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On the Algebraic Structure of Fuzzy Sets
of Type 2

JUHANI NIEMINEN

This paper developes the further properties of fuzzy sets of type 2 (fuzzy grades) recently
considered by Mizumoto and Tanaka. A class of modular fuzzy grades is constructed and the
structure of distributive fuzzy grades is illustrated by means of a spectrum theorem of Plonka.
Finally an open problem proposed by Mizumoto and Tanaka on convex fuzzy grades is solved.

1. INTRODUCTION

Fuzzy sets, introduced and considered by Zadeh in [5], offer a formal way of
handling ill-defined objects and have many applications to automata, languages,
pattern recognition, decision making, logic and control. After Zadeh had introduced
the concept of fuzzy sets of type 2 (fuzzy grades), an extension for fuzzy sets, Mizu-
moto and Tanaka [2] showed that the algebra of fuzzy grades is a quasilattice (with-
out using this name) and derived a lot of properties of the algebra of fuzzy grades.
The purpose of this paper is to apply some properties of quasilattices for finding
some further properties of the algebra of fuzzy grades. We shall show that endmaximal
fuzzy grades constitute a modular quasilattice and moreover, normal endmaximal
fuzzy grades a distributive quasilattice. As the quasilattices are semilattices, also the
structure of fuzzy grades as a semilattice is briefly considered. The spectrum theorem
of Plonka for distributive quasilattices [4, Theorem 3] is applied for finding some
structural properties of the subsystem of convex fuzzy grades.

Basic properties of distributive quasilattices are studied in [4] by Plonka and some
further remarks are made in [3]

The definitions and notations concerning fuzzy grades are those introduced in [2]
and recalled in the next section. The definitions concerning quasilattices are those

of [4] and [3].
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2. PRELIMINARIES

In this section we recall briefly the necessary definitions and notations.

An algebra Q = (X, A, v) is called a quasilattice, briefly QL if its fundamental
operations A and Vv satisfy the axioms:

(1) X AX=X, XVXx=x.
) XAYy=YyAX, XVy=yvx.
(3) (xay)nz=xa(yaz), xvyvz=xv(yvz).

If the operations A and v satisfy further the axiom
4 xalpvzy=@Exapyvixaz), xvipaz)=xvyakxvaz),

the algebra Q is called a distributive quasilattice and denoted by DQL. A quasi-
lattice QL is modular, denoted briefly by MQL, if it satisfies the axioms (1), (2), (3)
and the law (5) given below:

(5) xa{yvxaz)=(xaArpvxnaz),
xv({yavz)=(xvya(xvz).
Obviously each DQL is a MQL, too.
Each quasilattice can be ordered in two different ways:

(asbeb=avband (ii)a < b<a=a b Ifthe orders £ and X are
mutually reciprocal, i.e. a £ b <> a < b, then, as noted by Matsushita [1, Theorem 1],
both of the absorption laws hold and the quasilattice in question is in fact a lattice.

A fuzzy set 4 in a set X is characterized by a membership function p, which
takes the values in the interval [0, 1], ie.

pa:X - [0,17.

The value of p, at x € X, denoted by uA(x), represents the grade of membership
(briefly grade) of x in A and is a point of [0, 1]. A fuzzy set 4 can be represented
as follows:

A= ﬂA(xl)/X1 + HA(xz)/xz + ...+ HA(xn)/xn

= Z#A(xi)/xi , X€X,
where the operation + stands for logical sum (or). As shown in [2], the grades

for ordinary fuzzy sets constitute a distributive lattice with the greatest and least
elements.




A fuzzy set A of type 2 in a set X is the fuzzy set characterized by a fuzzy member-

ship function p, as follows:
pat X > [0,17,

with the value p,(x) being called a fuzzy grade and being a fuzzy set in [0, 1] (or
in the subset J of [(), 1]). Thus by considering the algebraic structure of fuzzy
grades we obtain also the algebraic structure of fuzzy sets of type 2. In this paper
it is assumed that J is a finite set, but the results of this paper are easily generalized
for the case, where J is continuous.

