Структурные свойства линейных регуляторов в стационарных системах управления

Михаил М. Константинов, Симеон П. Патарински, Петко Хр. Петков, Николай Д. Христов

В работе находятся необходимые и достаточные условия совпадения траекторий двух линейных стационарных систем, порожденные начальным условием из некоторого подпространства пространства состояний. Таким образом решается вопрос о существовании неоптимального регулятора, для которого траектория системы, исходящая из некоторого подпространства, совпадает с оптимальной траекторией. Указан явный вид регулятора, для которого это явление имеет место. Изучены также некоторые новые свойства решений матричных уравнений Риккати и Ляпунова и найдены условия инвариантности критерия качества в линейно-квадратичных задачах.

1. ВВОДНЫЕ ЗАМЕЧАНИЯ. ОСНОВНЫЕ ОБОЗНАЧЕНИЯ

В настоящей работе рассматриваются свойства линейных стационарных систем управления, связанные с неединственностью структуры линейного оптимального регулятора на некотором множестве траекторий. Изучается класс n-мерных систем управления $\dot{x}=Ax+Bu, x(0)=x_0$, на бесконечном промежутке $t\in [0,\infty)$ с критерием качества $J\to$ min. Допустимыми управлениями являются все линейные по x(t) m-мерные ($m\le n$) функции $u,u(t)=x_0$ дадача оптимального управления этих систем допускает единственное решение $\bar{u}, \bar{u}(t)=-Kx(t)$. Так как критерий J зависит вообще и от начального условия: $J=J(u,x_0)$, то единственность следует понимать в следующем смысле: 1) для каждого x_0 оптимальное управление \bar{u} и соответствующая ему оптимальная траектория \bar{x} единственны как функции (как "программы") — $\bar{u}=\bar{u}(t), \bar{x}=\bar{x}(t)$; 2) существует единственная матрица \bar{x} , такая что управление $\bar{x}=-Kx$ минимизирует J при всех x_0 .

Отметим, что если 2) не имеет место, т. е. если существует $K^* = {}^{-}K$, такая что $J({\pmb u}^*, {\pmb x}_0) = J({\pmb u}, {\pmb x}_0), \, {\pmb u}^* = -K^*{\pmb x}$, при всех ${\pmb x}_0$, то единственность в смысле

условия 2) сохраняется в разбиении множества допустимых управлений на классы эквивалентности "по модулю J".

В то же время оказывается, что существует подпространство \mathscr{D}^N ($N==\dim \mathscr{D}^N \le n-1$) пространства состояний \mathscr{E}^n , такое что $J(u,x_0)=J(\bar{u},x_0), u==-Kx$, для всех $x_0\in \mathscr{D}^N$. При этом K=K, хотя согласно свойству 1) по траекториям системы, порожденные начальным условием $x_0\in \mathscr{D}^N$, выполнено $u(t)\equiv \bar{u}(t), x(t)\equiv \bar{x}(t)$.

В настоящей работе найдены условия существования подпространства $\mathscr{D}^N \subset \mathscr{E}^n$ с заданной размерностью $N \leq n-1$, такое что $x(t) \equiv \overline{x}(t)$ для каждого $x_0 \in \mathscr{D}^N$, где

$$\dot{x} = Gx, x(0) = x_0; \quad \dot{\bar{x}} = {}^{-}G\bar{x}, \quad \bar{x}(0) = x_0,$$

при произвольных $G + {}^-G$ и в частности при G = A - BK, ${}^-G = A - B{}^-K$; $K + {}^-K$. При этом для каждых ${}^-K$ и N указан явный вид матрицы K и подпространства \mathscr{D}^N , такие что $x(t) \equiv \bar{x}(t)$ при всех $x_0 \in \mathscr{D}^N$.

Случай, когда J является функционалом квадратического типа, рассмотрен для иллюстрации полученых результатов. В связи с этом изучены некоторые свойства матричных уравнений Риккати и Ляпунова. Получены также условия инвариантности квадратического критерия на многопараметрическом семействе неоптимальных управлений.

