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Congruence of Analytic Functions Modulo 
a Polynomial 

ZDENĚK VOSTRÝ 

In the paper an algebraic approach to the numerical computation of a mapping of analytic 
functions into polynomials is developed. This mapping can be applied for the numerical comput
ing of some complex integrals, transformation between Laplace and % transfer functions and 
for more general Newton interpolation formula. Applications are in this and in the following 
papers. 

INTRODUCTION 

Some problems of linear time invariant continuous and discrete systems can be 
solved by using the polynomial approach [1,2]. The extension of the polynomial 
approach to other problems is given in this and the following papers. The mathema
tical background is the congruence of analytic functions modulo a polynomial and 
operations in a ring of polynomials modulo a polynomial. 

The basic idea is based on work by Prof. Nekolny. 

Let us consider polynomials a, b with complex coefficients. We say that a divide b 
and write a\b, if and only if there exists a polynomial c such that b = a . c. 

The greatest common divisor of a and b is a polynomial denoted as (a, b). 

The degree of a polynomial a is written as da. Let m = m0 + mtx + ..., mkx
k 

be a polynomial with complex coefficients and dm > 0. Then the spectrum Jt 
of the polynomial m is the set of all complex numbers a for which m(a) = 0. 

If j is a complex-valued function of the complex variable x defined on a neigh
bourhood jV(a) of a point a and if the derivative j'(a) exists everywhere in .^(a) 
then j is said to be analytic at a. 

A function j is analytic on Jt if it is analytic at all points of Jt. Denote S' m the set 
of all functions analytic or having at worst removable singularities on Jt. 



Definition 1. Let a polynomial m, dm > 0 and functions / , g e J%„ be given. 117 
We say t ha t / and g are congruent modulo m,f = g mod m, if there exists an h e &m 

such t h a t / = g + Inn. The polynomial m is called modulus. 

It is evident that this congruence modulo m defines an equivalence relation on J5r
m 

and hence the •¥m is decomposed into disjoint equivalent classes. Each class can be 
represented by a polynomial with degree less then dm as it is shown in the following 
theorem. 

Lemma. Let the polynomial m ~ (x — of and a function /' e J5",,, be given. Then 
there exists only one polynomial r such that 

/ = r mod m , dr < cm . 

Proof. From Definition 1 the congruence 

0 = (x - a)' mod m for I = k,k + \, ... 

follows. 

Because / e 3Fm we can write 

l« = ijn«)^,-a)v-
Hence 

f(x) = £ j ( v ) ( a ) — --- mod m = r mod m 

an the proof is complete. 

Theorem 1. For any / e lfm dm > 0 only one complex polynomial r exists such 
that 

(1) / = r mod m , dr < dm . 

The natural homomorfism H : / -* r induced by the congruence relation (1) will be 
called the reduction of/ modulo m and denoted [/]„, = /•. 

Proof. Existence. Consider the modulus m = f ] 'm, ' « = (x — «,-)*', a{ + a , 
for i + j and the equation t = 1 

(i) / = I'V; ft 'm + (ri '«) .h 
; = i i=t,i*j i = r 

where 'q, h e tFm,j ~ 1,2, . . . , « . 

Below we show that Jq can be chosen to be a polynomial with degree less then kj = 
= dJm. 
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Divide both sides of (i) by ] [ 'm, I = 1,2, .. ., n. Then 
i = l , i * i 

(n) —1 = >q + <m( t '^ + h) 
n 'm V'-W + .'m ) 

i = l , i * I 

or in short-hand notation 

'g = 'q + 'm 'h . 

It is evident that lg, lq, 'h e #",,„. 

Using Lemma we can choose lq as a polynomial with degree less than o 'm and 
hence the degree of the polynomial 

r = i>q n '« 
; = i i = i , i * j 

is less then dm and the existence is proven. 

Uniqueness. Suppose that two polynomials r and s exist such that dr < dm, 
ds < dm and 

j = r mod m , f = s mod m . 

