¢, € @ ,. Hence

lim sup B (6') = 1,
k

lim sup (1 — af(6")) = 1.
k

Since af(6') = 0, it follows that

lim o(6") = 0.

n

Now let B > d(B, 8') be arbitrary. Then there is 8 € @, such that d(Py, Py:) < B.
For 0 € @, there is 0° € @, such that d(Py, Pp) < A. The corollary 22.11 for the
problem 0 : 0" gives

. |
lim inf = log B(0") = —d(Pg, Py) > —B.
n n
The lemma is proved.

26. The Generalized Likelihood Ratio Test

Let zy, ..., z, be a finite strip of a sample path of the length n. The trasition count
matrix A")(z) is defined entrywise as follows:

aPz)=card{I: 121 2n—1, z; =i, 2,4, =Jj},
ij=1,...,k Let
BOE) = ().
=1
Then i b{"(z) = n and we shall denote by ¢"(z) the probability k-vector

i=1
(B @)n, ..., B(2)n) .
Let

4

o) = { aP()b(z), it bP(z) >0,

Y 1/k otherwise .

Then the matrix C*)(z) is a maximum likelihood estimate (MLE) of the true transi-
tion probability matrix 8 and the vector ¢*(z) is a MLE of its stationary distribu-
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tion p?, respectively. Especially,
lim C"(z) = 0 ae. z[P,];
lim ¢™(z) = p* ae. z[Py].
Let '

k

(26.1) Uz, 0) = 3 e(2) I(C(2), 0) =

i=1
k k B}
= 2P %, 96 8 (0620

If g(8) is a function of the parameter 6, if § is a MLE of 8, then g(0) is a MLE of
g(6). From this well-known property of MLE it follows that U,(z, 0) has the following
properties:

(26.2) lim U,z 6,) =0 ac. z[Pp],
lim U,(z, 0°) = d(Py, Ppo) ae. z[Py].
n
The generalized likelihood ratio statistics is the function T;(z) defined by the formula
(26.3) T,(z) = inf {U,(z, 0°) : 6° € @} .
The sequence T, is asymptotically optimal in the sense of the exact slope [4]. Hence

(26.4) lim T;(z) :Uinef d(Pg1, Pgo) = d(8', ©,) [Pos] -
n %c60

Theorem 26.1. Let @, be a convex subset of . For any 0 < 4 < oo the se-
quence ¢, of LRT’s defined by the property that
{/),,(:) =1 iff T;,(z) > A

is of rate A. Morecover, it is ERO at any alternative 8%, i.e.
lim = log 2(6") = —B,(6", @,).
n n

To obtain a reasonable statistical inference, it is necessary to have B,(6', ©,) >
> 0. The sufficient condition is given by the following (cf. (26.5))

Lemma 26.2. If 0 < 4 < d(6*, 6,) then d(6, 6") > 0.

The lemma is obvious, so the proof is omitted. Concerning the exact slope of the
sequence T, the lemma shows that the exact slope gives the upper bound for the rate
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of a sequence of tests such that the rate of the exponential convergence B2(6) - 0
is still positive, for an arbitrary but fixed alternative 6'.
Remark 26.3. Since
Pylo, rejects @} = af(0) = Pyfz : T,(z) > A}

the set {z : T,(z) > A} is the critical region of the test ¢,. The case A = 0 is excluded.
In this case the size would approach 1, thus the sequence ¢, would become asympto-
tically useless for testing.

Remark 26.4. The first part of the theorem remains valid also without the as-
sumption on the convexity of @,.

Proof of the theorem. Let §° € &,. Then

(. [4]). Now Pu{z:U,(z,0° 2 A} < n¥e™
' Ppo{z : T(z) 2 A} S Pp{z:U,(z,6° = 4}

for any 8°€ @, and any 4 > 0. Using the definitions of ¢, and «f one obtains
immediately the inequality (25.6), thus proving the first part of the theorem.
To prove the second part of the theorem, let us note that

(26.5) B,(6%, 8,) = d(B,,0").
Actually, for any sequence @, of rate 4 and for any ' € @ we have

lim inf L log B2(6") 2 —d(8,,, 0Y).
n n

inf {~Iim inf L log px(el)} <d@, 0.
n n

PuEPy.
This means that
B,(6', 0,) < d(0,,0").

