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On the Algebraic Structure of Fuzzy Sets 
of Type 2 

JUHANI NlEMINEN 

This paper developes the further properties of fuzzy sets of type 2 (fuzzy grades) recently 
considered by Mizumoto and Tanaka. A class of modular fuzzy grades is constructed and the 
structure of distributive fuzzy grades is illustrated by means of a spectrum theorem of Plonka. 
Finally an open problem proposed by Mizumoto and Tanaka on convex fuzzy grades is solved. 

1. INTRODUCTION 

Fuzzy sets, introduced and considered by Zadeh in [5], offer a formal way of 
handling ill-defined objects and have many applications to automata, languages, 
pattern recognition, decision making, logic and control. After Zadeh had introduced 
the concept of fuzzy sets of type 2 (fuzzy grades), an extension for fuzzy sets, Mizu­
moto and Tanaka [2] showed that the algebra of fuzzy grades is a quasilattice (with­
out using this name) and derived a lot of properties of the algebra of fuzzy grades. 
The purpose of this paper is to apply some properties of quasilattices for finding 
some further properties of the algebra of fuzzy grades. We shall show that endmaximal 
fuzzy grades constitute a modular quasilattice and moreover, normal endmaximal 
fuzzy grades a distributive quasilattice. As the quasilattices are semilattices, also the 
structure of fuzzy grades as a semilattice is briefly considered. The spectrum theorem 
of Plonka for distributive quasilattices [4, Theorem 3] is applied for finding some 
structural properties of the subsystem of convex fuzzy grades. 

Basic properties of distributive quasilattices are studied in [4] by Plonka and some 
further remarks are made in [3]. 

The definitions and notations concerning fuzzy grades are those introduced in [2] 
and recalled in the next section. The definitions concerning quasilattices are those 
of [4] and [3]. 



2. PRELIMINARIES 

In this section we recall briefly the necessary definitions and notations. 

An algebra Q = (X, A , v ) is called a quasilattice, briefly QL if its fundamental 

operations A and v satisfy the axioms: 

(1) X A X = X , X V X = X . 

(2) x A y = y A x , x v y = y v x . 

(3) (x A y) A Z = x A (y A Z) , (x v y) v z = x v (y v z) . 

If the operations A and v satisfy further the axiom 

(4) x A (y v z) = (x A y) v (x A Z) , x v (y A Z) = (x v y) A (X V Z) . 

the algebra Q is called a distributive quasilattice and denoted by DQL. A quasi­
lattice QL is modular, denoted briefly by MQL, if it satisfies the axioms (l), (2), (3) 
and the law (5) given below: 

(5) x A (y v (x A z)) = (x A y) v (x A Z) , 

x v (y A (x v z)) = (x v y) A (x v z ) . 

Obviously each DQL is a MQL, too. 

Each quasilattice can be ordered in two different ways: 

(i) a = b o b = a v b, and (ii) a ^ b o a = a A b. If the orders = and ^ are 
mutually reciprocal, i.e. a = b o a r^ b, then, as noted by Matsushita [1, Theorem 1], 
both of the absorption laws hold and the quasilattice in question is in fact a lattice. 

A fuzzy set A in a set X is characterized by a membership function \xA which 
takes the values in the interval [0, 1], i.e. 

VLA:X^\0,\\. 

The value of fiA at x e X, denoted by fiA(x), represents the grade of membership 
(briefly grade) of x in A and is a point of [0, 1]. A fuzzy set A can be represented 
as follows: 

A = ^ (* i ) / * i + R4(*2)/*2 + • • • + ^(x„)/x„ 

= IMAMIX, , Xt e X , 
i 

where the operation + stands for logical sum (or). As shown in [2], the grades 
for ordinary fuzzy sets constitute a distributive lattice with the greatest and least 
elements. 



A fuzzy set A of type 2 in a set X is the fuzzy set characterized by a fuzzy member­
ship function f.iA as follows: 

/ ^ : X - + [ 0 , i y , 

with the value fiA(x) being called a fuzzy grade and being a fuzzy set in [0, l ] (or 
in the subset J of [0, 1]). Thus by considering the algebraic structure of fuzzy 
grades we obtain also the algebraic structure of fuzzy sets of type 2. In this paper 
it is assumed that J is a finite set, but the results of this paper are easily generalized 
for the case, where J is continuous. 