From these assumptions and from Definition 1 the next equations follow 

j = r + hxm = s + h2m , hl ~ h2 = , 
m 

where hx,h2e #'m . 

Because d(r — s) < dm and (/ij - h2)
 e -^m it m u s t be r — s = 0. This contra

dicts to the above assumption and the proof is complete. 

Remark. Denote zt, z2, ..., zh zt 4= Zj for i + j, all zeros of the polynomial m 
i 

and denote kt the multiplicity of zero zt. ( £ fc; = <3m). 
From Definition 1 , = 1 

(2) j(z) = r(z) + h(z)m(z) 

where h(z) e ,Fm. 

Consider i = 1, 2, . . . , /, v, = 0, 1, . . . , (fc; - 1) then 

cT-m(z) = 

and from (2) 



(3) /(">(-{) - r^(Zi) 

for all i and v;. In this way dm simultaneous linear equations for dm unknowns 
r0, >\, ..., r6m_1, are obtained and the polynomial r can be computed. 

Point out that the first part of the proof of Theorem 1 gives more general Newton 
interpolation formula. (See (;') and Remark). These interpolations can be succesfully 
used in many numerical problems. Computations of [/],„ are given below. 

PROPERTIES OF REDUCTION MODULO m 

Theorem 2. Let a modulus m and the set !Fm be given. If / , g e SPm, [/],„ = a, 
\_9~\m ~ b a n d ^ is a complex number, the next equations hold: 

(0 [j + 9\m = [f% + M_ = a + b, 

(,/) [!/]„, = 2[/],„ = la , 

(iii) [/..]-, =[[j].WJ,„ = [ ^ ] ^ 
(iv) if fig e ,Fm then 

r_i . n _ t i _ m . 
L»J. Lw.J. Ld 

Theorem 3. Let a modulus m, the set ^ m and a function a e ^OT be given. Define 
the set Jf as Jf = {.v : v = a(x), m(x) = 0}. I f / i s analytic on Jf then 

[j(^)]m = [/([«]ra)],„. 

These two theorems follow from the proof of Theorem 1. 

If the function / is a polynomial then the reduction / modulo m is the remainder 
after dividing/ by m. (see (2)). 

ANNIHILATING POLYNOMIAL 

Very important in applications of this approach is the so called "annihilating 
polynomial". 

Consider polynomials gQ,gy, ••••,gN such that N is an integer and dgt < N, 
i = 0. i, . . . , N. Then as it follows from the properties of the vector space with 
dimension N the complex numbers A0, ku ..., XN exist such that 

(4) £ / _ 7 , - - 0 , i | A , | > 0 . 



120 Let a modulus m with degree N and a function g e J*m be given. If (4) holds for gt = 
iV 

= [T ]m then the polynomial £ A,x-' corresponds to the concept of characteristic 
polynomial in matrix algebra. i = 0 

Definition 2. Consider a modulus m and a function jeJ5",,,. The annihilating 
polynomial of a function j modulo m, denoted =s/[j]m, is a nonzero polynomial 
p = p0 + pix + ... + pkx

k with minimal degree for which 

Wj)]m = o. 
It is evident that 

(i) dp ^ dm , 

(ii) for a n y j e J^m an annihilating polynomial modulo polynomial m exists, 

(iii) if p, q are annihilating polynomials of/modulo m then p = fiq for some complex 
number ft. 

COMPUTING THE ANNIHILATING POLYNOMIAL 

Let a modulus m and a function / e J*m be given. Set k = 3m — 1 and denote 
the polynomials 

(5) (i) — [/']"• f ° r i = 0, I, . . ., дm , 

where g{i) = gi0 + gnx + ... + gikx
k. 