If the inequality B,(8', @,) < d(8,, ') would take place then there would be
a number, say C, such that

) B,(0', @,) < C < d(@,0").
Then for any ¢, € @4
lim infl log p2(6') 2 —C
n n
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and, consequently, it would be impossible for B,(8', ©,) to satisfy the relation (25.9).
The relation (26.5) yields a definite geometrical meaning to Lemma 26.2. Because of
Lemma 25.1 to prove the second part of the theorem it suffices to establish the
inequality

(26.6) lim sup ! log B2(6') £ —d(B,, 0").
n n

Let 6° € By, let 0' € O, be arbitrary. Consider the testing problem 6° : §'. For any
sequence Y, of rate 0 we have

lim sup 1 log B¥(6") £ —d(Pyo, Pys) -
n n

Consequently, for any sequence ¥, of rate O for the problem @, : 6' we obtain the
inequality

lim sup L log BY(0") £ —d(@o. 6') = —By(0", ©,).
n n
The value By(8', O,) is optimal for 4 = 0. Hence, when increasing the rate to some
A > 0, the relation
lim sup L log BY(6") < —By(0', @)
non
takes place for any sequence i, € @ ,. Especially

(26.7)  lim sup 1 log B(6") = lim supl log Ppufjiz : T,(z) < A} £ —By(6', 9y).
noon noon

Let 6° € &, be such that
d(Pgo, Pyi) = By(8', ©y) = d(B,, 6*).

Because of Corollary 22.11 there is at least one such point §° (otherwise the optimum
rate would not be attainable) and due to the convexity of €, the point ° is unique.

Since @, is a convex set, the set @, is convex as well. Therefore the point 6* ¢ &,
minimizing the “distance” d(Py, Pp:) on &, lies on the “segment” connecting the
points 6° and 6*. Hence

A(Pgo, Pgr) = d(Pge, Pg) + A
ie.
(26.8) By(6', ©o) = A + B4(6, @,).
Using the evident inequality
—By(6', ©p) £ —Bo(6', 0p) + 4
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together with (26.7) and (26.8) one obtains the desired inequality
lim sup 1 log B2(6") = —BA(6", Bg) = —d(B, 0").
n n

The theorem is proved.
To finish this section we shall derive a simple formula for the optimum rate pro-
vided 0, is simple, i.e. @y = {6°}.

Proposition 26.5. Let 0°, 0' € @; 0! # 6°. Then for any 4, 0 £ 4 < oo, we have
(26.9) By {04, {0°}) = B(0",{0°)) — ¢

provided 0 < & < B4(6', {6°}).
The proof follows from the fact that for any 0° € 8, the set @, is convex. Using
(26.9) we obtain the following formula

k k
(26.10) BA0',{0°}) = ,211’50)_210?1‘ log (67;/6};) — 4.
i= Ji=

The formula avoids a cumbersome computation of the optimum rate using the
methods of the convex minimization.

27. Uncertainty of the Null Set and the Optimality
Let us start with the relation (25.11):

K(Pyor Pyr) = d(Pyo, Pat) + H(Pyo) .

Given the sample path z,, ..., z,, we can define
k &
(27.1) Uz, 0% =¥ (2) ¥ ¢(2) log (1/0%) ,
i=1 =1
where

k
- 3 clp(e) og 0 = H(CP(2), o)
=
is the inaccuracy as introduced by Kerridge [18]. Then
k k
(72 0,20 = 3 e0) 3, 16) low (€210 -
k 13
= 2e(z) 3, ef(2) log ¢(z) = U,(z, 6°) + H(C™(2)).
=1 i=1

Here, H(C™(z)) is a MLE of H(P,) provided  is the true parameter. Hence the
function U,(z, 8°) consists of the term U,(z, 6°) appropriate for the discrimination
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(or testing) and of a MLE of the entropy of the true parameter, respectively. Espe-
cially,

lim 0,(z, 0°) = H(Pgo) [Pyo] 5

lim U,(z, 0°) = d(Pgs, Peo) + H(Py) [Pos];

lim U,(z, 6°) = K(Pgi, Pgo) [Poc] .