Let fiA(x) and JJ.B(X) be two fuzzy grades (i.e. fuzzy sets in J s [0, 1]) of fuzzy 
sets A and B of type 2, respectively. They can be represented as follows: 

PA(*) = /(«l) /«l + /(«2)/"2 + • • • + /(«»)/«„ 

= E/(«i)/"i> « » e J , 
i 

/^(*) = g(wi)\wl + g(w2)\w2 + ... + g(wm)jwm 

= Y,9(wj)lwJ > WJ e J > 
J 

where / a n d g are membership functions of fuzzy grades nA(x) and f.B(x), respectively, 
and the values f(u{) and g(w}) in [0, 1] represent the grades for ut and Wj in / , 
respectively. 

Let o and • denote max and min, respectively. The operations for fuzzy sets 
of type 2 are defined as follows: 

Union: A u B -s> nAuB(x) = fiA(x) D /zB(x) 

= (!/(".•)/".•) O & W W 
i J 

= I (/(«,) . ^ I f c D w i ) . 
i,J 

Intersection: A c\ B o nAnB(x) = l-iA(x) n /iB(x) 

= (Z/("0/"0n(E3(w,)/wy) 
i J 

= Z(/(«i)ca(wj.))/(M,.oWJ.). 
i , ; 

As shown in [2, Theorem 1], arbitrary fuzzy grades in J satisfy the laws (l), (2) and 
(3) with respect to the operations D and n , i.e. they constitute a quasilattice QL(/i). 
Moreover, 

(6) /iA(x) n (nA(x) D fiB(x)) = pA(x) D (nA(x) n MB(X)) 

holds for each two fuzzy grades ^ ( x ) , nB(x) e QL(fi). 

As in [2], we substitute the notation nA(x) with the brief notation fiA which means 
in what follows fuzzy grade. 



Let J = {ul5 u2, ..., M„} be a subset of [0, l ] which satisfies u1 < u2 < . . . 
. . . < M„. A fuzzy grade \iA = X/(u 0/M >" i n -I is said to be convex if for any integers 

i 

i, k with i ^ k the relation f(uj) ^ min {/(«,),/(«*)} holds for each y, j < y < fc, 
/i^ is said to be normal if max/(u.) = 1. Furthermore, a fuzzy grade which is normal 

and convex is referred to as a normal convex fuzzy grade. 
Mizumoto and Tanaka have shown [2] that if \LA and fiB are convex (normal), 

then also p.A n fiB and \iA u pB are convex (normal). Moreover, the convex fuzzy 
grades satisfy (4) with respect to D and n , i.e. convex fuzzy grades constitute a DQL, 
and for normal convex fuzzy grades the absorption laws hold with respect to O and 
n , i.e. the normal convex fuzzy grades constitute a lattice. 

3. ON THE STRUCTURE OF QL(M) 

First, we prove a lemma about (6). 

Lemma 1. Let QL be a modular quasilattice, then QL satisfies the law (6) with 
respect to the operations A and v . 

Proof. By applying the modularity of QL we obtain: x A (x V y) = x A 
A ((x A x) v y) = (x A x) v (x A y) = x v (x A y). Thus (6) holds in QL. 

In the following we construct a class of fuzzy grades which constitute a modular 
quasilattice. A fuzzy grade \iA = Y/iudlut *s caHed endmaximal, if for each value 

of j it holds: / ( M J ) = f(un) 2; f(uj), where 1 ^ j ^ n and J = {uu ..., u„}, Ml < 
< u2 < . . . < M„. Endmaximal fuzzy grades defined for a fixed J constitute a modu­
lar quasilattice as it will be shown. We need first a lemma. 

Lemma 2. Let \iA and \iB be two endmaximal fuzzy grades in J. Then y.A n nB and 
PA D MS a r e endmaximal, too. 

Proof. Let /.A = Y/{u)lu a n d MB = Z0,(w)/Vv> where M, W e J. Let p(a) be the 

grade of a e J in \iA D jus. Then p(a) can be represented as p(a) = £ / («) „ g(w), 
«Dw = o 

where the logical addition is performed over all the combinations u and w for which 
u • w = a. 

