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Incidental and State-Dependent Phenomena 
in Robot Problem Solving*) 

OLGA ŠTĚPÁNKOVÁ, IVAN M. HAVEL 

An attempt at a unifying, formal, approach to robot problem solving is outlined. Various new 
ideas are presented and analyzed. Important among them are the concept of incidental pheno
mena, which enables us to cope with side-effects of the robot's actions, and an approach dealing 
with objects identifiable only in certain specific situations. 

1. INTRODUCTION 

After years of development of specific methods and programs in artificial in
telligence it is worthwhile to assume a more theoretical viewpoint and try to use 
mathematical tools for unifying, generalizing and comparing the work that has 
been up to now. Such attempts may eventually result in a "mathematical theory of 
artificial intelligence" which would be able to formulate and prove "metatheorems" 
about various methods used in AI, as well as to yield "metaheuristics" helping to 
discover good ideas for new methods. 

The aim of our paper is to discuss a particular attempt for a unifying formal 
approach to robot problem solving, especially to methods based on predicate-calculus 
representations and reasoning. We have proved some metatheorems elsewhere [11] 
and in the present paper we demonstrate how our formal approach may suggest 
certain new ideas and extensions. 

The main contribution of this paper are neither new results nor simplified proofs. 
Instead of that we have concentrated on describing some ideas and giving them 
a sound intuitive background. We hope that the reader, faced with these ideas, may 
be moved to expand the theoretical development as well as to launch new experi
mental research. 

*) This paper is an extended and modified version of a contribution presented at the Summer 
Conference on Artificial Intelligence and Simulated Behaviour, University of Edinburgh, July 
12-14,1976. 



Conceptually this paper is a successor of [11], which is a rather extensive paper 
with many technical details. Therefore we have decided to include here also an exposi
tion of the main concepts developed there (the image space, branching plans etc.). 
This makes the present paper less dependent and, we hope, easier to read. 

In general, by a robot we mean a computer-controlled integrated system capable 
of autonomous interaction with real environment accoding to general goals given 
by a man. This entails three important cognitive faculties: (1) the ability to perceive 
the environment, (2) the ability to maintain and update an internal representation of 
the environment, and (3) the ability to plan its own behaviour using the internal 
representation as a basis for imagination. 

We shall be concerned with the third ability, which consists, in essence, in con
verting the knowledge of a current and a goal states of the environment into a plan 
how to achieve the goal using a finite number of elementary actions. This forms the 
first, planning stage of the robot's activity. The second stage is then the execution 
of the plan in the actual environment. 

The study of efficient procedures that start with an initial state and a goal state 
descriptions (i.e., a problem specification), and end with an appropriate plan (a solu
tion to the problem) is the main subject of the theory of problem solving (Nilsson's 
book [7] is a good introduction to this theory). One of the simplest formal approaches 
to this study is based on the concept of a state space: a set of states, representing 
concrete instantaneous situations in the world (e.g. configurations of objects), and 
a set of operators, partial functions mapping states into states and representing the 
changes of the world caused by the robot's actions. Technically the state space can 
be identified with an oriented graph with edges labeled by operator names. A problem 
is given by an initial state and a set of goal states. The sequence of operators spelled 
out by this path forms a plan for the problem in question. (We use the term 'operator' 
ambiguously both for a partial function on the set of states and for the symbolic 
name of such function which has the role of an instruction in the plan. By 'executing 
an operator' we actually mean performing the corresponding action in the real 
world.) 

2. THE IMAGE SPACE 

The state-space representation is useful in rather restricted cases when a complete 
description of any instantaneous situation in the problem world is feasible (it is, e.g., 
the case of some games and puzzles). However, in the case of a general environment 
it is necessary to restrict ourselves only to partial descriptions, which we call images 
(in STRIPS [ l ] they are called 'world models"; we have reasons for avoiding the 
term 'model' in this sense). Formally an image is a formalized theory (or just a set 
of well-formed formulas, its axioms) in a first-order predicate calculus with a fixed 
language. Our formal structure for robot world representation and problem solving 



will be thus based on a generalization of the state space, called the image space. 
It is convenient to take apart axioms that represent state-independent facts and to 

group them into a single theory T,, called the core (of the image space I). A particular 
image Tis then obtained by adding a specific axiom, say F, to T,; we write 

T=T1[T] = TIu{F}.*) 

The image space is defined implicitly as a pair 

I = <T„ *,> 

where T, is the core of I and 4>, is a set of operator schemata of I. An operator 
schema i p e $ , may be understood just as a name of one of robot's capabilities, e.g. 
"push", "goto", etc. With each (0 6 $ , we associate a pair <CV, R^> of formulas 
called the condition of q> and the result of cp, resp. The free variables in Cv and R^ 
(if there are any) are called the parameters of q>. We write <p also in the form 
q>[x1, ..., xm] to exhibit the parameters xlt ..., xm of q>. We then obtain operators 
of I as instances of operator schemata by considering a variable-free term (in 
particular a constant) instead of each parameter and making the corresponding 
substitutions in C9 and R^. If i p e $ , and \j/ is an instance of cp, we denote by C$ 
and R ,̂ the obtained instances of C ,̂ and R^, resp. The operators represent particular 
actions of the robot, e.g. "push box a from room 1 into room 2". 