From the latter relations it is clear that if
sup {H(Pg) : 6° € 04}

is small enough (i.e. the null-hypothesis consists of almost deterministic sources)
the asymptotic behaviour of the statistics

Ti(z) = inf {T,(z, 6°) : 6° € O}

is nearly the same as the asymptotic behaviour of the optimal statistics T;(z). Other-
wise, the sequence T,(z) may be far from being ERO at many alternatives 6*. Hence,
the uncertainty of the null set can be considered as a nuissance parameter. It is an
open problem, whether this reasoning, in general, remains true. More precisely,
there is the following problem:

Suppose ¢, € @4 is not an ERO sequence. Does the corresponding sequence T,
of statistics necessarily involve an estimate (or a function of it) of the uncertainty of
the null set?

28. Concerning the Stationary Non-Ergodic Case

Let 2 be the set of all stationary probability measures on the measurable space
({1, ..., k}¥, #,), where F is the o-field generated by the family of all finite-dimen-
sional cylinder sets. Let 2, consists of all mixtures of the ergodic sources Py : 6 € @,
i.e. Py € &, provided there is a probability measure ¢ on the space (@, £(0)) such
that

P, :j P, &(do);
6
2(O) being the Borel o-field in @. The alternatives will be chosen from the set 2, =
= {Py:0e6}.
Let us consider the testing problem P, : P, with P;e 2, (i = 0, 1). To dicuss the

matter it is worthwile to reformulate the coding theorem 22.10 in statistical terms
within the framework adopted in this part.
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Let ¢, be a sequence of tests for the problem Py, : P, with the probability of type I
error bounded from above by e, £€(0, 1). Let E; < {1, ..., k}" be the critical region
of the test ¢, n = 1,2, ...

(1) Given any 4 > 0 there is a test ¢, such that
af(Po) = Po(E;) < &
and
BIUP) = Py(E,) < emmiroro=a,

provided n is sufficiently large.
This means that

lim sup of(P,) < 1
and

lim sup 1 log 9(Py) £ —I(P,, Py).
n n

(2) Given any 4 > 0, there is #, 0 < 7 < 1 such that for all ¢, 0 < ¢ < 5 the proba-
bility of type II error for any sequence ¢, of tests with the size bounded above
by ¢is

Be(Py) > e TP P+
provided n is sufficiently large.

This means that

lim infl log B2(P,) = —1(Po, Py)
won

(cf. Theorem 22.9). Hence in the stationary non-ergodic case the optimum rate B
depends on ¢ for 4 = 0. According to the Theorem 22.9

limlz(PO’ PI) = I(PO’ Pl)

=0
and

I(Py, P,) 2 I(Py, P;) forany e>0.

Therefore it is impossible to use the reasoning of the preceding sections to solve the
problems of the asymptotic optimality. In what follows we shall reduce the problem
P, : Py to the problem P : Py with Pj ergodic in such a way that the two problems
become asymptotically equivalent. The main idea is due to Gray and Davisson [11],
[12]. According to the ergodic decomposition theorem (cf. Section 6)

(28.1) Po(E) =J 1(E) Po(dz)
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Given any z € R, let
Q ={y:yeR, u,=p}.

Then the family {Q,} constitutes (a possibly uncountable) partition of the set R,
of all regular points. Let us choose a representative sequence z from each Q,. The
set of all chosen representative sequences will be denoted by J3; it is the new para-
meter set. Let

Zw)=z if weQ,.
ThenZ: R, - 3. If
F3={A4:4<3, Z'4de F, 0 R}

then Z is a random variable. Let W(A) = Po(Z™* ). Then
PEnZM4) = f PE) W(dz),
A

where P, is the ergodic measure uniquely determined by the sequence z. Now P, € 2
(cf. [16] for the ergodic decomposition of Markov sources). Note that

P(E) = PE|we,) [W],

PoE) = Po(E | 0 € Q) [Po].