When a = ux = wu p(a) = min { / (u j , 0 ^ ) } . In general, if a = M • w, then 
a = u and w ^ a, or u ^ a and w = a. Thus p(a) = / (a ) 0 £ g(w) + g(a) 0 

° E / ( u ) , where / ( a ) ^ / ( « , ) , J > ( w ) = g(w,), g(a) ^ g(w,) and £ / ( « ) - / ( « . ) as 

/ ^ and /.B
 are endmaximal. So /(fl)o^fl(w) ^ min {/(Ml), fl(Wl)} a n d the same 

via 
holds for g(a) 0 £ / (w) , too. Accordingly, p(a) g p(Mi) for each a e J, a * uu M„. 



When a = u„ = w„, then j(a) 0 £ g(w) = f(u„) o g(w„) = min {j(wj), g(w,)} as fiA 
wga 

and fiB are endmaximal, and so p(u„) = p(«i). Hence, u^ O /tB is endmaximal. The 
proof is similar for \xA n fiB. 

If fiA and «B are normal endmaximal, then the endmaximality implies that j(M l) = 
= f(u„) = g(w1) = g(w„) = 1. According to the proof above, fiA u /tB and \iA n fiB 

are normal endmaximal, too. 

Theorem 1. The endmaximal fuzzy grades in J constitute a modular quasilattice. 

Proof. We must show that /iA O (/tB n (u ,̂ u /*c)) = (/z4 O jiB) n (/t^ O /tc) 
and fiA n (uB O QiA n /tc)) = (/t^ n /tB) O (/t^ n /tc) for each three endmaximal 
fuzzy grades \iA, \LB and /tc in J. In fact we shall prove the validity of the first law; the 
proof is analogous for the second. 

Let the fuzzy grades fiA, fiB and «.c be: pA = Ej(")/M» to = £ 9(w)\w, and HC = 
ueJ wei 

= £ h(z)jz. Let p(a) be the grade of a e J in the fuzzy grade fj.A u (/tB n (/t^ O /tc)). 
Z6.7 

We shall show that the grade q(a) of a e J in the fuzzy grade (fiA O /tB) n («.A O fic) 
is equal to p(a) for each a e J, from which the desired equality of fuzzy grades 
follows. p(a) can be represented as 

X « ) = 1 f(u)»g(w)oh(z)af(u'). 
»D(w(2Q«')) = « 

The solutions of u Q (w o (z • u')) = a divide H, w, z and «' into the following six 
classes: 

u = a u = a Ц íş a u = a u g a u = a 
w — a 
zfree • ; • 

wfree 
z ^ a 

• • < 

w = a 
zfree • ; • 

w = a 
z = a 

• * • 

w = a 
z = a 

• ; < 

w — a 
z = a 

u free u = a м' ^ a u' free u' = a u' = a 

According to these six classes p(a) can be divided into six partial results \T}, \2\, |T)» 
SL H] and [6], where p(a) = [U + [2] + [3] + [4] + 3 + [6]. The partial results 
are given below. 

ffl=/W»wE/Wo)Z%)"I/M 

= f(a) o £ 9(y) o YM?) , as f(a) = £/(«') . 
w S « z u' 

E = / W ^ M « » I / M 

= j(«)0^W°Z%). as /(«)=MI/(«')-

S = i;j(M)oa(a)oIh(z)oIj(M'). 
ug« z «'S« 



[__| = E / (M)og(a )oZh ( z )o £/•(«') 
u_a z^a W 

= IT(M)ofl(fl)oZh(z). 
_ a z _ a 

S = Z/(")°Z^)oh(a)oE/("') 
_a w_a u ' _ a 

= IA")oZ^(w)oh(a). 
u_a w_a 

S = ZA»)°Z^)oZ^)o/W 
u_a w_a z _ a 

= j(a)oZaa(w)oZah(z). 

Moreover, __ + __) = __J as Z«(w) = Z 0(w)-
w w_a 

By combining the results above we obtain the following expression for p(a): 

p(a) = f(a) o Z «(w) o £/,(-) + /(a), Z«(w) o Z &(-) + 
w^a w z_o 

+ Z/(») o 9(a) o Z%) o Z f(u) + £/(«) ° 9(a) o Z %) + 
_« z a ' _ a tl_a z _ a 

+ ZA«)o£<7(H')oh(a). 
_u w_a 

g(a) has the expression 
«(«) = Z /(«)og(w)oh(z)o j(M') . 