Let i (x) and pp(x) be two fuzzy grades (i.c. fuzzy sets in J < [0, 1]) of fuzzy
sets A and B of type 2, respectively. They can be represented as follows:

ma(x) = fufuy + [y + o+ flug)fu,
= zi:f(u,-)/u,- , u;eld,

us(x) = g(wy)jwy, + g(wao)[wz + ... + g(wn)w,
= %:g(wj)/wj s wied,

where f and g are membership functions of fuzzy grades pu,(x) and ug(x), respectively,
and the values f(u;) and g(w;) in [0, 1] represent the grades for u; and w; in J,
respectively.

Let o and [] denote max and min, respectively. The operations for fuzzy sets
of type 2 are defined as follows:

Union: AU B py,5(x) = pa(x) T pp(x)

= (XS (u)fu) © (ZJ:!/ (w;)wj)

i

= 2 () o 0w ) (u: O wy) -

Intersection: A0 B pyp(x) = pu(x) D pg(x)
= (/) 7 (Salomw)
= ,Z, (f(us) o g(w))(us o wj) -

As shown in [2, Theorem 1], arbitrary fuzzy grades in J satisfy the laws (1), (2) and
(3) with respect to the operations T and 75, i.e. they constitute a quasilattice QL().
Moreover,

©) 14(x) 7 (pa(x) © a(x)) = 14(x) © (a(x) 7 ps(x))

holds for each two fuzzy grades p4(x), up(x) € QL(w).

As in [2], we substitute the notation ,(x) with the brief notation ., which means
in what follows fuzzy grade.
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Let J = {u,,u,, ..., u,} be a subset of [0,1] which satisfies u, < u, < ...
... < u, Afuzzy grade u, = Zf(u i)u;in J is said to be convex if for any integers

i, k with i £ k the relation f(#;) Z min {f(u,), f(u,)} holds for each j, i < j < k.
i, is said to be normal if max f(u;) = 1. Furthermore, a fuzzy grade which is normal

i
and convex is referred to as a normal convex fuzzy grade.

Mizumoto and Tanaka have shown [2] that if p4 and up are convex (normal),
then also uy A pp and p, U pp are convex (normal). Moreover, the convex fuzzy
grades satisfy (4) with respect to U and 7, i.e. convex fuzzy grades constitute a DQL,
and for normal convex fuzzy grades the absorption laws hold with respect to T and
A, i.e. the normal convex fuzzy grades constitute a lattice.

3. ON THE STRUCTURE OF QL(#)
First, we prove a lemma about (6).

Lemma 1. Let QL be a modular quasilattice, then QL satisfies the law (6) with
respect to the operations A and v.

Proof. By applying the modularity of QL we obtain: x A (x vV y) = x A
Axax)vy)=(xAx)v(xAy)=xv(xAy) Thus (6) holds in QL.

In the following we construct a class of fuzzy grades which constitute a modular
quasilattice. A fuzzy grade p, = Y f(u,)/u; is called endmaximal, if for each value

of j it holds: f(u,) = f(u,) = f(u;), where 1 £ j Snand J = {uy, ..., u,}, u, <
< U, < ... < u, Endmaximal fuzzy grades defined for a fixed J constitute a modu-
lar quasilattice as it will be shown. We need first a lemma.

Lemma 2. Let y1, and u;; be two endmaximal fuzzy grades in J. Then py ™ pgand
14 O pp are endmaximal, too.
Proof. Let uy = Y f(u)/u and py = Y g(w)/w, where u, we J. Let p(a) be the
grade of a € J in pu; U yip. Then p(a) can be represented as p(a) = Y. f(u) o g(w),
uQw=a

where the logical addition is performed over all the combinations u and w for which
ulJw=a.

When a = u, = wy, p(a) = min {f(u;), g(w,)}. In general, if a = u O w, then
a=u and w=<a, or u<a and w= a. Thus p(a).—_f(a) Zg( w) + g(a) o

z f(u), where f(@) = 7(us), T g(w) = 9(w1)> 9(a) = g(ws) and Zf(u) = f(u,) as
i and g are endmaximal, So f(a). Zg(w) < min {f(u,), g(wl)} and the same
holds for g(a) Zf(u) too. Accordmgly, p(a) = p(uy) for cach ae J, a + u,, 4 »




When a = u, = w,, then f(a)o Zg(W) () o g(w,) = min {f(uy), g(w,)} as u,

and py are endmaximal, and so p(u ) = p(u,). Hence, p, O g is endmaximal. The
proof is similar for u,; ™ ug.