Отметим что вопрос о неединственности матрицы обратной связи для управлений, минимизирующих J на некотором множестве оптимальных траекторий, рассматривался прежде в [2].

Дальше будем пользоваться следующими обозначениями: $\mathscr{E}^{n,m}$ — пространство $(n\times m)$ -матриц $(\mathscr{E}^{n,1}=\mathscr{E}^n)$ над полем вещественных или комплексных чисел: $\mathscr{E}=\mathscr{R}$ или $\mathscr{E}=\mathscr{C}$; I_n — сдиничная $(n\times n)$ -матрица; A' — матрица, транспонированная к A; $\sigma(A)=\{\lambda_1(A),\ldots,\lambda_m(A)\}$ -спектр матрицы $A\in\mathscr{E}^{n,n}$; $S_f\subset\mathscr{R}^{n,n}$ -множество симметричных положительно полуопределенных матриц $P\geq 0$ ранга f; $\Pi_n\subset\mathscr{R}^{n,n}$ — множество матриц, неимеющих собственные (одномерные) инвариантные подпространства в \mathscr{R}^n . Для $k=1,2,\ldots$ имеем $\Pi_{2k-1}=\emptyset$ и

$$\Pi_{2k} = \{ A : \sigma(A) \cap \mathcal{R} = \emptyset \} .$$

Рассмотрим линейную стационарную систему

$$\dot{x} = Ax$$
, $x(0) = x_0$; $y = Cx$,

где $x(t) \in \mathscr{E}^n$, $y(t) \in \mathscr{E}^r$, $A \in \mathscr{E}^{n.n}$, $C \in \mathscr{E}^{r.n}$.

Через $\omega(C,A) \in \mathscr{E}^{rn.n}$ будем обозначать матрицу наблюдаемости системы (Л):

$$\omega'(\mathbf{C},\mathbf{A}) \stackrel{\triangle}{=} \left[\mathbf{C}' \, \mathbf{A}' \mathbf{C}' \, \dots \, \mathbf{A}'^{n-1} \mathbf{C}' \right] \in \mathscr{E}^{n.rn} \,,$$

а через $\langle C, A \rangle \stackrel{\triangle}{=} \mathrm{Ker} \, \omega(C, A)$ — нуль-пространство матрицы $\omega(C, A)$:

$$\langle C, A \rangle = \bigcap_{k=0}^{n-1} \operatorname{Ker} CA^k = \operatorname{Ker} \sum_{k=0}^{n-1} A'^k C' CA^k.$$

2. СОВПАДЕНИЕ ТРАЕКТОРИЙ ДВУХ ДИНАМИЧЕСКИХ СИСТЕМ

Рассмотрим две стационарные системы в \mathscr{E}^n :

(1)
$$\dot{x}_1 = A_1 x_1, \quad x_1(0) = x_0,$$

(2)
$$\dot{x}_2 = A_2 x_2 , \quad x_2(0) = x_0 ,$$

где $A_1 \neq A_2$. Для любых A_1 , A_2 имеем

$$\begin{split} \Omega(A_1, A_2) &\stackrel{\triangle}{=} \bigcap_{k=1}^{\infty} \operatorname{Ker} (A_1^k - A_2^k) = \\ &= \bigcap_{k=0}^{\infty} \operatorname{Ker} (A_1 - A_2) A_1^k = \bigcap_{k=0}^{\infty} \operatorname{Ker} (A_1 - A_2) A_2^k \,, \end{split}$$

откуда в силу теоремы Гамильтона-Кэли следует

$$\Omega(A_1, A_2) = \bigcap_{k=0}^{n-1} \operatorname{Ker} (A_1 - A_2) A_1^k = \bigcap_{k=0}^{n-1} \operatorname{Ker} (A_1 - A_2) A_2^k,$$

т. е.