( _w)o( _»') = « 

The solutions of (M D W) o (Z • M') = a divide u, w, z, and M' into the following 
eight classes. 

u = a u = a rм _g a И _g ű 

w __ a 
z ^ a 

w 5_ a 
z free 

w = a 
z _í a • ; <• 

W = fl 

zfree 
u' free м' __ a м' free и' _2 a 

ц _ . a м free и _š a м free 
wfree 
z = a • ï < 

w Ş_ a 
z = a • ; • 

w free 
z _g a - ; • 

w ^ a 
z й a 

и' _Ş a a ' _ . a м' = a u = a 

According to these eight classes p(a) can be represented as a logical sum of eight 
partial results [__,__]. . . . , [8_ given below. 

ffl=/W°Z/WozZ%)oZ/(»') 

= A«)oZ0(w)oZ%), as / ( « ) _ Z f ( 0 -



m=/(fl)oiaff(w)oiA(z) o i / ( « ' ) 

= /W;I«W»E%). a* /(«) =BZ/(«')• 

Moreover, UJ + (D = [2],asEh(z) =- £ h(z). 
z " J j a 

t2 = Z/(«)o«(a)o|/(z)oE/(«') 

= E/(«)o«(a)oIh(z). 
uSa z i f l 

Hl = E/(«)oa(a)o|:h(z)oHE/(«') 

S - I ^ . & M ' ^ ' P ' ) 

El = S/(«)oEfla(w)oh(a)0J/(«') 

= Ea(w)oh(a)oEo/(«')• 

Moreover, 

[2 + [g = h(a) , £ /(«') o [ £ 3(w) + |>(w) o £/(«)] 

= h(a)oE/(«')oE«(w). 
u'ga wga 

It follows from the endmaximality of nB that £ #(w) = Efl(w)> a n ( l s o E ° (w) = 
= E 0(w) o £ / ( „ ) . Further, E / (« ' ) = E / (« ) - W~" ™ w~° 

w ua« u'^a u&a 

m = E/(«)oIa(w)oE%)o/(a) 

= I>(w)oE%)o/(4 

w zia 

E = E / ( « ) o E / ( w ) o E a ^ ) o / ( « ) 

= E « ( w ) o E h ( z ) o j ( a ) . 
wga zSa 

Moreover, [7] + [8] = [7J as E fl(w) = E ^ M - By collecting the partial results 
wga w 

given above, we obtain for q(a) the expression: 

q(a) = / (a ) o ^ ( w ) „ £ft(z) + £ / ( « ) = «(«) - E % ) + 

+ E/(«) o g(a). JX-) o E /(«') + K«) - E/(«) o E «W + 
uga z u'ga »So w i n 

+ E«WoE%)o/(«). 



2 6 8 Thus p(a) = q(a) for each a e J, and the first modularity law holds for endmaximal 
fuzzy grades. 

Note that only the endmaximality of \xB was used in the proof, and so the modular 
law is valid for fairly wide class of fuzzy grades. Further, the proof of the law \iA O 
D (fiB n (pLA u fxc)) can be performed if g(w„) g g(w}) for each j , Wj e J, or if g(ut) ^ 
= / ( u i ) for each M; = w ;e J. The second modularity law needs naturally dual 
properties for \iB. 

The following theorem illustrates weakened absorption laws that are valid in the 
modular case. Accordingly, these laws hold for fuzzy grades when the fuzzy grade 
corresponding to \aB in the modular law has suitable properties illustrated above. 

Theorem 2. In a MQL the following weakened laws of absorption are valid: 

(i) x v y v (x A y) = x v y, x A y A (X V y) = x A y. 

(ii) x v (x A y) v (y A Z) = (x v y) A (X V (y A Z)) , 

x A (x v y) A (y v z) = (x A y) v (x A (y v z)). 

Proof. The laws of (i) are proved in [3], On the other hand, by putting z = y 
in (ii) we obtain the laws of (i). 