Write the coefficients of the polynomial g(i) in the vector form 

G ř = 

9* 

If p = Ji?[f]m then using Definition 2 and [/°],„ = 1 we obtain 
dm 

(6) [p(/XL = Po + Pi[/],„ + P 2 [ j 2 ] „ , + . . . + Pam[/-am]m = Z Ptfu> • 
; = o 

In the matrix shorthand notation 

(7) [Gв,G1, . . . ,G,J Pa 
Pi 

= "o" 
0 

„Pг,«„ 0 

It is evident that the minimal degree of the polynomial p is equal to the rank of the 



matrix G = [G0, G,, . . . , Gdm\. Let n = rank G then for p„ = 1 and P„+i> i>„ + 2* 
• • •> Pcm — 0 the coefficients of the annihilating polynomial are given by (7). 

Example 1. Find the annihilating polynomial of / = x2 modulo 

m = 6 + 5x + x2 . 
By (5) 

0(0, = 1 

0(D = [*2]». = - 6 - 5x 

0 ( 2, = [0(i,]m = [ ( - 6 - 5x)2],„ = -144 - 65x . 

The equation (6) has the form 

Гl - 6 -144"] 
|_0 - 5 - 55] 

Po = "o" 
Pí 0 

.!?-„ 

The rank (G) = 2 and for p2 = 1 the solution of equation (7) gives 

•j^[x2]6 + 5 , + , 2 = 46 - I3x + x 2 . 

Consider a modulus m, a function fe !Fm and the annihilating polynomial p = 
= ^Ulm t n e n f o r m(^) = ° t h e equation (6) and (3) gives p(f(Xj) = 0. The relations 
between the zeros of m and the zeros of p play the important role in applications. 

Theorem 4. Let a modulus m and a function fe 3F be given such that 

for all X, for which (x - x,)2 | m(x) then 

« = J - ' I / W ] - = LCM ((x - /(x,))"' , (x - / (x 2 ) ) - , . . . , (x - /(x,))"') 

where LCM denotes least common multiple and n; is the multiplicity of zero Xj 
of the polynomial m. 

Proof. Denote ^ [ / ] , „ = a0 + atx + . . . + anx" = a . 

The annihilating polynomial / modulo m is a polynomial with minimal degree for 

which 

Wj)L = o. 
From the properties of [•],„ see, the proof of Theorem 1, the next equation holds 

dлJ •C/tø) = 0 , for k = 0, 1, ...,(n, - 1) . 



122 Set k = 0 then 

Set k = 1 then 

a(f) = 0 for x = x , . 

àa da dj n c 

— = = 0 for x = x , . 
dx dj dx 

dj 
From the assumption — 4= 0 we obtain 

dx \x=x. 

= 0 for x = Xj . 

Set k = 2 then 

and from this 

Set A: = n, - 1 then 

<ťa = f a /dj\2
 + da d2/ = Q 

dx2 d/2 Vdx/ dj dx 

0 

í î - o . 
<Г 

ç,.Ш 
d x»«-i dy».-i y d x 

аnd 

From 

(0 

ď'-'fl 
d r , - l = o 

dj* 
= 0 for A: = 0, 1, . . . , (n ; - Hand i = 1, 2, . . . , /the property 

(x - j(x;))n'| a 

follows for any zero x ;, i = 1, 2, . . . , / . A polynomial a with minimal degree satis
fying (/) is evidently the LCM of (x - j(x,.))"(, / = 1, 2, . . ., I. 

Remark 1. By adding the conditions 

j(x;) * f(xj), x ; * xj for / + J 

to Theorem 4 we obtain 

da = dm , 

« = П(*-jG)Г-



Example 2. For m = - J + x 2 and j = x2 compute •$?[/]„,. 

[j°]m = 1 , 

[ E L - + 1 , 

[ j 2 L= i-
Construct the equation (5) 

[i i n u,] = ro] 
[oooj PL [oj 

The rank of the matrix G is equal to 1 and 

s4\x2\r.x = - 1 + x. 

It can be seen that in this example the conditions of Theorem 4 are satisfied and the 

conditions of Remark 1 are not satisfied. 