(3)
$$\Omega(A_1, A_2) = \langle A_1 - A_2, A_1 \rangle = \langle A_1 - A_2, A_2 \rangle.$$

Обозначим через A какую-нибудь из матриц A_1 или A_2 .

Теорема 1. Для выполнения тождества $x_1(t) \equiv x_2(t)$ по траекториям систем (1) и (2) необходимо и достаточно, чтобы $x_0 \in \mathscr{D}^N = \langle A_1 - A_2, A \rangle$, где N = n-rank $\omega(A_1 - A_2, A)$.

Доказательство. Имеем

$$x_1(t) - x_2(t) \equiv 0 \Leftrightarrow \left[\sum_{k=1}^{\infty} \frac{t^k}{k!} (A_1^k - A_2^k)\right] x_0 \equiv 0$$
,

т. е. $x_0 \in \Omega(A_1, A_2)$. Теперь утверждение теоремы следует из (3).

Теорему 1 можно доказать и на основе следующего утверждения: система (Л) имеет решение x(t), такое что $y(t)\equiv 0$, тогда и только тогда, когда $x_0\in \langle C,A\rangle$ (см. также [5], [6]).

Следствие 1. Если $N \ge 1$, то система $\dot{x} = Ax$, $y = (A_1 - A_2)x$, не является полностью наблюдаемой.

Следствие 2. Пусть $A_1A_2=A_2A_1$. Тогда $\mathscr{D}^N=\mathrm{Ker}\,(A_1-A_2),\ N=n-\mathrm{rank}\,(A_1-A_2).$

Действительно, если A_1 и A_2 коммутируют, то $\Omega(A_1,A_2)={\rm Ker}\,(A_1-A_2).$ Рассмотрим вопрос о размерности N и структуры подпространства $\mathscr{D}^N.$ Пусть $F\in\mathscr{E}^{n,n},\ h\in\mathscr{E}^n.$

Определение. Число

$$v(F) = v(F') = \min \left\{ \operatorname{rank} \omega(h', F) : h \neq 0 \right\}$$

назовем индексом ацикличности матрицы F.

Теорема 2. Индекс ацикличности матрицы $F \in \mathscr{E}^{n,n}$ определяется из

$$\nu(\mathbf{F}) = \begin{cases} 1, & \mathbf{F} \in \Pi_n, \\ 2, & \mathbf{F} \in \Pi_n. \end{cases}$$

Доказательство. Очевидно $v(F) \ge 1$. Если $F \in \Pi_n$ (т. е. $\mathscr E = \mathscr E$ или $\mathscr E = \mathscr R$ и $\sigma(F) \cap \mathscr R \neq \emptyset$), то матрица F имеет собственный вектор $a \in \mathscr E^n$. Тогда при h = a получаем v(F) = 1. Пусть теперь $F \in \Pi_n$ (т. е. n = 2k, $\mathscr E = \mathscr R$ и $\sigma(F) \cap \mathscr R = \emptyset$). Тогда для каждого $h \in \mathscr R^{2k}$, $h \neq 0$, векторы h и Fh линейно независимы в силу определения матрицы F. Отсюда $v(F) \ge 2$, $F \in \Pi_{2k}$. Покажем, что для каждой $F \in \Pi_{2k}$ существует вектор $h \in \mathscr R^{2k}$, такой, что тапк $\omega(h', F) = 2$. Случай k = 1 тривиален: для каждого $h \neq 0$ выполнено тапк $\omega(h', F) = 2$. Пусть $k \ge 2$. Без ограничения общности можно считать, что F — циклическая матрица, так как это не уменьшает v(F). Следовательно $\sigma(F)$ состоится из k различных комплексно сопряженных пар $a_s \pm ib_s$; $s = 1, \ldots, k$. Пусть $e = TFT^{-1}$ ($e = TFT^{-1}$), $e = TFT^{-1}$ ($e = TFT^{-1}$) — вещественная жорданова форма матрицы $e = TFT^{-1}$ ($e = TFT^{-1}$) — вещественная жордановой клетке размера $e = TFT^{-1}$ ($e = TFT^{-1}$) инимимального многочлена матрицы $e = TFT^{-1}$ с характеристическим, каждая пара $e = TFT^{-1}$ ($e = TFT^{-1}$) инимимального многочлена матрицы $e = TFT^{-1}$ с характеристическим, каждая пара $e = TFT^{-1}$ ($e = TFT^{-1}$) инользуется только в одной жордановой клетке размера $e = TFT^{-1}$