The application of an' operator \\i can be explained as follows: if T \~ C^ (C^ is 
provable in T) for an image T then i// is applicable in T and yields a new image 
Tj[R,J. Thus the problem solver can in its imagination wander through the image 
space until it finds a path (a sequence of operators) that solves the problem, i.e. 
leads from an initial to a goal image. Formally a problem is specified by a pair 
<X, Y> of variable-free formulas; the initial image is Ti[X] and a goal image is any 
extension T of T, such that T1— Y 

3. OPERATORS WITH INCIDENTAL PHENOMENA 

The image space in its "pure" form described above is suitable and more or less 
sufficient for theoretical investigation (cf. [11]). It is also relevant to some questions 
suggested by Simon ([8], p. 415). However, from the point of view of practical ap
plications, it is not very satisfactory for two main reasons. First, the specific knowl
edge comprised in a new image depends only on the operator result and all other 
specific facts known in the previous image are lost even if they may not be influenced 
by the operator (this leads to the well-known "frame problem"). Second, all known 
side effects of any operator \j/, whether relevant to the problem in question or not, 
have to be permanently included in the formula R^, and moreover, if these side 

*) If convenient we treat a finite set of formulas as a single formula — their conjunction. 



effects have their own extra conditions, the operator has to be split, in general, into 
several new operators with distinct conditions C^. 

These drawbacks can be avoided by associating with each operator schema 
(p e Ct>, a special well-defined (syntactical) procedure that generates — or recognizes — 
certain pairs of formulas <A, B), called the incidental phenomena of (p. The 
formulas A (the antecedent) and B (the consequent) are assumed to have no free 
variables except possibly the parameters of q> and if an operator i/V is an instance 
of cp we obtain the incidental phenomena of \j/ by substituting the corresponding 
variable-free terms for these parameters in incidental phenomena of cp. 

The application of an operator ^i is now defined as follows. If 

T \- C,A & A 

for a given image Tand an incidental phenomenon <A, B) of ip, then the application 
of \j/ yields a new image 

T,[R*&B]. 

Any incidental phenomenon <A, B) represents a possible side effect changing the 
world (if A an B are distinct), or an element of the "frame" (if A equals to B)*), 
and can — but may not — be taken into consideration during the plan formation 
according to the problem solver's knowledge of the particular problem and his 
anticipation of useful facts for later stages of planning. 

The collection (let us denote it by lncv) of all incidental phenomena for a given 
operator (schema) cp, in practice the procedure for their recognition, depends on the 
nature of cp, on the environment, and on the expected class of problems. Typically 
it is specified by certain syntactical restrictions on participating formulas (cf. Example 
1 below). To allow using more incidental phenomena at the same time it is useful 
to require that for any <A, B) and <A', B') e Inc,, we have also <A& A', B& B') e 
e Incv. 

Let <X, Y> be a problem in I. We define the (straight-line) plan for {X, Y) as 
a sequence 

}' = ( ^ 1 , ^ 2 . •••></'«) 

of operators for which there exist incidental phenomena 

<A(i), B(i)> e Inc^ (i = \,...,n) 

such that 

(i) T1[.Y](-C,Ai&A(1), 

(ii) T,[R^&5(i)] I- C,Aj + 1 & A ( i + l ) , 

(iii) T,[R^&B(n)] I- Y. 

*) The "image space with frames" of [11], Sec. 7, considers the latter case. 



The pure image space of the previous section comes out as a special case with 425 
Inc,, = {(true, true}} for all f e i , . 

Let us illustrate our formalism by a simple example. 

Fig, 1 

Example 1. The robot's world consists of three rooms 1,2,3 (all connected) and four 
boxes a, b, c, d distributed in the rooms according to Figure 1 (formally described 
by the predicate IN, e.g. IN(b, 2)). Robot itself is also in one of the rooms (ROBOT-
IN (1)). The state-independent properties of the environment like Vx 3y IN(x, y) 
or (IN(x, >>j)&IN(x, y2)) -> yL - y2 compose the core theory Tv There are two 
operator schemata: 

push[x, y, z] (robot pushes box x from room y into room z) with condition 

and result 

IN(x, y)&ROBOT-TN(y) 

IN(x, z) & ROBOT-IN(z) ; 

goto[y, z] (robot goes from room y into room z) with condition 

ROBOT-IN(y) 

and result 

ROBOT-IN(z) 

As the incidental phenomena of both operator schemata we take first of all the 
frame: all pairs <A, A> where A is any formula without an occurence of the predicate 
ROBOT-IN and, in the case of push[x, y, z], also of the atomic formula IN(x, y); 
(thus e.g. <IN(b, 2), IN(b, 2)> is an incidental phenomenon of push[c, 2, 3] but 
not of push[b, 2, 3]). 