If p14 and pp are normal endmaximal, then the endmaximality implies that f(u,) =
= f(u,) = g(w,) = g(w,) = 1. According to the proof above, u, U g and u, ™ pp
are normal endmaximal, too.

Theorem 1. The endmaximal fuzzy grades in J constitute a modular quasilattice.

Proof. We must show that g, O (up D (14 O pc)) = (4 O ) & (1 T 1)
and p, B (s O (4 D pe)) = (a7 pig) T (py 7 pe) for each three endmaximal
fuzzy grades p, g and pic in J. In fact we shall prove the validity of the first law; the
proof is analogous for the second.

Let the fuzzy grades piy, s and ge be: pg = 3 f(u)fu, pg = Y, g(w)|w, and pe =
uel weJ
= Y h(z)/z. Let p(a) be the grade of a € J in the fuzzy grade s, U (ug 1 (114 T uc))-
zed

We shall show that the grade g(a) of a € J in the fuzzy grade (1, O pz) 7 (1, O sic)
is equal to p(a) for each a e J, from which the desired equality of fuzzy grades
follows. p(a) can be represented as
pla) = ¥ f(u) o g(w)o h(z)o f(u').
uli(wo(zLu'))=a
The solutions of u [1(w o (z (0 u')) = a divide u, w, z and u’ into the following six
classes:

u=a u=a u=a u=sa ua u=sa
wZal, Jwiree| Jw=al| Jw=a| |wzal Jjwza
zfree {7 )z < a|’ )zfree zzal’ Jz=a’ Jz<a
u’ frec u Za u' =a u’ free u’gaJ u' =a

According to these six classes p(a) can be divided into six partial results [T}, (2], [3],
(4], [3] and [6], where p(a) =[1]+ [2) + [3] + [4] + (3] + (6] The partial results

are given below.
1 =f(a) ow;ag(w) ° Zzh(z) ° ‘I;If(u’)
~f(@)« Tatw)- THE), w5 1@) S TA)-
= (@)« Tav) - Z )« T SW)
= /@) Te0) - THE) 35 f6) S T S
= LS o(a) o Thtz) - XIW).
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266 4 =u§af(u) o g(a) uz;h(z) o ;f (u")
=B 0(@)- D).
5= £ -3 o0)  He) - 3 S)
(6= 2/w)« 3 () 3 1(z) o f(a)
= 1(@) . éag:(w) ) ).
Morcove, 3+ §) = 21 25 Ya(v) 2 3 (0
By combining the results above we obtain the following expression for p(a):
Pla) = (a) X 900)  TH) +1(0) o Talo) o £ 2) +
+ 210 0(6) - THE) - ¥ 16) + TA0) - la) - T hGe) +
+ 3 1(0) o 3 o) Ha).
g(a) has the expression i )
W= 5 oo H)-SW).

The solutions of (1 [0 w)e(z O u') = a divide u, w, 2z, and ' into the following
eight classes.

u=a u=a u=<a u=<a
wsal, 6 jwZal|l, jw=a| 6 |Jw=al,
zzal’ Yzfree [° )z Zal® }zfree [’
u' free u =a u' free u za
uza u free u=a u free
wiree [ Jw za( Jwirce| |w=a
z =a|’ Jz =af’ Jz La’ )z Lal’
u <a u=<a u =a Lt’:a

According to these eight classes p(a) can be represented as a logical sum of eight
partial results [T], 2], ..., [8] given below.

= 7(@)+ £ o(0) - X (z) o TS0
=) R o0) - THE), 2 @) S TW).-




2= 10)+ X o) > $HE) o T 1) 267
~J@ T o) £He). w5 10) S T S6)-
Moreover, (1] + [2] = [2], as Z;h(z) = :22:“11(3) .
3= T o(a) - 5 ) DA
= 20+ o) T 1),
= 3 /() ola)  $h(z) o )
EEPWORNIORLOEPIICY
[61= S1(0) e X a0} - ha) o T 1)
= So(0)- h(a) -3 Jw). ‘
Moreover,
+ (8= h(a)o 3 W) [T o) + Ta(w)e T /()]
= @)+ 5 J0) - 5 600 7

It follows from the endmaximality of pp that ¥, g(w) = Y g(w), and so Y g{w) =
=Y g(w)o Y f(u). Further, Y’ f(u') =Y. f(u). *** hd wea
W uza wZa uza

= 300 5o 3 ) (0
_ %g(w) SR f(a).