$$\tilde{F} = \operatorname{diag}[J_1, \ldots, J_k],$$

где

$$J_s = \begin{bmatrix} a_s & b_s \\ -b_s & a_s \end{bmatrix}; \quad s = 1, \ldots, k.$$

Пусть $g = Th, g' = [g'_1, \dots, g'_k], g'_s \in \mathcal{R}^2; s = 1, \dots, k.$

$$\omega'(g', \tilde{f}) = \begin{bmatrix} g_1 & J_1 g_1 & \dots & J_k^{2k-1} g_1 \\ \vdots & \vdots & \dots & \vdots \\ g_k & J_k g_k & \dots & J_k^{2k-1} g_k \end{bmatrix}.$$

Выберем g из условия $g_s=0$, $s \neq l$ и $g_1 \neq 0$ для некоторого $1 \leq l \leq k$. Тогда при $h=T^{-1}g$ имеем

$$\operatorname{rank} \omega(h', F) = \operatorname{rank} \omega(g', {}^{\sim}F) = \operatorname{rank} [g_1 J_1 g_1] = 2,$$

что завершает доказательство Теоремы 2.

Из Теоремы 2 получаем несколько неожиданное следствие:

Следствие 3. Пусть задана произвольная матрица $F \in \mathcal{E}^{n,n}$, $n \geq 2$. Тогда для того, чтобы каждый ненулевый вектор $h \in \mathcal{E}^n$ являлся циклическим относительно F генератором для всего пространства \mathcal{E}^n , необходимо и достаточно, чтобы $\mathcal{E} = \mathcal{R}$, n = 2 и $\sigma(F) \cap \mathcal{R} = \emptyset$ (т. е. чтобы $F \in \Pi_2$).

Действительно, условия следствия 3 означают, что v(F) = n.

Эквивалентная формулировка Следствия 3 состоится в следующем.

Следствие 4. Для того, чтобы система $\dot{x}=Fx,\;y=Hx,\;$ где $x\in \mathscr{E}^n,\;y\in \mathscr{E}^r,$ $1\leq r< n,$ была вполне наблюдаемой для каждой матрицы $H\neq 0,$ необходимо и достаточно, чтобы $\mathscr{E}=\mathscr{R},\;n=2$ и $F\in \Pi_2.$

Имеют место также

Следствие 5. В условиях теоремы 1 выполнено неравенство

$$N \leq n - \max\{v(A_1), v(A_2)\}$$

И

Следствие 6. Для каждой $A_1(A_2)$ существует матрица A_2 (A_1) , такая что $N=n-\nu(A_1)$ $(N=n-\nu(A_2))$.

Действительно, выберем A_2 так, чтобы матрица $A_1' - A_2'$ имела единственный ненулевый столбец $a \in \mathcal{E}^n$. Если $A_1 \in \Pi_n$, то есть $\mathbf{v}(A_1) = 1$, то пусть a — собственный вектор матрицы A_1' . В случае $A_1 \in \Pi_n$ алгоритм нахождения a описан в Теореме 2.

Следствие 7. Пусть $N \ge 1$ и A_j — циклическая матрица, где j=1 или j=2. Тогда столбцы матрицы $A_1' - A_2'$ не принадлежат подпространству циклических генераторов матрицы A_j' .