It can be easily seen that in such an image space one can solve the problem <X, Y> 
where X specifies the position of boxes and of the robot as indicated in Figure 1 and 
the goal Yhas the form 

3v (lN(a, v) & IN(b, v) & IN(c, v) & IN(d, »)). 



An example of a solution sequence is 

y = (push[a, 1, 2], goto[2, 3], push[b, 3, 2]) 

Note that the incidental phenomena were necessary in order to use the fact that 
the boxes b and c remained in their original position. 

Another example of an incidental phenomenon of push[x, y, z] may be 

(y 4= z & Vu (IN(M, y) -> u = x), EMPTY(>')> 

(a room becomes empty after the robot pushed away the last box). While useless for 
the above problem it helps to solve a problem with the goal, say, EMPTY(2). 

The described idea of using incidental phenomena suggests a new interesting 
research topic: while the usual application of heuristic methods in problem solving 
concerns the selection of operators (as e.g. the GPS-like strategy in STRIPS), here 
one can also investigate special heuristic rules of controlling the flow of information 
from one image into another by a clever choice of incidental phenomena. Note 
that it is not apparent from the final plan, which particular incidental phenomena 
were used: they just serve as catalysts for planning. 

In a strict mathematical sense incidental phenomena can be always eliminated: 
any triple <<p, A, B}, where <A, B} e Inc^, can be viewed as a new, modified operator 
(schema) <pAtB with CVAB = C ^ & A and Rq>A B = R9&B. In general this would 
result in an enormous (possibly infinite) number of new operators in the image 
space; on the other hand, it may yield an interesting two-stage approach to problem 
solving: first constructing a suitable set of such modified operators, specifically 
tailored for certain problem or a class of problems, and then solving a given problem 
in the modified image space. A similar idea was used by Sintzoff in [9] with the in
tention to obtain a set of modified operators enabling a backtrack-free search of 
a solution. Another possibility is to modify operators on the basis of learning from 
past experience. 

There are various reasons for keeping the condition-result pairs and the incidental 
phenomena conceptually apart. In addition to reasons already mentioned let us 
emphasize that we view the conditions and results of operators as their inherent 
attributes, in fact parts of their "definitions" provided by the designer. Therefore 
we make a basic assumption that the robot is, at the execution time, always able, if 
necessary, to test the validity of operator conditions (of course, this is the view of 
the problem-solver, not of the executor). Such an assumption cannot be made about 
the rather arbitrary formulas occuring as antecedents of incidental phenomena. 
Thus our formalism gives a special treatment to facts not only of an auxiliary nature 
but also of uncertain verifiability (this point comes out again in Section 6). 

Let us note in passing that incidental phenomena may also serve as a natural 
basis for randomization, yielding a possible probabilistic approach to robot problem 
solving (cf. [5]). 



4. RELATIONSHIPS TO CONCRETE PROBLEM-SOLVING SYSTEMS 

R. Waldinger gives in [12] (Part 2.) an interesting overview of various ways of 
representing actions and their effects in contemporary problem-solving systems. 
We claim that a thorough analysis of most of these systems (requiring their reformula
tion in exact mathematical and logical terms — which in itself may not be an easy 
task, indeed) would reveal their reducibility to one or the other special case of the 
image space (with incidental phenomena), combined with a special search method. 

Let us illustrate our claim on the particular cases of the STRIPS problem solver 
[1] and of Waldinger's regression technique [12]. 

To give a rigorous logical meaning to the set-theoretical operations in STRIPS 
we have to agree on a certain class of basic formulas (for instance all literals) which 
may be used as elements of world descriptions. Any operator q> specified in STRIPS 
by the triple C^ (precondition), Del,, (the set of basic formulas to be deleted) and Add,, 
(the set of basic formulas to be added) can be in the image-space formalism specified 
by the condition-result pair <C^, Rv} where R,, is the conjunction of formulas in 
Add(/), and by incidental phenomena of the form <A, A> where A is any basic formula 
not in Del,,, or a conjunction of such formulas. 

In general, every STRIPS problem description can be in this way converted into 
an image space I such that the solution obtained by STRIPS to a problem is also 
a plan (for the same problem) in I. 