(ii) : 1 x v (x A y) v (y A Z) = x v [(x A y) v (y A Z)] = 

= x v [> A (x v (y A z))] = (x v y) A (x v (y A Z)). 

(ii) : 2 x A (X V J>) A (J> V Z) = x A \y v (x A (J> v z))] = 

= (x A y) v (x A (y v z)). 

By applying the proof scheme of Theorem 4 in [2], one can easily see that the 
normal endmaximal fuzzy grades constitute a distributive quasilattice. 

Theorem 3. The normal endmaximal fuzzy grades constitute a distributive quasi­
lattice. 

Surprisingly, there are no greatest elements among normal endmaximal fuzzy 
grades, and so it seems to be so that this subset of fuzzy grades does not constitute 
a lattice. V, l/u satisfies the law fiA O £ 1/M = £ 1/M for each normal endmaximal 

UEJ ueJ uej 

fuzzy grade jiA, but also \iA n £ 1/M = £ 1/M holds. 
ueJ usJ 

As shown in [2, Theorem 9], normal convex fuzzy grades constitute a distributive 
lattice. On the other hand, the set of fuzzy grades is always a semilattice with respect 
to O (and to n , too). In the following we shall make a few observations on the 
D-semilattice structure of QL(/i). 

We call a fuzzy grade \iA = £ / ( " ) / " b-maximal, i f / ( u ^ ^ / ( M ; ) for each M; e / . 



Lemma 3. If \iA and fiB are two b-maximal fuzzy grades in J, then fiA u nB has 269 
the same property in J. 

Proof. Let p(a) be the grade of a e J in [iA D /tB, i.e. p(a) = f(a) o £ a(w) + 

+ a ( a ) °X j ( u )> where nA = YJf(
u)lu a n d <"B = Z a ( w ) / w - T e t u s a s s u m e that 

j(«i) S a ( w i ) f ° r " i = w1eJ. According to the b-maximality, Z a ( w ) / w = °(vvi) 

and E j ( " ) / U = j("i)- T n u s P(a) = / ( a ) ° a ( w i ) + g(a) °/(«i)> a n d this expression 

for p(a) implies that p(a) = min {g(w1), g(a)} = g(wt), whence the fuzzy grade 
\iA D fiB is b-maximal. 

Theorem 4. The b-maximal fuzzy grades constitute a distributive O-semilattice. 

Proof. A v-semilattice is distributive with respect to its operation v , if the 
relation a v b = c implies the existence of two elements al r_ a and bt _ b such 
that a, v !>! = c. 

As we consider fuzzy grades as a O-semilattice, the order relation fZ is given 
by the rule: p.A \Z fiB <* «-A O fiB = juB. 

Let u^, /iB and /tc be three b-maximal fuzzy grades such that ^ C ^ u /iB, where 

V-A = Zj(")/M> f-B = Z ° ( w ) / W a t l d /(c = Z tHz)/z- We shall use also the notation 
UEJ weJ zeJ 

V-A O /tB = S t(x)jx. 
xeJ 

The relation /tc C /tx O /tB, i.e. fic u fiA O fiB = p.A O /tB, implies that f(a) = 
= /j(a) o YJ t(x) + t(a) o E h(z)' a n d m particular, f(ttj) = h(ut) o *(M.) when 

a = w. = w, = z t = Xy. Thus f(ut) :g /i(«i), and as we consider b-maximal fuzzy 
grades only, f(a) = h(a) 0 i(«i) + f(a) 0 h(ut). But f(a) = t(u,) = h(uy), and so 
f(a) = h(a) o t(uj) + f(a), whence f(a) = h(a) 0 t(u{). Further, f(«,) = t(a) and as 
h(a) o f(«i) ^ f(a), we can conclude that h(a) g t(a) when a # Mt. 