Следствие 8. Пусть $N \ge 1$. Тогда $A_1, A_2 \in \Pi_2$.

Рассмотрим стабилизируемую систему управления

(4)
$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$; $t \ge 0$,

с критерием качества

$$(5) J = J(u, x_0) \to \min$$

и множеством допустимых управлений

(6)
$$U = \{ \mathbf{u} : \mathbf{u}(t) = -\mathbf{K} x(t), \ \mathbf{K} = \text{const} \in \mathscr{E}^{m,n} \},$$

где $x \in \mathcal{E}^n$, $u \in \mathcal{E}^m$, $A \in \mathcal{E}^{n.n}$, $B \in \mathcal{E}^{n.m}$ $(m \le n, rank B = m, n \ge 2)$.

Без ограничения общности будем считать, что $\pmb{B} = \pmb{I}_n$ при $\pmb{m} = \pmb{n}$ и $\pmb{B}' = [\pmb{0} \; \pmb{I}_m]$ при $\pmb{m} < \pmb{n}$, так как в силу условия rank $\pmb{B} = \pmb{m}$ матрица \pmb{B} всегда может быть приведена в этом виде.

Пусть оптимальная задача (4), (5), (6) имеет единственное стабилизирующее решение $\bar{u} = - \bar{x}$, которое минимизирует (5) при всех $x_0 \in \mathcal{E}^n$. Замкнутая система, соответствующая управлению \bar{u} , есть

(7)
$$\dot{\bar{x}} = (A - B^{-}K) x \stackrel{\triangle}{=} {}^{-}G\bar{x}, \quad \bar{x}(0) = x_0.$$

Вместе с \bar{u} рассмотрим неоптимальное управление $u=-Kx,~K \neq {}^-K,$ при котором

(8)
$$\dot{x} = (A - BK) \overline{x} \stackrel{\triangle}{=} Gx, \quad x(0) = x_0.$$

Отметим, что случай когда система (8) неустойчива не исключается.

Из Теоремы 1 и Следствий 5 и 6 получаем, что справедливы следующие две теоремы:

Теорема 3. Для выполнения тождества $x(t) \equiv \overline{x}(t)$ по траекториям систем (7) и (8) необходимо и достаточно, чтобы

$$x_0 \in \mathcal{D}^N = \langle K - {}^-K, {}^-G \rangle = \langle K - {}^-K, G \rangle$$

где

$$N = n - \operatorname{rank} \omega(K - {^{-}K}, {^{-}G}) = n - \operatorname{rank} \omega(K - {^{-}K}, G) \le$$

$$\le n - \max \{v({^{-}G}), v(G)\}.$$

Теорема 4. Для каждого $l \leq n - v(^{-}G)$ существует матрица $K \in \mathscr{E}^{m,n}$, такая что N = l.

Аналогичным образом из следствий 7 и 8 вытекает

Теорема 5. Для существования матрицы K, такой что $N \ge 1$, необходимо и достаточно, чтобы $G \in \Pi_2$. При этом столбцы матрицы K' - K' не принадлежат подпространствам циклических генераторов матриц G и G.

Рассмотрим способы построения матрицы K, для которой подпространство \mathcal{D}^N имеет максимальную размерность $N=n-\nu({}^{-}G)$.

Если ${}^{-}G \in \Pi_n$, то матрица ${}^{-}G'$ имеет собственный вектор $f \in \mathscr{E}^n$, соответствующий собственному значению λ . Выберем K из условия

(9)
$$K = K_b = K + bf', \quad 0 \neq b \in \mathcal{E}^m.$$

Тогда

$$\omega'(K - {}^{-}K, {}^{-}G) = [fb' \ \lambda fb' \dots \lambda^{n-1}fb']$$

И

$$N = n - \text{rank } \omega(K - K, G) = n - 1$$
.