Conversely, let us define a STRIPS-like image space as any image space with the 
set of incidental phenomena including only pairs of the form <A, A> and closed 
under conjunction (the set of all formulas that do not participate in any incidental 
phenomenon of q> may then serve as an analogy to Del,,). For any image space I = 
= <Tb $,> one can construct a STRIPS-like image space I = <Tr, <t>r> by introducing 
a new modified operator schema cpAiB for each triple <<p, A, B}, where <A, B} e 
e Inc,,, A 4= B (see end of Section 3). It can be shown that a problem has a solution 
in I iff it has a solution in I. 

As concerns the class of tractable problems, the image space is thus, in the above 
sense, equally powerful as STRIPS. Its conceivable advantage can be found in its 
generality (lesser dependence on a specific problem) and in the mentioned idea of 
selective choice of facts to be remembered from one image to another and thus giving 
the possibility of saving some memory space. 

Waldinger's idea of regression, used for synthesis and modification of plans, can 
be in the framework of incidental phenomena expressed without difficulties: In order 
for a formula B to be true after the execution of an operator i//, either (1) it must 
follow from R ,̂, or else (2) there must exist a formula A, which is true before the 
execution and such that <A, B} g Inc^. Thus, when passed back over \j/, the formula B 
becomes true in the former case and turns into A in the latter case. As an application 
of the regression technique in multiple-goal planning one may transfer a given 



additional goal requirement backwards through the plan to a position where the plan 

could be properly aJtered. 

5. THE SITUATION CALCULUS 

The question of relationship of STRIPS-like methods to historically older and more 

logically oriented situation calculus was rised several times (for instance by Nilsson 

[7], pp. 211—212). Due to the untractability of the frame problem the SRI group 

has after some experiments abandoned the situation calculus completely, while other 

authors (as Kowalski) strongly argue in favour of predicate logic as a tool for repre

senting knowledge and for problem solving; Kowalski himself suggests a new variant 

of situation calculus for robot plan formation ([6], Chapter 3). 

It is our belief that the situation calculus, and formal logical tools in general, are 

and will remain relevant to artificial intelligence, if for nothing else then for its 

important theoretical role. This will be partly documented in this and the following 

sections. 

To make our arguments clearer we shall consider the situation calculus in the 

simple form used by Green [2] (cf. also [7], Section 7-7). Instead of giving its formal 

definition we shall only sketch how an image space can be converted into a formal 

theory in situation calculus. Consider an image space I = <T,, <D(> as introduced 

in Section 2 and let Lbe the underlying logical language. We extend Lin such a way 

that each formula A of Lis "parametrized" by a special situation argument: a new 

formula, denoted by A[s] expresses the same as A but only for situation s. Further

more, the operator schemata are used as additional function symbols in the new 

language and are interpreted as mappings from situations with objects as para

meters into situations. Thus the term <p(xu ..., xm, s) corresponds to the operator 

schema <p[xt, ..., xm] applied in situation s. This is an example of a situation term; 

the terms interpreted as objects are called object terms. Note that the new function 

symbols admit just one situation argument and consequently all situation subterms 

of the same situation term are nested in a monotoneous way — an important property 

for our purposes. 

Two alternative axiomatic systems in situation calculus can be associated with the 

image space I, both with three basic types of axioms. The first system is denoted 

by Kx and involves: 

(i) for each formula A in T, a core axiom of the form 

Vs A[s] ; 

(ii) for each operator schema <p[xlt ...,xm\ with condition C 9 and result R^ an 

operator axiom of the form 

Vs(CД S Ï^Rj Ф (x 1 , . . . ,x m ,s) 



{iii) for each (p\x{, ..., xm~\ and each <A, B} e Inc,, an incidental axiom of the form 429 

V s ( C i S | & A [ s ] - > 4 < P ( x 1 , . . . , x „ „ s ) ] ) 

(in particular, when A equals B we call it the frame axiom). 

The second system, denoted InsJC,, differs only in one point: axioms of type (ii) 
and (iii) are replaced by all their ground instances (variable-free object terms of L 
are substituted for all parameters of the axioms). 

To avoid degenerate cases we shall assume all theories used in the sequel to be 
consistent. 

Let <Z, Y> be a problem in I and let K be either KY or Ins Kv We shall say that 
the problem <Z, Y> is solvable in K iff 

(1) Kh -3s (X [s 0 ] ->Y [ s ] ) , 

where s0 is a constant denoting the initial situation. 

Denote K' an open conservative extension of K. It appears as a consequence of 
Herbrand's theorem (cf. [11]), that (l) holds iff there is a finite set 2T of variable-free 
situation terms of K' such that 

(2) K> h- X{So] - V Y{t\ . 
te3~ 

We shall call 3T a solution set for {X, Y> in K'. 

In the case when K is Ins Kh if (1) holds then there is a solution set consisting of 
terms of K only. This solution set can be interpreted as a plan for robot's behaviour. 
If it contains only a single term then it corresponds to a straight-line plan. For 
instance in our Example 1 we obtain the term 

push(b, 3, 2, gotoil, 3, push(a, 1, 2, s0))). 