The detailed construction of the conditional probability within our setting was given
by Rochlin [32]. The latter relations are the precise formulation of a well-known
fact that stationarity can be replaced by ergodicity simply using the conditional
probabilities. Since the ergodic sets Q, are disjoint, it is natural to think of a stationary
source as of the result of nature randomly chosing a particular ergodic source at time
minus infinity, and then sending it forever [11]. This in turn implies that it is natural
to search for an estimate of the “true” ergodic source.
Let P,, P, be two different ergodic sources. Let

1

Qn(st Py) = Z i Z . le[X] - PY[X]l ‘
i=1 2% el k)¢

Let RF, , denote the empirical probability obtained by means of a sample ®y, @, ...
..., 0, The estimate Pz(,,,_,,) of the true ergodic source will be defined in terms of
the metric g,:

P Z(wm) = P,
for which
0 RFum P.) £ 0(RFyns P)) + 8,, y*+z.
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Let
o(P, P,) = lim ¢,(P,, P,) = sup ¢,(P,, P,) .

If e, » 0 and if w € Q,, i.e. if P, is the true ergodic source, we have

(28.2) lim (P, P.) = 0

(cf. [11]). This means that we can replace asymptotically the original testing problem
P, : Py by the problem P, : Py, where P_ is the “true” ergodic source. Since P, € 2, =
= {Py: 0 € O}, there is a matrix 6(z) such that P, = Py,,. Clearly P, = P, for some
matrix 8" € @. Hence the new problem Py, : Pys is of the type solved in the preceding
sections.

An alternative approach is given by Bahadur and Raghavachari [4]. The main
idea is to consider the conditional tests. This means that instead of the original se-
quence T, of statistics we shall use the sequence T;(- l € &,). Some regularity con-
ditions are necessary to obtain some reasonable results. But we shall not go into
details in this paper.

The replacement of the original problem P, : Py by the problem Py, : Pg: avoids
one serious gap. We have actually replaced the testing problem P, : Py in the
preceding sections by the sequence Py , : Py , of finite-dimensional testing problems.
It is not clear whether a sequence ¢, of tests for the problems P, , : P; , converges
(in some sense) to a test ¢ for the original problem P, : Py. Morcover, we do not
know whether certain optimality properties of every ¢, imply the same optimality
property for the test ¢ provided ¢ exists. Of course, this problem does not arise when
the probabilities P, and P; correspond to sequences of independent identically
distributed random variables. If Py, and Py are obtained as above (and, con-
sequently, they are ergodic) then the replacement of the testing problem by the se-
quence of the finite-dimensional problems is correct, too. Actually, let I,(z,; Z I Zgy ...

.., Z,~1) denote the amount of information contained in z, about the unknown
parameter Z given the first n — 1 observations. Then
(28.3) lim I,(z,; Z|z1, vy Zpoq| =0

n
(cf. [11], Theorem 5.1). So, if n is large enough, the supplementary information
provided by the subsequent observations becomes negligible. Thus a correct decision
in the problem P, ,: P, , can be considered as a correct decision in the problem
Py : Py
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APPENDIX A: THE METHOD OF THE INFORMATION TRANSMISSION

Throughout this part we are given a countably infinite alphabet, represented by the
set N of all positive integers. A sligthly more general result will be proved than
that given in Remark 12.2 (cf. (12.3)).

Let us start with some basic notions. A one-parameter family v = {v(- |)'):
:yeN'} of g-additive probability measures on the o-field & is called a channel
provided the following measurability condition is fullfilled: VE e # v(E’ ) s
Z-measurable function on N'. A channel v is called stationary if

(A1) WTA|Ty) =wA]y), AeF, yeN'.
A stationary channel v is called historyless if

VA, B < N" Vy,y €[Blo..
(A2) W[4l ]y) = (A4 y)-

If the parameter space Y as well as the set X on which the probability measures
v(~ | y) are defined are countable, we call v a (Y, X)-channel. The condition (A‘2)
implies that the relation

(A3) VE | (vor s yamr)) = W([ET| )

determines a (N", N")-channel v,. For every n € N the channel v can be characterized
be the n-dimensional e-size — the maximum number of the input signals (of the given
length n) which are distinguishable by means of the output signals with the proba-
bility larger than 1 — &. In symbols,

(A4) S,(e, v) = sup S,(¢, 5, v) .
"
Here the supremum is taken over the family of all mappings ¥ : N* — N”, and
S, &, v) =card {y :yeN", v,(b [y} |y) > 1 — ¢} .
Remark A.1. Let us recall that for a given  : N* — N”" the family

v ) cyeNu vy} [y) > 1 = ¢}

is nothing but the n-dimensional e-code of length S¥. e, v) in the sense of Wolfowitz
[42]. The coding theorem deals with the asymptotic behaviour of the sequence