Зависимость (9) определяет m-параметрическое семейство $\{K_b\}$ матриц K, таких что N=n-1 для каждого собственного вектора f матрицы ${}^{-}G' \in \Pi_n$. Если ${}^{-}G \in \Pi_n$, то вектор f в (9) можно определить при помощи алгоритма нахождения вектора h в Теореме 2; при этом N=n-2.

В случае ${}^{-}G \in \Pi_n$, $n=2k \ge 4$ и $m \ge 2$ можно указать и другой способ построения матрицы K, для которой N=n-2. Пусть $f_0+\mathrm{i} f_1 \in \mathscr{C}^{2k}(f_0,f_1\in\mathscr{C}^{2k})$ — собственный вектор комплексного продолжения вещественного опера-

построения матрицы K, для которой N=n-2. Пусть $f_0+if_1\in\mathscr{C}^{2k}(f_0,f_1\in\mathscr{C}^{2k})$ — собственный вектор комплексного продолжения вещественного оператора ${}^{-}G'$, соответствующий собственному значению a+ib, Пусть $\phi=[f_0f_1]\in\mathscr{C}^{n,2}$ и

(10)
$$K = K_{\beta} = {}^{-}K + \beta \varphi', \quad 0 + \beta \in \mathcal{R}^{m.2}.$$

Тогда

$$\omega'(\mathbf{K} - {}^{-}\mathbf{K}, {}^{-}\mathbf{G}) = [\varphi \beta' \varphi \Lambda \beta' \dots \varphi \Lambda^{n-1} \beta'],$$

где

$$\Lambda = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

И

$$N = n - \operatorname{rank} \omega(K - K, G) = n - 2.$$

Зависимость (10) определяет 2m-параметрическое семейство $\{\pmb{K}_{\beta}\}$ матриц \pmb{K} , таких что N=n-2 для каждого собственного вектора $\pmb{f}_0+\mathbf{i}\pmb{f}_1$ комплексного продолжения $^{-}\pmb{G}'\in\Pi_n,\,n=2k\geqq 4.$

Предположим, что (5) является функционалом квадратичного типа и $\mathscr{E} = \mathscr{R}$:

(11)
$$J = \int_0^\infty (y'y + u'u) dt \to \min,$$

где $y = Cx \in \mathcal{R}^r$, $C \in \mathcal{R}^{r,n} (r \le n, \text{ rank } C = r)$, $D = C'C \in \mathcal{R}^{n,n}$, а диада (C,A) — детектируемая (квадратичный критерий более общего вида заменой переменных сводится к (11)).

Как известно [1], [4], [3], [6] оптимальное стабилизирующее управление $\bar{u} = - {}^{-}Kx \in U$ определяется из ${}^{-}K = B' {}^{-}P$, где матрица ${}^{-}P \ge 0$ удовлетворяет уравнению Риккати

(12)
$$A'^{-}P + {}^{-}PA + D - {}^{-}PBB'^{-}P = 0.$$

При этом критерий качества (11) принимает минимальное значение $\bar{J}==x_0'^-Px_0$. Напомним, что если диада (A,B) — стабилизируемая, а диада (C,A) — наблюдаемая, то $^-P>0$.

Рассмотрим неоптимальное стабилизирующее управление u=-Kx, $K \neq {}^-K$ (за счет некоторого усложнения выкладок можно рассмотреть также нестабилизирующие управления, на что остановливаться не будем). Всюду дальше будем считать, что для каждой рассматриваемой K матрица A-BK асимптотически устойчива.