6. BRANCHING PLANS 

What is the meaning of the solution set ,T from (2) in the general case, when it 
. consists of more than one term? It appears natural to interpret this set as a branching 
plan. For instance, if the disjunction in (2) has the form YffjJ v Y[f2] and f3 is 
the largest common situation subterm of t1 and f2 (if nothing else, it is s0) then the 
set {tlt t2) represents a plan where the execution of the common part (3 is followed 
by a decision whether to continue execution of fj or of f2. This decision may involve 
perceiving, or testing, the actual state of the environment. This important generaliza
tion of plans enables to postpone certain decisions from the planning stage to the 
execution stage. 



Actual reasons for this postponement can be easily demonstrated using the 
image-space approach. Let us consider first the case without incidental phenomena. 

Assume that for a certain image T we have T \- C^, v C^2 for two distinct 
operators ij/l and i//2, but neither T\— C^, nor T(— C^2 holds. According to the 
previous definition neither of the operators is applicable in T; nevertheless, the real 
world is logically complete and thus one of the two alternatives can be in execution 
time followed. A similar case occurs when T \- C^ v Y (Y is the goal formula). 
In real world either Y holds, i.e. the goal has been achieved and the execution halts, 
or the execution may continue by the operator \\i. 

The nature of branching plans and their role in problem solving is discussed in 
a more detail in [11], cf. also [6], p. 41. A method for generating branching plans 
was implemented by Warren [13]. An important metatheorem, proved in [11], 
shows the correspondence between plan formation in image space and theorem 
proving in situation calculus. It asserts that a problem QL, Y) has a branching plan 
in I if and only if it is solvable in the associated situation calculus Ins Kv Moreover, 
the solution set can be effectively extracted from the proof in Ins Kv 

Let us now turn to the case of an image space involving both incidental pheno
mena and branching. The nature of a plan in this general case is best explained by 
defining it as a formal mathematical object. Let us denote by 2 the set of all operators 
of an image space I. So far the elementary objects of planning were operators of Z; 
now it is better to work with triples of the form <i^, A, B), where f e l and <A, B) e 
e Inc,,. We call such triples transitions; finite sequences of them are transition 
sequences (in distinction from operator sequences). If T denotes a transition we 
write T = <op(r), At, BT); obviously, each transition sequence a = (r., T2, ..., T„) 
defines uniquely an operator sequence op(a) = (op(Tj), op(r2) , . . . , op(r„)). In both 
cases we consider also the "empty" sequence (for n = 0) denoted by A; clearly, 
op(A) = A. 

Let <Z, Y> be a problem in I and let T be a finite nonempty set of transition se
quences. For any transition sequence fi define the set Fp of all transitions which 
are immediate successors of /? in T: 

Ffl = {T I /?T/?' e T for some sequence /?'} 

(in particular, FA consists of all the first elements of sequences in T). By (¥%6r 
denote the formula Yif ft e T and false otherwise. Assume that T satisfies 

(3) T\X-]\- V ( C o p ( t ) & . 4 t ) v ( F ) A s r 
xeFA 

and for each nonempty initial segment a = (T1 ; ..., x„, T') of any transition sequence 
inT , 

(4) -U-W-)& -V] ^ V (CopW & Ax) v (Y\er . 



Then the set P = {op(oc) | a e E} is, by definition, a plan for the problem <X, Y) in I. 
The set F conveys more information than the plan P: it explicitly indicates where 

and what incidental phenomena has been taken into account in the course of planning. 
Why then to define a plan as the set P rather than E? The main reason is the already 
mentioned assumption that the robot is able to test in real world only the conditions 
of its operators and not, in general, the antecedents of incidental phenomena. Thus 
the additional information in F would be of little use for the execution subsystem. 
(It may be useful for other purposes, for instance when plans are evaluated according 
to their reliability — cf. [5].) 

The difference between hypothetical assumptions in the planning stage and actual 
knowledge during the execution may explain a "paradox" of conditional plans 
illustrated by the following example. 

Example 2. In a world similar to Example 1, but with only one box a, consider the 
problem <X, Y>, where X is 

ROBOT-IN(2) & (IN(a, l) v IN(a, 3)) 

(cf. Fig. 2) and Yis 

3x (ROBOT-IN(x)& IN(a, x)), 

representing the task "go to the room with the box". 

Fig. 2 

The branching plan 

P = {{goto[2, 1]), (goto[2, 3])} , 

consisting of two single-operator sequences, clearly solves the problem. Moreover, 
this plan is executable since the condition (ROBOT-IN(2)) for both the goto operators 
is true in the initial state. Yet we are somewhat reluctant to admit P as a reliable 
plan: its execution clearly fails to reach the goal if the improper branch is executed. 