1 log S,{e, v) .
n

In the special case of the historyless channels the coding theorem can be formulated
as follows (cf. [40], Lemma 6.1):
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Theorem A.2. Let v be a historyless channel. Then there is a real number C(v)
such that

(a) Y0 <e<1 C(v)£lim 1'nf1 log S,(e. v) ;
n n
(b) Vi>Cv)30<2<1V0<e< i lim supl log S,(e,v) < 1.
n n

As a consequence

C(v) = lim im sup 1 log S,(e, v) = lim lim infl log S,(e, v) -
0 m R

=0 n n

The number C(v) is said to be the capacity of the historyless channel v.

Now let neN, let { € Zy. The mappings » : {" = N" and 6 : N" - (" are called
the coding and the decoding transformations, respectively. Note that these notions
have nothing common with the notion of the e-code defined above. The n-dimensional
error probability (given () is the number

e, v, 2,0, () =1~ Y v(67'D ! xD) u[D] .
Degn

The minimal r-dimensional error probability is the number
e v, 0) = infe,(u, v, %,6,0).
%,8
Let 1 € M(s#). The source 4 is said to be representable if there is a probability space
(S, &, 1) and an &¥-measurable family
{p,:seS} < M(«£)

such that

(AS) u(4) = ( () (d5)

v S
Let (S, &) = (E(«#), A[E(Z)]), let {u,} = E(o/). Then clearly each pe M(«/) is
representable (cf. Theorem 7.3). )

Lemma A.3. Let p be representable. Let

V(p)<ec<w, ses.
Then
Vi) < c.

Proof. Let ¥(p,) £ ¢ < o, se S. This implies

VseSVieZy V() <c.
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Since ¥ (i, {) = V(ut; '), we obtain
V(ga ") Sc; seS, (eZy.
Using Lemma 7.3 [40] we obtain
V(prg') s ¢, Lezy,

V(u) = sup Vur;Y) S c.
LeZn

The lemma is proved.
The generalization of the Theorem 16.3 is given in

Theorem A.4. Let p be a representable source with a countable alphabet (i.e. (A.5)
takes place). Then
(A6) V(p) = css. sup V().
seS[A]
Proof. We have
{n:Lfe i) £ k} =

= {p:min{card (&): & = ", Y u[D]>1—¢} Sk} =
Det
=U{{p: X uD]>1-¢}:&c " card (&) £ k}.
Deg
Consequently, L,(s, ur; ') is an $-measurable function, hence V() is an &-
measurable function on S. Therefore the number h is well-defined by the relation
h =ess.sup V(u).
SeS[A]

1. Let V(i) > h. Let ¢ be a finite real number such that V(u) > ¢ > h. Let us
denote
Alc)={s:seS, V(u) < ¢},

then A(c)e & and MA(c)) = 1. Indeed, let for all ce(h, ¥(u)) we would have
2{A(c)) < 1. Then the definition of the essential supremum would give the contra-
dictory inequality

ess.sup V(p) = h 2 V(p).

seS[Al

Since A(A(c)) = 1, it suffices to apply Lemma A.3 to the measurable space (4(c),
& 0 A{c)). Then the contradictory inequalities

V) < ¢ < V()

follow. Hence we have V() < h.
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2. The proof will be finished by showing that the strict inequality V(y) < h yields
a contradiction. Let us assume its validity. Then there is a finite real number ¢ such
that ¥(u) < ¢ < h. Let us denote
P = {P:P = {Pn}f:l: P20, zpn =1, Ing = "U(P) Vn 2 ng, po = 0} .
1

Let

k
k[p] =min{k:Y p;=1}, peP.
i=1

Let peP and ke N, k > k[p]. We shall define a stationary memoryless channel v
by setting

vi(m | S) = Promoger> M <S;

vi(m f $) = pu_srs mZs (m=12,..,k;

vi(m |kt + ) = v,(m [9),s=12 ..k teN.

Since a memoryless channel v possesses the property

wx ) = Tt )

for x = (x4, ...,x,) and y = (yy, ..., ,), the knowledge of v; uniquely determines
the channel v (cf. also [40], p. 795).