DIOPHANTINE EQUATIONS IN POLYNOMIALS 

Consider the equation 

(i) ax + by = c 

for unknown polynomials x, y and given polynomials a, b, c with complex coeffi

cients. 

Equation ((') has a solution if and only if (a, b) | c (see [ l]). 

If x, v is a particular solution of (i), then all solutions are of the form 

x = x + 1, 
(a,b) 

r = ' + M ) Г ' 
where / is an arbitrary polynomial. We can obtain 

* = (-!)"-„.._ 
Г . - І ' (a,Ь) 

= ( - i Г ' v , = w„, 

where w„_,, w„ and z n _ 1 ; z„ are the polynomials given via recurrent equations 



w0 = 1 , wt = q t , wfc = cjftWt-i + wk_2 , 

z0 = 0 , - t = 1 , z t = qkzk_, + zk_2 , 

fc = 2, 3, . . . , « , 

the polynomials tji, fl2> • • •>?« a n ( i tVi come from euclidean a lgor i thm for (a, b). 

Euclidean a lgor i thm for (a, b). 

a = qtb + rt di\ < db 

b = q2rt + r2 dr2 < drt 

r_ = q3r2 + r3 8r3 < dr2 

r„-2 = _»?„-_• 

(a, b) = r „ _ t . 

Theorem 5. Let a m o d u l u s m and po lynomia l s a, c be given such tha t cja _ #"„ 

then 

where r = [x]„„ and x is a par t icular solut ion of d iophan t ine equa t ion 

(a1) a*x + my = c* , where a* = 

P r o o f . Divide (d) by a* then 

(«, cj ' (ß,c) 

and because [om],„ = 0 holds for any a e #",„, we ob ta in 

И - -

N o t e that the c o n d i t i o n c/a e J ^ agrees t o c o n d i t i o n (a*, m) I c* of t h e d i o p h a n t i n e 

equat ion (d). T o c o m p u t e t h e r e d u c t i o n m o d u l o m of functions ex, In x, ,/x, xk etc. 

we use some t h e o r e m s o n u n i f o r m convergence a n d define a n o r m of a funct ion 

m o d u l o m. Any sequence of analyt ic functions fh i = 1,2, ..., uni formly convergent 

over c o m m o n region, converges t o a n analyt ic function F within that region. F r o m 

this 

l im j , ( v ) = F ( v ) for v = 0, 1, 2 . . . . 



Theorem 6. Let a modulus m and a sequencej0,jL, . . . , be given such that / ; e J*",,,, 12-
, = 1, 2, . . . , and/ 0 , / ) . , . . . uniformly converges over some closed region containing 
spectrum of the modulus m to a function F. Then 

l im[ j ;]m==[E] ,„. 

Proof follows from the proof of Theorem 1. 

In this way the reduction [E]„, can be computed by a limit process of [/,],„. 

MODULAR NORM 

For proofs of uniform convergence a norm is needed. 

Theorem 7. Let a modulus m = m0 + mtx + ..., mk„{x
k~l + mkx

k, mk + 0 

and j , g e 3~m be given. Consider a = [ /]m , b = [o]OT and the Chebychev vector 
k - i 

norm of the polynomial a as |a|j = £ \at\. Then the number 
i = 0 

(n) o = max \\[xJf]m\\ 
Ogj 'g fc - l 

is the norm in 3Pm, written as | | / | ,„, with the property 

\\f.9\\m^\\f\\m\\9\\m. 

We say that ||/||„, is the modular norm of the function/with respect to the modulus 
m. 

Proof . At first, the following norm axioms 

(0 ||/JU = ° if and only if [/]„, = 0 , 

(ii) | |/|U > 0 if and only if [ / ] , „ * 0 , 

(«0 Wl =|A| | | / | ,„, 

(iv) ||j + 4^ll j lU + lklU> 
are evidently held. 