This anomaly is a consequence of using incidental phenomena. The set T, from 
which P is derived, consists of two transition sequences (each of length one): 

r = {«goto[2, 1], IN(a, 1), IN(a, l ) » , 

«goto[2, 3], IN(a, 3), IN(a, 3)») , 



where the second parameter of goto depends on the corresponding incidental pheno
menon, a structural property that cannot be observed in P. We can deal with this 
situation in several ways. One possibility is to assume that the robot is able to test 
the validity of formulas IN(a, 1) and IN(a, 3) in the execution time. Then we can 
replace the operator schema goto[x, y~\ by its modified version goto'[x, y, z] with 
the condition ROBOT-IN(x) & IN(a, z). This reduces the decision at the branching 
point just to testing conditions of operators. On the other hand, if we cannot assume 
the ability of testing the relation IN, the only possibility is to reconcile with unreliable 
plans — which is after all a natural thing to do. 

(Let us remark that there exists another plan for the above problem, which is 
reliable under the assumption that the goal formula is testable and that backtracking 
is allowed: (goto[2, 1]), (goto[2, l ] , goto[l,2], goto[2, 3])). 

The mechanism of incidental phenomena enables us to treat tests (mesurements, 
experiments, and even robot's questions to the user) in the same way as physical 
actions and represent them explicitly by operators in the image space. For instance 
in our last example we may invent a new operator schema look-where-is[x~\ with 
condition, say, CAN-SEE(x) and with the incidental phenomena 

{<IN(x, y), k-IN(x, y))\y = 1,2,3}, 

where k-IN(x, y) is a new predicate interpreted as "the robot knows that (the box) 
x is in (the room) y". A natural core axiom may be Vx Vy (k-IN(x, y) -> IN(x, y)) 
(but not the converse). Of course, all occurences of the predicate IN in operator 
conditions should be replaced by k-IN. 

Finally, let us mention one further point concerning the relationship of the set F 
and the corresponding plan P. In general, op(a) = op(j8) does not imply a = /?, 
even if a, ft e F or if both a and /> are initial segments of some sequences in T. For 
instance, it may happen that the disjunction in the definition of a plan (in (3) or (4) 
above) has the form, say, 

(5) (c^&A) v (c^&nA) . 

Then a branching occurs in T but not necessarily in P. Let us call this phenomenon 
concealed branching. There are logical reasons to allow plans with concealed 
branching (first, theorem proving in the situation calculus does not avoid them, and 
second, they solve a strictly larger class of problems). A typical case of concealed 
branching occurs when an explicit test (in the just described sense) is involved 
in the plan. Thus the operator \\i in (5) may be a test whether A is true or not, the 
condition of the test being independent on which of the two alternatives really holds. 



7. STATE-DEPENDENT FUNCTIONS AND THE EXPLICATION 
ABILITY 

The theory Ins X, was shown to have the same problem-solving power as the origi
nal image space I. Are there cases when the stronger theory X, can be used as a tool 
for problem-solving? Is the class of problems solvable in Xi generally wider then that 
of Ins X,? 

Before we try to answer these questions we shall somewhat modify Example 1 from 
Section 3. 

Example 3. Let the robot's three room world contain an unknown number of boxes 
of a varying size. Suppose there is an ordering relation for all boxes represented by 
predicate SMALLER(x, y). The situation calculus X, for this world contains among 
its core axioms also the following one: 

(6) Vs Vy ((ROBOT-IN(y, s) & ~1 EMPTY(y, s)) -> 

-> 3x ( IN(X, y, s)& V« (IN(M, y, s) -+ SMALLER(x, u, s)))), 

i.e., there is always one smallest box among the boxes in each nonemtpy room visited 
by the robot. 

Consider a problem (X, Y> where X is ROBOT-IN(l) & EMPTY(3) and Yis 

3x (IN(x, 3)& Vv (lN(v, 3) -* y = x)& Vv SMALLERfx, y)). 

The robot is asked to find the smallest box from all the rooms and place it into the 
room 3, which was originally empty. This problem is represented in KY by the formula 

(7) Xls0} - 3s Y[sJ . 

It is not difficult to find out, that the formula (7) is not provable in Ins X, as well 
as the problem (X, Y> is not solvable in the image space I. The reason for this 
failure is the lack of a concrete information about the robot's environment. The 
robot knows neither the names of boxes in a certain room nor their amount. 

Let us try to prove the formula (7) in the theory KY. This formula is provable in X, 
iff it is provable in the theory XJ, which is an open conservative extension of Kv 

The theory X,' is obtained from X, after elimination of all the existential quantifiers 
in the prenex form of the axioms of X, using Skolem functions. 