The channels of this type will be denoted by the symbol v[p, k] (peP, keN,
k > k[p]) and called the circulant channels. Following Lemma 6.3 [40] for any c,
0 < ¢ £ o, there is a circulant channel v such that C(v) = c. Let us note that the
circulant channels form a subfamily of the family of all stationary historyless channels,
hence the capacity C(v) can be defined by means of Theorem A.2. Therefore we have

(A7) Vi) < C(v) <,

ie.
V() < Cv) <h, (eZy.

A glance at the definitions of V(jz;) and C(v), respectively, gives
(A8) Ve >0 dngeN V¥n = ng Le, fiy) < Sie,v) .
Consequently, there is a mapping ¥ : N” — N" such that

(A9) L=Le ) < S, 8.%) =S

This means that there are the points y!, ..., y* € N" such that

(A.10) Wy} y)>1—e, i=12..8.
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Let us denote by C!, ..., Ck, C**1, ..., C* the elements of the finite partition {".
Since L £ S, we can define

®Cl=y', i=12.,L;
xC =y® for C¢{C', .., C!}

(if L = S, we can use only the set {C?, ..., C*~}). Further we shall put

(A11) 87IC =y (xCY); i=1,2,..., L,
871C =0 otherwise.
Then

1~ efpv,%,8,0) =i=ilv,,(5“lc‘ ] %«CH u[Co, +C;:‘v,,(6’1c [ #C) u[CTon -
(A.11) implies that the right-most term vanishes. Using this fact and (A.10), the
inequality
1—efu,v,%80) 21— s)ip[Ci]o,, >1 -2
can be derived. This means that -
(A12) Ve >0 3n, Vn 2 ny eu, v, {) < 2e.

Let us choose
e=Ms:seS, Vi) > c}

The inequality ¢ < himplies ¢ > 0 and (A.]2) shows that there is increasing sequence
{n(k)}iz, of positive integers such that

(A.13) eugy (s ¥, 26, O, 0) < (g/2%)°

for a convenient pair s, §,. Now clearly
en(k)(u’ Vs %> O Q = j "n(k)(ﬂs» Vs Hs O {) ].(ds) .
s

Let
Sagy = {5 :5€S, euu(tts ¥, 26, O3 £) < 8/2 .

By the definition of & and of S, respectively, there is an element s € S possessing
the following two properties

(@ Viu, §) > CO);
(v) eyt Vs % 61, £) < 1f2%, keN.
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Now it is intuitively clear that the properties (a) and (b) will give the desired contra-
diction. Indeed, if the amount of information on the input of a channel exceeds the
capacity of the channel (cf. (a)), it is impossible to transmit the information with the
error probability as close to zero as wanted (cf. (b)). Now we shall give a formal
deduction of this contradiction.

Let us assume that (a) holds. Since p, = p,T7 ', V(u, () = V(u, {) > C(v).
Choose t such that

V(e 0) > 1> C(v).
This means that

(A14) Vi e(0,1) 3 ny(n) Yn Z no(n) S,(m v) < Ly(ts 1, {)

Let %, : " — N"and ¢, : N* — (" be arbitrary. Then define the mapping ¢ : N* — N"
satisfying the relations

#[oy]) = max {u[E] :2,E =y}, yen(l").

If k = card ({) then card ({") = k". From the definition of the mapping ¢ it follows
that

ey} = U{6,'E:%,E =y}, yeN".
The inequality (A.14) gives
L, # §) > Si(@.n,v) = S,
Now there are the points y*, ..., y* € N" such that
ety Yy =1 -9y, i=1,2..5,.

Let us denote further
Sn
q =kZ mloy .
=1

Then g £ 1 — &. Now let us compute

IA

o
1= (i v #m 3 ) =Y Y %8, E| %,E) u[E]

=1 Eexn- 1y’

< Tl i Py 50+ (=00 -9 51 -7,

a contradiction. The theorem is proved.

Intuitively speaking, a numerical characteristic of the amount of information
produced by an information source has to fullfill the following two conditions in
order to be an effective expression of the information quantity:
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(1) If the rate of the source does not exceed the capacity of the channel, the in-
formation given by the source can be transmitted by the channel with the error
probability as small as wanted.

(2) If the rate exceeds the capacity, the error probability when transmitting the in-
formation is necessarily strictly positive.