При управлении \pmb{u} имеем $J=x_0'\pmb{P}x_0$, где $\pmb{P}=\pmb{P}(\pmb{K}) \geqq {}^{-}\pmb{P}$ — решение уравнения Ляпунова

(13)
$$G'P + PG + D + K'K = 0, G = A - BK.$$

Из (12) и (13) следует

(14)
$$G'(P - {}^{-}P) + (P - {}^{-}P)G + (K - {}^{-}K)'(K - {}^{-}K) = 0$$

И

(15)
$$(K'-PB)(K-B'P)=PBB'P-A'P-PA-D\geq 0.$$

Используя резултаты работ [3], [6] на основе (14) получаем, что полная наблюдаемость диады ($K - {}^{-}K$, G) влечет $P > {}^{-}P$. Однако применяя Теорему 3 можно получить более общее утверждение:

Теорема 6. Для любой матрицы K выполнено условие

$$\operatorname{Ker}(P - {}^{-}P) = \langle K - {}^{-}K, {}^{-}G \rangle = \langle K - {}^{-}K, G \rangle.$$

Доказательство Теоремы 6 следует из теоремы 3 и из того факта, что нулевое пространство квадратичной формы совпадает с ядром ее матрицы.

Применяя Теорему 6 получаем, что если диада (K — \bar{K} , G) вполне наблюдаема, то $\langle K$ — \bar{K} , $G \rangle = 0$ и P — P > 0.

Следствие 9. Выполнено равенство

$$n - v(^{-}G) = \max \{ \dim \text{Ker}(P - ^{-}P) : K \neq ^{-}K \}.$$

Следствие 10. Для каждого l, $v(^-G) \le l \le n-1$, существует матрица $K + ^-K$, такая что $P - ^-P \in S_l$. Для каждой матрицы $K + ^-K$ выполнено неравенство rank $(P - ^-P) \ge v(^-G)$.

Действительно, $P - {}^{-}P \in S_{l}$ тогда и только тогда, когда

$$l = n - \dim \operatorname{Ker}(P - {}^{-}P) = \operatorname{rank} \omega(K - {}^{-}K, {}^{-}G)$$
.

Следствие 11. Условие $P - {}^{-}P \in S_1$ выполнено тогда и только тогда, когда G, ${}^{-}G \in \Pi_n$ и существует ненулевый вектор $f \in \mathscr{R}^n$, такой что:

- столбцы матрицы K' - $^{-}K'$ принадлежат линейной оболочке вектора f;

— вектор f является собственным вектором матриц ${}^{-}G'$, G' и $G' - {}^{-}G'$. Рассмотрим наконец вопрос об инвариантности критерия (11) на всем множестве (вообще говоря несовпадающих и неоптимальных) траекторий.

Пусть существует матрица $P \ge 0$, $P \neq {}^{-}P$, такая что

(16)
$$PBB'P - A'P - PA - D = Y'Y, \quad Y = Y(P) \in \mathcal{R}^{m,n},$$

где гапк Y=m (случай, когда гапк $Y\leq m-1$, $m\geq 2$, рассматривается аналогично). Тогда согласно (15) получаем, что K=TY+B'P, где $T\in \mathscr{R}^{m,m}$ — ортогональная матрица, зависящая вообще говоря от m-1 параметров $\alpha_1,\ldots,\alpha_{m-1}$. Обозначим через $\{T_a\}=\{T_a^{(1)},T_a^{(-1)}\},$ $\alpha=[\alpha_1,\ldots,\alpha_{m-1}]'\in \mathscr{R}^{m-1},$ совокупность всех ортогональных матриц, соответствующих евклидовых поворотов в \mathscr{R}^m с сохранением ($\{T_a^{(1)}\}$) и нарушением ($\{T_a^{(-1)}\}$) ориентации (при m=1 имеем $\{T_a\}=\{1,-1\}$). Пусть R^1 — разбиение пространства \mathscr{R}^{m-1} на классы эквивалентности по "молулю T_a'' : $\alpha\sim\beta\Leftrightarrow T_a=T_b$.