In our example the theory K{ is obtained by introducing a new function 
smallest(y, s) and by replacing the axiom (6) by 

(8) Vs \/y (ROBOT-IN( v, s) & ~1 EMPTY(y, s) -> 

-> (m(smallest(y, s), y, s)& Vu (rN(«, y, s) -> 

-» SMALLER(sma//esf(.y, s), u, s)))). 



Suppose there are no existential quantifiers in X and no universal quantifiers in Y. 
Then (7) holds iff there is a solution set 3" for (X, Y> that consists of variable-free 
situation terms of K[ such that 

K\ h- x[s0] -> v y[.] 

(a consequence of Hilbert-Ackermann's theorem). 

For instance, a solution set for the problem in our running example may consist 
of two terms of the form 

push(smallest(2, t), 2, 3, t) 

where t is either push(smallest(l, s0), 1, 2, s0) (if room 1 is nonempty) or goto(l, 2, s0) 
(if room 1 is empty). This describes the plan "if room 1 is nonempty push the smallest 
box from room 1 into room 2 (or else, if 1 is empty, just go to 2) and then push the 
box which happens to be smallest in 2 from 2 into 3". 

Suppose that the robot has the ability to identify in any actual situation the smallest 
box, whose existence is claimed in the axiom (6). The solution set for the formula (7) 
then represents a sound plan for robot's behaviour in this case. Here we have an 
example of a problem solvable in X[ and unsolvable in Ins Kv 

What makes the theories Kx and Ins Kt different in general? During a theorem-
proving procedure, when the existential quantifiers from the prenex form of the 
axioms are being removed, the language of the theory under consideration is enriched 
by new functions (Skolem functions). In a solution suggested by Ins iC, these new 
function symbols play only a passive auxiliary role and never appear in a solution 
set since they do not occur in the place of parameters of operators — cf. [11] for 
details. 

On the other hand, the terms in a solution set in Kt may easily contain object-
valued Skolem functions dependent on situation. (In our above example it will be the 
function smallest(y, s).) 

How such a function should be interpreted? What are the robot's capabilities, 
which make it possible to use for planning Kx instead of Ins KJ 

Consider a robot with a preprogrammed ability to find and identify in any actual 
state of the environment a specimen of the object, the existence of which is claimed 
for this state by an axiom (or equivalently, to determine the value of an object 
function with one situation argument) and remember it for a later use. In particular, 
the robot can evaluate its Skolem functions during execution of its plans. This is an 
activity oriented to a better understanding of the environment rather than to its 
actual change. 

Suppose a robot has the described property for all existential quantifiers occuring 
in the prenex form of the core axioms and of the consequents of the operator and 
incidental axioms of Kv Moreover let the antecedents of the operator and incidental 
axioms be verifiable by the robot, e.g. let they be open. Then we say that the robot is 



endowed witli tlie explication ability (for K,). In the rest of the paper we shall con
sider only robots with this ability. 

All possible actions of the robot are described by the theory KY or even better by 
a theory K[ obtained from K, after the existential quantifiers in question are eliminated 
using the Skolem functions. 

However, not every solution set can be immediately interpreted as a well-defined 
plan. The difficulty is caused by the new object functions depending on situation 
argument, which may appear in terms of 3~ in a rather peculiar way. For example 
the situation term 

push(smallest(3, goto(2, 3, s0)), 3, 1, push(a, 2, 3, s0)) 

does not represent a feasible command because the value of the object argument 
smallest(3, goto(2, 3, s0)) can be explicated only in the situation obtained from s0 

by applying goto from 2 to 3 - but the robot never passes through this situation on 
his way towards the situation push(a, 2, 3, s0)! 

We shall call a situation term regular iff it represents a feasible command (a formal 
definition is in [10]). The following theorem can be proved. 

Let K\ describe the capabilities of a robot with the explication ability and let 
{X, Y} be a problem, where X is a formula without existential quantifiers. Then 

K[ h X[s0J - 3s Y[s0] 

iff a set ST of regular terms of K\ can be effectively found, such that 2T is a solution 
set for (X, Y> in K[, i.e., 

K[ h x[Soj - v y[t] 
teST 

(the proof is in [10]). 
Certain subterms of situation terms should be distinguished. We shall call them 

*-subterms and define them by induction: 
The only *-subterm of s0 is s0. Let t be a term of the form q>(..., (,); a situation 

term t' is a *-subterm of t iff t' is a *-subterm of t, or t' = t. 
An execution procedure for a solution set -T from the above theorem may have 

the following form: 

Step 1. Set PRESENT := s0, HINT := 3~. 

Step 2. If yis satisfied in the actual environment then exit with success, otherwise 
continue. 

Step 3. For any term of the formj(.. . , PRESENT) which is a subterm of some term 
in HINT and where/ is a Skolem function, detect in the actual environment 
the value of/ with the same arguments and remember it. 