Product inequality 

From (n) \fg\m = ||a6||m follows. Denote [xJ'6]„, = bU) = bU) + b\J)x + ... 
+ ...,blJl1x

k-1thzn 

\\ab\L = max | | [x J 'H„, | = m a x i l> a ) a ]« l = 
OSjSk-l OSjik-i 



= max I l V j : > [ x f a ] „ . I = ^ x H - ' l K | _. H - H -
ogjs/t-i ; = o ogj<„-i i-i 

using the properties of the vector norm. 

This norm is well adapted for computer calculations. 

Remark. Consider modulus m = m0 + m±x + . . . mk-lx
k~l + mkx

k, k k 1, 

then from Theorem 7 ||x||_ = max | | [x J x] m | | = max (l, ( |m 0 | + |m_| + . . . + 
0 < J < f c ~ l 

+ |m„_L|)/(m_) using [x"]m = x" for n < dm and [x a m ] m = - ( m 0 + mxx + . .. 

. .. m__1x
k~ l)jmk. Consider the matrix 

A = 0 0 

1 0 

1 

0 

- m0 

- m, 

- mk-i 
1 - m ќ_ t_ 

then | x | m defines the column norm of the matrix A and as it is known 

max \A\ ^ | A | = ||x||m . 
m(A) = 0 

The other properties of the modular norm are mentioned in the section Power series. 

POWER SERIES 

As it is well known a power series converges uniformly in any closed set that can 

be enclosed in a circle which in turn lies wholly in the interior of the circle of conver

gence. 

Theorem 8. Let a modulus m and a power series a0 + a_x + a 2 x 2 + . . . with 

the radius of convergence R defining a function F(x) = __ ajXj be given such that 

< R then 

[F(x)]и = Ia j[x i] f f l. 

Proof. Define the closed disk @ centred in the origin with radius g = |jx||m. 

Then all zeros of m(x) lie inside 3> and hence the above series converges uniformly 

over 3>. Using Theorem 6 for partial sums of the given series the proof is complete. 

Lemma 1. Let a modulus m and functions/, g be given such that f(g)e $~m and the 

function / can be expressed as the power series 



A-) = £-.-•' 
i = 0 

with radius of convergence R > \\g\\m. Then 

0) [j(0)]m = L«,[<7% 
i = 0 

and 

00 \\m\U = \f(\\g\\m)\ • 

Proof, (i) follows from the properties of Taylor series, (ii) following from (i) 
using the properties of the modular norm, especially |fl'j|m < (||<7|m)'-

The next algorithms are established for a modulus with real coefficients and they 
can be adapted for a modulus with complex coefficients with small modifications. 

Let a modulus with real coefficients and a function f e2Fm be given such that 
f*(x) = f(x*) denote the complex conjugate of .x, then [ j]m is the polynomial with 
real coefficients and it can be evaluated by real arithmetics. 

NUMERICAL RESTRICTIONS 

In the recommended numerical algorithms the range of numbers (10"72, 1072) 
and double precision real arithmetics wiht 16 decimal digits are supposed. 

COMPUTATION OF [e , x]m . 

Using Numerical restriction the value of eqx can be computed for 

\qx\ < 166 < 28 . 

Hence, this restriction must hold for all x for which m(x) = 0. 

Theorem 9. Let a modulus m = m0 + ra,x + . . . 4- mkx
k, mk 4= 0 and a real 

number q be given then 

^Ш ł l 
where 
L is the least natural number for which 

M . = 2L"3 

and 
| |e-« xR |L < 3.2L10~ 1 4 



*-8 The sum is computed by Horner scheme. 

Proof . Denote 

-Іl-\Ч\. .-
then 

[ e - 2 - L ] m = , + [r]„, 

where r is the remainder of the known power series for the exponential function. 

From the assumption Q < ^ the norm |r||,„ can be bounded as 

because 

<;_____ = 2.4. Ю - 1 4 , 
9! 

y L < L y L _ __ e" 
«=9 /! 9! ; = o /! 9! 