On the other hand, f(a) = j(a) 0 £ &(w) + #(a) ° Zj(")> a n d for a ~ Mi = wi> 

t(Mi) = j(Mi) ° a (w i ) - We assume thatj(«i) = g(ut), and so g(ut) = f(iti); the proof 
is similar in the opposite case. Thus when a + uu t(a) =f(a)0g(ul) + g(a) o 
of(ux) = h(a), as shown above. Hence, h(a) = h(a) 0 f(a) = h(a) °j(a) o a(wj) + 
+ h(a) o g(a)of(ux) when a +- MX. The expression for h(a) o f(a) as a model we 
define two new fuzzy grades /t^ and /tB : uB = h(Mx) + £ a(w) 0 h(w) and / ^ = 

W > « 1 

= [j("i) D K«i)] + E / ( M ) ° % ) • A s % i ) = ( ( "0 = a("i)> MB is b-maximal, 

and obviously also \i'A is b-maximal. Let q(a) denote the grade of a e J in /tB O /tB . 

<?(«i) = f?("i) ° Kui) = a("i)> a n d w h e n a > "i> ?(a) = a ( a ) ° % i ) + 3( a ) ° 
o /t(a) o a(Mt) = ff(a) + a(a) 0 /i(a) = g(a). Thus /tB O p!B = /tB. Similarly we see 
that fiA0 n'A = fiA. 



Let r(a) denote the grade of a e J in \xA O \J!B. First, r ^ ) = h(u() ° ( /("i) D 
• % , ) ) = fc(«t). Further when a > uu Ktf) = /7(a) ° j ( a ) ° % i ) + Ka) ° #(a) ° 
o (f(ut) D /.(«,)) = h(a) °f(a) + h(a) ° g(a) = h(a) ° (f(a) + g(a)). On the other 
hand h(a) = h(a) ° t(a) = h(a) „ (f(a) ° g(Ul) + g(a) o/(Ml)), whence h(a) g f(a) „ 
o g(Ul) + g(a) °f(ut). Moreover, f(a) + f(a) ° g(Ul) + g(a) + g{a) °f(ut) = f(a) + 
+ g(a), and so h(a) g f(a) + g(a) for each a > uv Hence r(a) = h(a) ° (/(a) + 
+ g(aj) = h(a) for each a > ul, and so \xc = n'A D ji'B. 

According to [4, Theorem 3] a DQL is of the form {U(TI Te ST); O, n } , where 
Tn T = 0 for T + T', T, T'e .T. , r j s partially ordered with a l.u.b. determined 
by a certain relation g*. Each of the sets Te ^" is a distributive lattice with respect 
to n and D. For each pair Tt and T2 (and T2, T3), where Tt g * T2 g * T3 there 
exists a homomorphism <Pr1,r2

 : ri ~* I2 s u c n that 

<Pr,r(x) = * > ^r2,r3(,?,r1,rfx)) = <pri,r3(x) , 

and if a e T4, b e T5, 

a u b = (Pr4,T4X
a) ° VTs.TtSp) and a n b = (pT4,T45(

a) n ^ r s . r ^^ ) 

where l.u.b. (Tli T2) = T12- We only will see the characteristic property of the lattices 
T, the direct spectrum of which the distributive subquasilattice of convex fuzzy grades 
of QL(ji) is. 

As shown in [4], (PT4,T45 = aOb = a/\(avb) = a\'(aAb) and b Q a = 
= <PT5,T4i(b) = b v 0 A a) = b A (b v a). Let \JLA = £ / ( " ) / " and MB = E o(w)/^ 

be two convex fuzzy grades. As J is a finite set, we can conclude that there exists at 
least one ure J such thatfmax =J(ur) ^f(u) for each u e J, and similarly a point 

w* -'̂ Wv = #(K) ^ ff(w) for each we J. Let /.iA Q p.B = JT t(z)/z and fiA O /iB = 
zeJ 

= £/>(x)/x. Now h(a) =f(a)°Zd(w) + ff(a) ° £f(u), and further t(o) = h(o) » 
xeS wSa u^a 

° Y.f(u)(u + f(a) ° £ Kx)lx- By combining these partial results, we obtain 
a g o xZa 

t(a) = f(a) ° £ g(w) ° £ / ( « ) + / ( a ) . I [/(*) ° £ <?W + <?(*) ° £ / ( « ) ] 
w g « " g « xg<J » S i » S i 

= / («) o I fl(w) + / ( a ) ° I / ( x ) ° flmax + f(a) ° £ a(x) °/m a x 
wSO J j o i S a 

= / ( a ) 0 X ff(w) + / ( a ) - gmx + / («) o I a(x) 
w g a * g a 

= /(fl)°flmaX-

Similarly we obtain for fiB O V-A = £ " 'M/j ' : ""(«) = #( a) ° /m a x for each ae J. 
yeJ 