436 Step 4. Find an operator schema <p[xi, •••, xm~] and object terms au ...,am such 
that 
(i) there is a term t e HINT for which q>(au ..., am, PRESENT) is a *-subterm 

of t, and 

(ii) the condition Cv with parameters replaced by the values a 1 ; a 2 , ...,a„ 
of the terms au ..., am (computed using the values of Skolem functions 
determined in previous steps) is met in the actual environment. 

If such an operator schema and terms do not exist then exit with failure; 
otherwise set 

OPERATION:= (the operator obtained from q> by considering a,, a2,..., a„ 
in the place of its parameters). Set NEXT := q>(at,..., am, PRESENT). 

Step 5. Execute the OPERATION. 

Step 6. Set PRESENT := NEXT, HINT := (the set of all t e HINT having PRESENT 
as a *-subterm), and go to Step 2. 

This procedure ends with failure (in Step 4) only if the theory Ku which yielded 
the solution set .T, was an inadequate representation of the world. 

The state-dependent functions admit a more general interpretation than we con
sidered above. It seems likely that they may serve as a proper tool for representation 
of changing environment even in cases when the robot is not the sole agent responsible 
for the changes. 

8. PLANNING UNDER CONSTRAINTS 

In the previous section we have observed that — as far as state-dependent functions 
were concerned — the situation calculus appeared as a more suitable framework than 
the image space even for practical planning. It is therefore worth looking at some 
other variants of problem solving and ask whether they can be in a suitable way 
expressed in the framework of situation calculus. 

Let us here shortly mention, for instance, the class of problems which may be called 
problems with constraints. So far we have considered only problems expressible in 
terms of the initial situation and a goal situation. The problems like "go to room x" 
or "find the smallest box in the room" are all of this type — let us call them un
constrained problems. On the other hand, problems with constraints are specified, 
besides the initial and goal states of the environment, also by properties of all the 
states encountered during the execution of a plan. The Tower of Hanoi problem is 
a typical example of a problem with constraints. 

How can a problem solver be constructed, which is able to find solutions even of 
problems with constraints? 



Of course, a state-space or an image-space problem solver can be used to solve 
even constrained problems by automatically limiting the considered states (images) 
only to those which meet the constraining conditions. It appears that also the situa
tion calculus can be modified so that it can cope with these problems. Let S be 
a theory in situation calculus enriched by a new predicate :S, defining a partial 
ordering of situations. 

Let X, Y be formulas describing the initial and the final states of a problem and let D 
be a formula specifying the constraints on all situations encountered during the 
solution. This problem can be represented by the following formula 

Z [ s 0 ] - 3 s ( Y [ s ] & V s ' ( s ' ^ s - , D [ s ' ] ) ) . 

The question, whether this formula is provable in S iff there is a solution to the 
problem <X, Y> with constraints D, will be a subject of our future studies. 

9. RELATIONSHIP TO AUTOMATA THEORY 

This last section is just a note on an existing abstract counterpart to the image space 
within the conceptual framework of automata theory. Aware of the many distinctions 
between the approaches of automata theory (which studies general behaviour, global 
properties, and algorithmic means) and of the theory od problem solving in artificial 
intelligence (interested in particular solutions, local search, and heuristic methods), 
we can nevertheless advocate the former approach for certain particular questions 
of a mathematical nature in the latter area. A global mathematical treatment of the 
image space in its full generality would enable treating plans as mathematical objects 
suitable for mutual comparison, composition, and grouping into sets of all possible 
plans for a given goal. 

The notion of an abstract automaton (specified by a set Q of states, by a transition 
function 5 : Q x 2 -> Q, where E is a set of abstract symbols called the input 
alphabet, by a initial state q0 and by a set of final states E £ g) is a natural and 
obvious abstraction of the the state space. One just interprets the symbols of E as 
operators and the pair <s0, F) as a problem; the so called behaviour of such an 
automaton then represents the set of all straight-line plans for a given goal. 

The situation is a bit more complicated for the case of branching plans. In [3] 
an extension of the concept of a finite automaton was suggested with a special 
branching relation associating with each state a collection of alternative branchings. 
Each plan obtains a mathematical form of a set of finite strings over S; this set, in 
distinction to the formalism based on predicate logic (as in Section 4), is allowed to 
be also infinite. 

A further step can be made when one wants to give an automata-theoretic counter
part to an image space with incidental phenomena. From a fixed state (image) using 
a fixed input symbol (operator) one may obtain several distinct new states if different 



incidental phenomena are employed. The adequate formalization leads to the concept 
ofanondeterministic branching automaton [4], where the transition function is many-
valued. It appears that — unlike in the case of classical automata — the nondeter-
minism of this form yields a strictly greater class of representable plans: a mathemati
cal formulation of the fact that allowing incidental phenomena is a nontrivial 
extension. 
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