= S0+ T o(v) - £ 1e) o 1)
Y OBNCHCE

Moreover, + @8 =7, as Y g(w) < Yg(w). By collecting the partial results

given above, we obtain for g(a) the expression:
@) = 1(@) T o) THG) + TfGw) o ola) o T2 +
+ TS0 @) o THE) - T 1) + hia) s TfGw) - T alo) +
_ FTI0) HEeS@.
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Thus p(a) = g{a) for each a € J, and the first modularity law holds for endmaximal
fuzzy grades.

Note that only the endmaximality of pug was used in the proof, and so the modular
law is valid for fairly wide class of fuzzy grades. Further, the proof of the law p, O
T (1s & (14 O pic)) can be performed if g(w,) = g(w,) for each j, w; € J, orif g(u;) =
= f(ui) for cach u; = w;e J. The second modularity law needs naturally dual
properties for pg.

The following theorem illustrates weakened absorption laws that are valid in the
modular case. Accordingly, these laws hold for fuzzy grades when the fuzzy grade
corresponding to iy in the modular law has suitable properties illustrated above.

Theorem 2. In a MQL the following weakened laws of absorption are valid:
(i) xvyvEx ary=xvy, xaya(xvy=xay
(i xvEayyviparz=xvy)akxvyaz),
xAaxvy)alpve=xEayvixalyvz)

Proof. The laws of (i) are proved in [3]. On the other hand, by putting z = y
in (i) we obtain the laws of (i).

({):1 xv@Exayviyaz=xvxayvpazl=
=xvyaxv@arad)l=Evy)Aaxyv@yaz)

{):2 xaxvy)a@ve=xalyvEEapval=
=xApyviEa(yva)

By applying the proof scheme of Theorem 4 in [2], one can easily see that the
normal endmaximal fuzzy grades constitute a distributive quasilattice.

Theorem 3. The normal endmaximal fuzzy grades constitute a distributive quasi-
lattice.

Surprisingly, there are no greatest elements among normal endmaximal fuzzy
grades, and so it seems to be so that this subset of fuzzy grades does not constitute

a lattice. ) 1/u satisfies the law u, O Y 1/u = Y 1/u for each normal endmaximal
ueJ ued
fuzzy grade u,, but also p, N Y, 1fu = ¥ 1/u holds.
uel ued
As shown in [2, Theorem 9], normal convex fuzzy grades constitute a distributive
lattice. On the other hand, the set of fuzzy grades is always a semilattice with respect

o T (and to A, 100). In the following we shall make a few observations on the
T-semilattice structure of QL(p).

We call a fuzzy grade p, = Y. f(u)ju b-maximal, if f(u;) = f(u;) for each u; € J.
vel

ueJ




Lemma 3. If p, and py are two b-maximal fuzzy grades in J, then g4 U py has
the same property in J.

Proof. Let p(a) be the grade of ae J in u, O pp, ic. p(a) = f(a)o Y g(w) +
wZa
+ g(a)o ). f(u), where p, =3 f(u)fu and pp =3 g(w)/w. Let us assume that
et wer

uZa

S(uy) Z g(w,) for uy = w e J. According to the b-maximality, Y g(w)/w = g(w,)
wza
and Zf(u) u = f(u;). Thus p(a) = f(a) g(w,) + g(a) o f(uy), and this expression

for p(a) implies that p(a) < min {g(w,), g(a)} £ g(w,), whence the fuzzy grade
4 O pp is b-maximal.

Theorem 4. The b-maximal fuzzy grades constitute a distributive T-semilattice.

Proof. A v-semilattice is distributive with respect to its operation v, if the
relation a v b z ¢ implies the existence of two elements a; < a and b; < b such
that a; v b = c.