On the other hand, /m a x g amax or flmax g /max. In the first case fiA O HB does not 
alter \iA and in ^B O V-A the operation O "cuts" /tB into the level of fiA; if amax g /m a x , 
we obtain a dual result. In fact, after the operation O we have two convex fuzzy grades 



with the same maximum grade. Let T(b) be the class of fuzzy grades with the maxi­
mum grade b. In this class the fuzzy grade Oju1 + 0/M2 + . . . + O/MB,-. + bjum 

(J = {uu ..., um} and ut < u2 < ... < um) is the greatest element such that 
b\um O n = b\um and b\um n fi = p. for each /i e T(b). According to [4, Theorem 2], 
T(b) is a lattice with respect to the operations u and n . So the distributive quasilattice 
of convex fuzzy grades is a direct spectrum in the meaning of [4, Theorem 3] of 
distributive lattices T(b), where each two fuzzy grades have the same maximum 
grade b. Moreover T(a) < * T(b)ob < a, and l.u.b. (T(a), T(b)) = T(c), c = 
= min {a, b}. 

In the case of normal endmaximal fuzzy grades the following structure is found. 

If fiA O V-B = E t(z)/z> t n e n Ka) = y(a) + j(a) f ° r e a c n a e I' a n d similarly, if 
zeJ 

^B O HA — E d(x)\x, then d(a) = a(a) + j(a) for each a e J. Each Te 3~ consists 
xsj 

of a single fuzzy grade only and trivially such a T is a lattice. If Tt = {fiA} and 
T2 = {/./,}, ^ e n T ^ * T2og(a) ^ j ( a ) for each aeJ, and l.u.b. (Tu T2) = 

- {p-c = E Kv)lv)> wnere Ha) = #(a) + j ( a ) f o r eacn a e •!• 

4. A PROBLEM ON FUZZY GRADES UNDER u AND n 

In [2] Mizumoto and Tanaka defined except the operations D and n also two 
other operations on fuzzy grades: w and r\. Let fiA = Ej(M)/M a n i 1 VB — E d(w)lw> 
then "eJ w&/ 

/̂ . w /iB = (Z j ( M ) / M ) w ( E #(w)/w) = I j(M) #(w)/u • w > 
us J wsJ li, we J 

and 

V-A <*> MB = E / ( M ) # ( W ) / M ° w > 

where/(M) gr(w) stands for the algebraic product off(u) and a(w). It is left to the reader 
in [2] as an unsolved problem to prove or to disprove that \iA w \,iB and \xA r\ fiB 

are convex fuzzy grades if jiA and /AB are convex. 

Theorem 5. If fiA and /iB are convex fuzzy grades in J, then jxA w ,uB and /.^ n ^B 

are convex fuzzy grades in J, too. 

Proof. We shall use induction over the number \j\ of points in J. If \j\ = 1 or 2, 
then \iA w \xB and \iA r\ ]iB are trivially convex fuzzy grades in J; it is mentioned 
in [2] that this holds also when \j\ = 3. We assume that fiA w fiB and \iA n \iB 

are convex fuzzy grades when \j\ <. m — 1 and we shall show that this is the case 
also when \j\ = m. 

Let J = {uu ..., um} = {wu ..., wm} = {xu ..., xm}, ut = w} = xkif i = j = k, 
and let ux < u2 < u3 < . . . < u,„.1 < um. Further, we denote fiA w nB = E Kx)lx> 



272 and we assume that there exists a point xqe J such that 

(7) t(xq) < min {f(xr) , t(xs)} , r < q < s . 

If s < m, then the expression (7) contradicts to the induction assumption, as 
fiA and fiB are convex also in {uuu2, ..., us} and s ^ m — 1. So we can assume 
that s = m. Let 1 < r, and let us consider the following expression for f(a), aeJ: 

t(a)=f(a)Jig(w) + g(a)Yf(u). 