Рассмотрим семейство управлений $\{u_{\alpha}\}$,

$$u_{\alpha} = -K_{\alpha}X, \quad K_{\alpha} = T_{\alpha}Y(P) + B'P.$$

Согласно сделанных предположений матрица K_{α} стабилизирует систему (8) для каждого $\alpha \in R^{\perp}$. По траекториям соответствующих замкнутых систем

$$\dot{x}_{\alpha} = (A - BK_{\alpha}) x_{\alpha} \stackrel{\triangle}{=} G_{\alpha}x_{\alpha}, \quad x_{\alpha}(0) = x_{0},$$

выполняется условие

$$J(u_{\alpha}, x_0) = x_0' P x_0, \quad \alpha \in \mathbb{R}^{\perp}.$$

для всех $x_0 \in \mathcal{R}^n$.

Таким образом для каждой $P \ge 0$, $P + {}^{-}P$, удовлетворяющей (16), существует семейство $\{K_{\alpha}\}$ стабилизирующих матриц K_{α} , таких что критерий (11) инвариантен относительно u_{α} при всех x_{0} . При этом может оказаться, что $x_{\alpha}(t) \not\equiv x_{\beta}(t)$, $\alpha \ne \beta$. Следовательно по неоптимальным траекториям совпадение критерия качества не является необходимым для совпадения соответствующих траекторий.

Условия совпадения траекторий $x_{\rm s}(t)$ и $x_{\rm b}(t)$ исследуются аналогично как и в случае x(t) и $\overline{x}(t)$.

Отметим наконец еще одно следствие из сделанных рассуждений:

Следствие 12. Для любой P, удовлетворяющей (16), и α , $\beta \in R^{\perp}$, $\alpha \neq \beta$, выполнено условие

$$\operatorname{Ker}(P - {}^{-}P) = \langle K_{\alpha} - K_{\beta}, G_{\gamma} \rangle = \langle K_{\alpha} - K_{\beta}, {}^{-}G \rangle =$$

$$= \langle K_{\gamma} - {}^{-}K, {}^{-}G \rangle = \langle K_{\alpha} - {}^{-}K, G_{\gamma} \rangle,$$

rде $\gamma = \alpha$ или $\gamma = \beta$.

5. ЗАКЛЮЧЕНИЕ

В работе найдены необходимые и достаточные условия совпадения траекторий двух линейных динамических систем, исходящих из некоторого подпространства в пространстве состояний. Рассмотрен вопрос о существовании оптимальных траекторий неоптимальных систем управления. Указан явный вид матрицы неоптимального закона управления и множества начальных состояний, порождающих такие траектории. В качестве примера рассмотрены линейные системы с квадратичным критерием и изучены некоторые свойства решений матричных уравнений Риккати и Ляпунова. Найдены условия инвариантности квадратичного критерия на некотором множестве неоптимальных систем при всех начальных условиях.

(Поступило в редакцию 31 марта 1976)

ЛИТЕРАТУРА

R. E. Kalman: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5 (1960), 2, 102-119.

^[2] М. М. Константинов, С. П. Патарински, П. Хр. Петков, Н. Д. Христов: Върху някои проблеми на аналитичното конструиране на регулатори в линейни системи с квадратичен критерий. Докл. на Юб. научна сесия на ВИММЕСС-Русе, 3, (1974), 42—53.

^[3] V. A. Kučera: Contribution to the matrix quadratic equations. IEEE Trans. Automat. Contr. AC-17 (1972), 3, 344-347.

- 210 [4] А. М. Летов: Аналитическое конструирование регуляторов, I—V. Автоматика и телемеханика XXI (1960), 4, 436—441, 5, 561—568, 6, 661—665; XXII (1961), 4, 425—435; XXIII (1962), 11, 1405—1413.
 - [5] E. B. Lee, L. Markus: Foundations of optimal control theory. Wiley, New York 1967. (Русс. перевод Наука, Москва 1972.)
 - [6] W. M. Wonham: Linear multivariable control. A geometric approach. Springer-Verlag, Berlin 1974.

Михаил М. Константинов, Симеон П. Патарински, Петко Хр. Петков, Николай Д. Христов, Высший машинно-электротехнический институт имени В. И. Ленина, Кафедра автоматики, София. Болгария.