As we consider fuzzy grades as a U-semilattice, the order relation [ is given
by the rule: u, [ pp <> py O pip = pp.

Let uy, ppand pc be three b-maximal fuzzy grades such that pc C u, T s, Where
iy = 2 f(W)fu, pg =Y g(w)/w and pc =Y h(z)/z. We shall use also the notation

ueJ weJ zeJ

Hy Oy = th(x)/x.

The relation pc [y O g, i€ pic O py O pp = pi, O pp, implies that t(a) =
= h(a) o Z i(x) + H(a) o Z h(z), and in particular, #(u,) = h(u;)o t(u;) when
a=u=w =z, =x,. Thus t(u,) £ h(u,), and as we consider b-maximal fuzzy
grades only, #(a) = h(a)o t{u;) + t(a) o h(u,). But t(a) £ t(u,) < h(u,), and so
t(a) = h{a) o {u,) + H{a), whence #(a) = h(a)o t(u,). Further, f(u,) = t(a) and as
h(a) - t(u,) < #(a), we can conclude that h{a) < t(a) when a = u;.

On the other hand, #{a) = f(a) o Zg(w) + g(a)o Zf(u) and for a = u; = wy,

t{uy) = f(uy) o g(w;). We assume thatf(ul) 2 g(uy), and 50 g(u,) = t(u); the proof

is similar in the opposite case. Thus when a + u,, #(a) = f(a)og(u;) + g(a)-

o f(u,) 2 h(a), as shown above. Hence, h(a) = h(a) . t(a) = h{a) o f(a) o g(u;) +

+ h(a) o g(a) o f(u;) when a % u,. The expression for h(a). #(a) as a model we

define two new fuzzy grades py and pp:pp = h(u;) + Y, g(w)o h(w) and p =
v > U

= D) )] + ) ). As ) 2 i) —"g(us), 4y is b-maximal,

and obviously also uA is b maximal. Let g(a) denote the grade of ae J in g T pp.

aluy) = g(ur) o huy) = g(us), and when a >y, a(a) = g(a) « hu,) + g(a)-
o h(a) o g(u,) = g(a) + g(a) » h{a) = g(a). Thus py U py = pp. Similarly we see
that p, O py = py

269
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Let r{a) denote the grade of aeJ in sy O pp. First, r(u,) = h(uy) o (f(u:) O
O h(uy)) = h(u,). Further when a > uy, /() = h(a) o f(a) o h(u;) + h{a) - g(a) -
(/) 0 b)) = h(a) < (&) + ()« 9(a) = h(a) - (f(a) + (@)} On the other
hand h(a) = h(a) o t(a) = h(a) < (f(a) o g(u;) + g(a) « f(u,)), Whence h(a) < f(a)o
v a(u) + 9(a) - ). Morcover,(a) + F(a) > 8(ur) + g(a) + o(a) o1 (11) = /@) +
+ g(a), and so h(a) £ f(a) + g(a) for each a > u,. Hence r(a) = h{a) - (f(a) +
+ g(a)) = h(a) for each a > u;, and so pc = u) T .

According to [4, Theorem 3] a DQL is of the form {U(T| Te 7); O, 71}, where
TAT =0for T+ T, T, T'e .7 is partially ordered with a lLu.b. determined
by a certain relation <*. Each of the sets Te J is a distributive lattice with respect
to 7 and O. For each pair T, and T, (and T, Ts), where Ty <* T, <* T, there
exists a homomorphism @y, r, : Ty = T, such that

ora(X) =%, or, 101, 1%) = 1,005,
andifae T, beTs, :

aTb=¢r,7,a) 0 0r,r(b) and a B b= or, 1, (a) B o1, 1.b)

where lL.u.b. (T,, Tz) = Ty, We only will see the characteristic property of the lattices
T, the direct spectrum of which the distributive subquasilattice of convex fuzzy grades
of QL(y) is.