If jmax = j(uo) a n d 0max = d(wo) a r e reached for each u0 and w0 when «0, VV0 >. xr, 
then f(a) = t'(a) for all values ae J satisfying a >. xr, where £ t'(x)/x = ju^ w /4 , 

x e J " 

M„ = __j(M)/"> MB = Z d(w)lw a n d •!' = (xr> xr+i> • • •> *m}- As /i^ and \iB are con­

vex in J, / ^ and /4 are convex in J', and according to the induction assumption, 

the expression (7) does not hold in J ' , whence (7) is not valid in J. 
If jmax = j(Mo) )S reached by u0 < xr, and gmax = g(w0) by w0 >, xr for each vv0, 

then t(a) = t"(a) for each a >, xr, a e J, where / ^ w /iB = £ t"(x)lx, HA = j"(xr) + 
xe/" 

+ £ / ( « ) / « . j"(xr) = j m a x , A4 = £ ff(w)/W> J ' = {xr, . . . , xm}, and J" = {x r+1 , . . . 
ueJ" weJ' 

..., xm}. As riA and \iB are convex in J, ^ and ,uB are convex in J ' and hence accord­
ing to the induction assumption t"(xq) 2: min {t"(xr), t"(xs)} . As t"(xr) ^ f(xr) and 
f"(a) = f(a) for a e J", the expression (7) does not hold. 

The proof is similar, if gmax = g(w0) is changes with j m a x above, or if u0, w0 < xr. 
Hence we can assume that xr = x1. 

By using similar considerations as above and the induction assumption, we can 
conclude that t(xq) >, min {t(xj), f(xm_j)} and t(xq) ^ min {t(x2), t(xm)}. As t(xq) < 
< min {t(xi), f(xm)}, t(xq) >, t(x2), f(xm_x). Further, by similar arguments, the inter­
val {xq, ..., xm} implies that f(xra_j) ^ min {t(xq), t(xm)}, and the interval {x1; . . . 
. . . , x j that f(x2) >, min {f(xj), f(xm)}. By combining the results above, f(x2) = 
= f(xm_i) = t(xq). By applying now the induction assumption to the interval 
{xu . . . , x j , x2 ^ X; S xm_i, we obtain that f(x2) ^ min {t(xj), t(x)}, and as 
f(x2) = t(xq) < t(xt), the relation t(x2) ^ t(x) holds for each i, 2 <: i g m - 1. 
On the other hand, f(x;) ^ t(xq) < min {t(Xl), f(xm)}, and by using the same way 
as in the case of t(xq) before, we can prove that f(x;) >. f(x2), for each i, 2 ^ i ^ 
<. m — 1. Hence, f(x2) = f(x3) = . . . = t(xm_1), and f(xi), f(x,„) > t(x) when 
2 | i ^ m - 1. 

Now t(Xl) =f(x1)g(x1) and t(x2) = max {j(x2) g(Xl), f(x2)g(x2), g(x2)f(x1), 
d(x2)f(x2)}. I f / (x 2 ) _ . / ( * . ) . then t(x2) ^ f(x2) g(Xl) ^ / ( x 1 ) g ( x 1 ) = f(xx), which 
is a contradiction to t(x2) < t(xt). Hence j(xx) > j(x2) and g(xt) > g(x2). Since 
p.A and \iB are convex fuzzy grades and f(x2) = f(x3) = . . . = f(xm_!), f(xx) > 
> f(x2) ^ f(x3) _t . . . _: j(xm_,) and g(xt) > g(x2) £ g(x3) ^ . . . ^ g(xm_j). 
Further, f(xm) = max {j(xm) gmax, jmaxg(xm)}, and j m a x = max {j(xj), j(xm)} and 



#max — m a x {0(xi)> 0(xm)}- If f(x
m) = jO^i) or o(xm) = 0(xi), we obtain a contra­

diction to the convexity of \iA or \iB. So, let j(xm) < j(Xj) and g(x,„) < g(xt). But 

then max {j(xm) g(xl), f(xt) g(xm)} > f(xm_x) = f(x2), whence j(xm) > j(x2) or 

g(xm) > g(x2). This contradicts the convexity of nA or [iB again. Hence, the relation 

t(xq) < min {t(xr), ^(xs)} does not hold for any indices r, q, s, r ^ q ^ s, from 

which the convexity of fiA w fiB follows. 

The proof is analogous for p.A n JXB. 

(Received October 4, 1976.) 
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