These statements are implicity contained in the proof of the preceding theorem.

Let us formulate them exactly:

Theorem A.5. Let e M(sZ), let v be a historyless channel. Then the assumption
that
V(p) < C(v)
implies the relation

sup lim sup e, (1, v, ) = 0.

teZn n
Proof. The assumption gives
V(g < C(v), (€ Zy,
hence lim sup e,(fi;, v) = O {cf. [40], Theorem 6.1). But, by the definition of the
mapping :;, e, v) = e, v, {). This means that
limsup e,(, v, () =0, (eZy,

hence the theorem follows.

Theorem A.6. Let e M(=7), let v be a historyless channel. If
V(u) > C(v)
then there is {, € Zy and there is a number ¢, > 0, respectively, such that

lim sup e,(1, v, {o) Z o -
n

The proof is similar to the proof of the preceding theorem. The analogous state-
ments can be proved also for lim inf e,(y, v, {).
n

APPENDIX B: PURE CHARGES ARE ENTROPY DENSE
As we have shown on examples there are pure charges (i.e. purely finitely additive
stationary sources) with the entropy rate zero as well as plus infinity (cf. Examples

11.1 and 11.2) The Hewitt-Yosida decomposition tells us that every finitely additive
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stationary source g uniquely decomposes into its g-additive part p¢ and a pure
charge pf according to the formula :

p=opf +(l—a)pf 0sas1)

(cf. Section 8). By Remark 12.2, the entropy rate H(u) can be then expressed in the
form

Hp) = o Hu) + (1 — o) H(p).

There arises a natural problem whether there are pure charges p satisfying the relation
H(;;) = h for any in advance given real number h, 0 < h < oo. Otherwise, the whole
theory should reduce to rather trivial cases: the g-additive case (if h = 0), and the
case of infinite entropy. It is clear that we can confine ourselves to product pure
charges. In this case the problem reduces to a much simpler one. Before stating the
corresponding proposition let us introduce some necessary notions. A nonnegative
set function g on (N, B(N)) is called a normalized pure charge if y is finitely additive,
4 assigns unit mass to N, and p assigns zero mass to each one-point set {n}, neN.
Let { € Z. Then define

h(u, g) = — Y #(C) log 1(C) .
The entropy h(yt) is defined as the supremum
h(u) = sup {h(w,{) : (e Z} .
Recall that if [ is the product pure charge on (N', /') determined by u then
H() = ).
Proposition B.1. To every finite positive real number h there exists a normalized
pure charge p on (N, B(N)) satisfying the relation h(g) = h.

Proof. First let us consider the case 0 < h Slog2 = 1. Let 4, = {2n ih EN};
A, = {2n — 1 :neN}. Since A; n A, = 0, the images under canonical injections
Ay = N, A, — N of the Fréchet filter yield two different, so called elementary filters
(cf. N. Bourbaki: Eléments de Mathématique, Livre III, Topologie générale.
Hermann, Paris 1961). Let %; (i = 1,2) be the corresponding ultrafilters. The
symbol v; will denote the normalized pure charge defined by

1 if Eeq;,
0 otherwise (E < N;i=12).

vi(E) = {
Given h, 0 < h £ 1, we can choose o, 0 < a < 1, such that
~aloga — (1 — a)log(l — o) =h.
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Now put u = av, + (1 — ) v,. Then p is again a normalized pure charge. If { € Z,

there are a unique set C € { with C € %, and a unique set D € { with D € %,.

() Let C = D. Then u(C) = (D) = 1 and p(E) = 0 for all E€{, E # C. Hence
h(p, {) = 0.

(i) Let C + D. Then C D = § and #(C) = o, (D) =1 —a, u(E) = 0 for all
other E € {. Thus h(u, {) = h.

The family of partitions fitting (ii) is nonvoid, because e.g. the partition {4, 4,} is

such one. Consequently, h(u) = h. If h > 1 then we can repeat the above reasoning

by making use of an appropriate finite number of different elementary filters.

CONCLUSION

Our aim was to show the possible applications of the ergodic theory when solving
some problems connected with the source coding. The choice of the problems was
strongly affected by the choice of the methods. Therefore we propose to consider
related problems the solutions of which do not fall within the frame of the present
paper in separate papers.
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