As shown in [4], 7,1, =aOb=an(avb)=av(aarbland bOa=
= riralb) = b v (5 A@) = b A (b v a) Loty = T f(W)u and py = 3 g(0)fw
be two convex fuzzy grades. As J is a finite set, we can conclude that there exists at
Jeast one u, € J such that fou, = f(u,) Z f(u) for each u € J, and similarly a point

 Tmax = (W) 2 g(w) for each we J. Let y, O pz = Z Hz)/z and p, O pp =

kZ'/(x)/x Now Ha) =/(a)e ZJ(W) + g(a) o Zf(u) and further (a) = h(a) o

Zf(u)/u + f(a) o Z h(x){x. By combmmg these pamal results, we obtain

uza

10) = 70 5000« S0 + 1@< X119 X.o00) + o)+ S A1)
— /(@) uwz;g(w) + /(a) DFCH Gmee + f(a) Yo oo
- f(a) ow;:ag(w) + £(a) e g + /(a) ¥ 0() )
— £(6) < G *

Similarly we obtain for pup O py =Y d(y)/y : d(a) = g(a) o fumax for each ae J.
yei

On the other hand, fiax < Fmax OF Imax = Smax- 10 the first case p, O py does not

alter puqand in pg © 4 the operation © ““cuts” up into the level of fiy; if Gpax = frnaxs
we obtain a dual result. In fact, after the operation © we have two convex fuzzy grades




with the same maximum grade. Let T(b) be the class of fuzzy grades with the maxi-
mum grade b. In this class the fuzzy grade Ofu, + Ofu, + ... + Ofu,_; + bfu,
(J={uy, ...,u,} and u; <u, < ... <u,) is the greatest element such that
blu,, T = bfu,, and bfu,, &~ p = pfor each u e T(b). According to [4, Theorem 2],
T(b) is a lattice with respect to the operations U and 7. So the distributive quasilattice
of convex fuzzy grades is a direct spectrum in the meaning of [4, Theorem 3] of
distributive lattices T(b), where each two fuzzy grades have the same maximum
grade b. Moreover T(a) <* T(b)<b < a, and lub. (T(a), T(b)) = T(c), c =
= min {a, b}.
In the case of normal endmaximal fuzzy grades the following structure is found.
If py © g =) 4z)/z, then i(a) = g(a) + f(a) for each ae J, and similarly, if
zeJ
1 O 1y = 3 d(x)/x, then d(a) = g(a) + f(a) for each a e J. Each Te I consists
xeJ
of a single fuzzy grade only and trivially such a T is a lattice. If Ty = {u,} and
T, = {ug}, then T} <* T, <> g(a) = fa) for each aeJ, and lub. (T}, T,) =
= {uc = z;h(v)/v}, where h(a) = g(a) + f(a) for cach ae J.
Ve,

4. A PROBLEM ON FUZZY GRADES UNDER v AND A

In [2] Mizumoto and Tanaka defined except the operations T and 7 also two
other operations on fuzzy grades: w and ™. Let p, = Y. f(u)fu and pp = Y g(w)/w,
then ueJ wel

ta @ st = (LS W) (X gw)fw) = 2 f() gw)fu 0w,
and
Hq O i = le (u) g(w)fu 0w,

where /(1) g(w) stands for the algebraic product of f(x) and g(w). It is left to the reader
in [2] as an unsolved problem to prove or to disprove that p, W pp and gy & py
are convex fuzzy grades if p, and py are convex.

Theorem 5, If 1, and g are convex fuzzy grades in J, then py W ug and p, ™ py
are convex fuzzy grades in J, too.

Proof. We shall use induction over the number |J| of points in J. If lJ‘ =1lor2,
then u, w py and py ™ py are trivially convex fuzzy grades in J; it is mentioned
in [2] that this holds also when fJ| = 3. We assume that py W iy and p, o up
are convex fuzzy grades when |J| < m — 1 and we shall show that this is the case
also when |J| = m.

Let J = {uy, oo, thyy = {wy, .., Wy} = {x1, .., x5}, us =w; =x,if i = j = k,

andlet u; < uy < u3 < ... < U,_, < U, Further, we denote sty W g = 3" #(x)/x,
xeJ
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and we assume that there exists a point x, € J such that

(7) (x) < min {t(x,), ((x)}, r<qg<s.