The error K is defined as 

[en.-[«*_- + *• 
For | | r 2 | j m <̂  | r | j m we can write 

M . = [(* + rf% _ [,2L + 2VL"1r]m 

and 

R = 2 V - 1 [ r ] m . 

Hence the relative error can be given as 

||e-«*R||_ = | | 2 V * / 2 ' > | | m . 

Using Lemma 1 | e _ * j r / 2 I ' | m _ e 1 / 8 and we obtain 

-1/8 1/8 

|Le-^i?|| < e — A _ 21- < 3 . 2L . 10" , 4 . 
II li - 8 9 9 , 

In usual cases L <̂  11 and hence [e ?*]m is approximated at least at 12 decimal digits. 

Remark 1, Computation of [e^ (*']m, J e !fm can be performed in the same way 

as e"'x and L is the least natural number for which 

« / ( * ) « . - . - L - 3 -

Point out that the practical computation of s is without numerical difficulties due 

to Q _ | . 



COMPUTATION OF [Jx]m. 

The bilinear transformation 

1 - 2 

'" " I + Z 

maps the right half-plane, Mez > 0, onto the domain \w\ < 1. The equation 

| l + z 

defines for all r, 0 < r < 1, the family of nonintersecting coaxial circles in the right 
half-plane. 

Hence for any complex number s, Mes > 0, there exists a real number Q < 1 
such that 

1 - s 

< e-
1 + s 

Consider the principal value of the square root of a complex number x, x + f, 
/ < 0 then ^ y/x > 0. 

Theorem 10. Define the domain _> = {x : ^ V* > 0} then the sequence 

(!) y.+. =^(>'•' + 7 ) ' ^0= -• / = o, 1 ,2 . . . 

uniformly converges to the principal value of ,jx on any finite closed set £f contained 
in the domain _*. 

Proof. Let a set ^ be given, then there exists a number Q such that the closed 
set 0> = {x : ll - , /x / l + v ' x | ^ 0 < 1} contains the set Sf and if x 6 & then 
jl — VXA + V x | < 6- This follows from the property of the bilinear transforma
tion. From (/) 

(8) yi+i - s /x = ~ {y, - Jxf , .V.- + 0 , 
2yt 

V,+ M + V * = — 1 > . + V*)2 

2y ; 

and hence 

y.+t - V x _ />'.• - V*Y _ /j'. '-i ~ V X V _. /j;o ~ V (9) 
y,+i + V* Vy.- + V*/ V>';-i + V*/" V.vo + V-x 



For y0 = 1 we obtain 

j>;-V* 
| УІ + V* 

1 - Jx 
1 + ^x 

< 0 for all xeS/', 

hence y\ — Jxjyt + J*x and in turn yt - Jx, uniformly converges to zero on Sf. 
The convergence is quadratic on Sf. 

Theorem 11. Let a modulus m — m0 + mtx + . .. mkx
k, mk 4= 0 be given such 

that m(t) 4= 0 for t < 0. Then 

(0 

where 

[jx]m = -77 >ІV+1 + ^ІV+l 

V A 

. 0 = 1 . 

';+, -=-T.Vi + —1 , ( = 0,1,2, ...,N, 
2L >d~ 

ÄJV+1 

ÏФ 
< 10" 

_V is the least natural number for which \\yN+1 — yjv||m/|yiv|| < 10 1 4 ' ||>AJ|| i s t n e 

Chebyshev vector norm (see Theorem 7). 

k 

Proof . It is known that A* = J l x ; where x ; is a zero of the modulus m. Hence, 
i = l k 

the values of Ax, m(x) = 0, are "centred" about the number 1, JT ^xi = 1 a n d faster 
;=i 

convergence and better numerical properties are obtained. In view of the quadratic 
convergence of the given algorithm (see Theorem 10) the number TV is a small number, 
usually N < 6. 