If s < m, then the expression (7) contradicts to the induction assumption, as
w4 and pp are convex also in {uy, u,, ..., 4} and s £ m — 1. So we can assume
that s = m. Let 1 < r, and let us consider the following expression for #(a), a € J:

0) = 7(0) S o) + o(0) TS0

If frnax = f(#0) and gnar = g(w,) are reached for cach uy and wy when ug, wo 2 X,,
then t(a) = t'(a) for all values a e J satisfying a Z x,, where Y. 1'(x)[x = gy W pp,
xed’

Wy = er(u)/u, sy = ZJ}g(w)/w and J' = {X,. X, 1, -+ -, Xn}. As py and py are con-

vex in J, u; and pp are convex in J’, and according to the induction assumption,
the expression (7) does not hold in J', whence (7) is not valid in J.
If frax = S (10) is reached by 1y < x,, and goa, = g(w,o) by Wo 2 x, for each w,
then #(a) = 1"(a) for each a Z x,, a € J, where jy w py = ¥, t"(x)/x, wi = f"(x,) +
xel”

b TS S(5) = Fows = G0N T = (5 Sy a0 I = (s
ueJ” wel”

<oy Xp}. As g and pg are convex in J, py and pj are convex in J' and hence accord-
ing to the induction assumption t’(x,) = min {¢'(x,), 1"(x,)} . As £'(x,) 2 #(x,) and
t"(a) = t(a) for a € J”, the expression (7) does not hold.

The proof is similar, if g, = g(wo) is changes with f,, above, or if uy, wy < X,.
Hence we can assume that x, = x,.

By using similar considerations as above and the induction assumption, we can
conclude that f(x,) = min {#(x,), {(x,—1)} and #(x,) = min {f(x,), 1(x..)}. As 1(x,) <
< min {#(x,), t(xn)}, t(x,) Z #(>x;), HXn- ). Further, by similar arguments, the inter-
val {x,, ..., x,,} implies that #(x,,_;) = min {t(x,), #(x,)}, and the interval {x,, ..
..., Xg} that f(x,) = min {t(x,), #(x,)}. By combining the results above, f(x,) =
= #(x,-,) = #(x,). By applying now the induction assumption to the interval
{x4, ..o X}, X, £ x; £ Xy, We obtain that #(x,) = min {t(x,), #(x;)}, and as
t(x,) = #(x,) < t(x,), the relation #(x,) = #(x;) holds for each i, 2<i<m— 1
On the other hand, #(x;) £ #(x,) < min {¢(x,), #(x,,)}, and by using the same way
as in the case of #(x,) before, we can prove that #(x;) = #(x,), for cach i, 2 £ i £
< m — 1. Hence, t(x;) = t(xs) = ... = (x,-,), and 1(x,), t(x,) > #(x;) when
22ism-—1.

Now 1(51) = (x0) g(ss) and 1) = max {/(x2) e, J(5:) e, g2 ),
9(x2) F(x2)} X (32) Z f(34), then o(x,) Z f(x2) 9(x1) 2 f(x,) g(x1) = 1(x,), which
is a contradiction to #(x,) < #(x;). Hence f(x;) > f(x,) and g(x,) > g(x,). Since
s and pp are convex fuzzy grades and #(x;) = 1(x3) = ... = t{x,—), f(x1) >
> f(xz) E-f(xs) Z ... gf(xm—-l) and g(xl) > g(xz) 2 g(x3) Z...2 g(xm—1)~
Further, #(x,) = max {f(X,,) dmaxs fnax 9(Xm)}s ANQ finae = max {f(x,), f(x,,)} and




Fmex = Max {g(x,), g(xm)}- I f(x,)) Z f(xy) or g(Xm) = 9(x,), we obtain a contra-
diction to the convexity of uy or pp. So, let f(x,) < f(x1) and g(x,) < g(x,). But
then max {f(x,,) g(x,), f(x1) 9(%)} > #(¥p-1) = #x;), whence f(x,)> f(x,) or
g(x,) > g(x,). This contradicts the convexity of p4 or up again. Hence, the relation
Y(x,) < min {#(x,), #(x,)} does not hold for any indices r, ¢, 5, r £ q < s, from

which the convexity of u, @ uy follows.

The proof is analogous for p, m ug.
(Received October 4, 1976.)
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