The error RJV+I can be estimated in terms of the following formulae: 

KAT+I = Ux]m - -r yjv+i.. using (i), 
JA 

-r-wi -irrvw^Yi, using(8), 
L >N J m 2 L\ yjv / Jm 

\W)M\ < 1 
УJV 



for Af > L, where Lis an integer number, using RN -> 0 and 

Rл 

V*l 
Finally, we write, 

[ Ц * [ ^ l = [ v ^ — 4 - ^ 1 
and 

^ І V + I »i , JV+i _ УN 

УN 

tešLríJJW 

by using \\yN\\ < \\yN\\m (see Theorem 7). 

Remark 2. Let a modulus m and a function j be given such that j(x,) 4= t, t <. 0, 
m(xj) = 0, then 

[V/ML = -»+t, 
where 

z0 = 1 , zí + 1 = í[-ä 
and N is the least natural number for which 

l-.+i - - f lWNI < 10~14-

COMPUTATION OF [x*]m. 

Consider a real number a expressed in a computer binary form 

+ N 

a = X 2 % , jff, = 0 or 1 , (usually N = 15) 

then x* = x2it», ..., x2"'^ V*"-1 VV*'~2 + x ( 1 / 2 N ) " - and [x"]M can be computed 
using Theorem 2 and highly efficient algorithm for [V]m-

Point out that [VVx]m *s c ° m P u t e d with less number of iterations then [V*]m 

because 

lim [xl/2"]m = 1 . 

Remark 3. Computation of [(f(x)"]m, j 6 #"m is carried out in the same way as the 
computation of [xa]m . 





which converges uniformly to the principal value of In (x) on any finite closed set ¥ 133 
contained in the domain _? = {x : ?Jt( v ' x > 0} (see the proof of Theorem 10). 

Theorem 12. Let the modulus m — m0 + mtx + . . . + mkx
k, mk + 0 be given 

such that m(t) + 0 for t g 0. Then 

(Ax)(1/2N)- e 2 i + l 

(0 [ l n ( x ) ] „ , = - l n ( A ) + 2 л ' + l X 
o 2/ + 1 V(Ax) ( 1 / 2 N ) + 1 

+ R 

where 
\i/* 

(Ax)1 

(Ax)1 

+ 1 

TV is the least natural number for which Q g £, JV > 1. and 

1_|„ _ 2"- V 7 < 2 * . lO"16. 

Proof. The number A is defined in the same way as in Theorem 11. The equation (/) 
follows from In (Ax)1''2" = (l/2N) In (A) + (1/2*) In (x) and from the above series 
for In (x). 

Denote 

- = i^rN ~ • 
(Яx)1/2N + 1 

then from (/) 

1*1---̂ ' If -i-/' 
||_ 8 2/ + 1 

Because | |y | m g g = ' , 

IIR 

< 2 л 
Г 7 ř ? s W 

i J V + l 1 < 2 N + 1 - - _ _ _ < 2 " - V 7 < 2N . 1 0 - 1 6 

17 1 - Q2 

Considering numerical restriction we can see that Af < 11 because 

(1072)1/2" - -
(Ю 7 2 ) ' 

= 0.044 < -
+ 1 8 

]f Q = \\y\\m < •_• for A/ = 1, i.e. all zeros of m tends to 1, then \R\„ g \QX1 . 
Consider that ||x — l | L tends to zero, then 

y * - 1 
Jx + 1 

1 - ł [x - 1]„, and [ln (x)]„, = [x - l ] m . 



134 Hence,for Q = \\x - \\m ^ 0.1 

||lnx||w = 4 e , \\R\m<kQ11. 

The computation of [In x]m is correct to fifteen decimal digits. 

Remark 4. Computation of [In (f(x))~\m, In (/) e &m is given in the same way 
as the computation of [In x]m , only X - 1 and 

~ I(jrw + iL 

EVALUATION OF SOME CONTOUR INTEGRALS 

Theorem 13. Let a polynomial a and a function F e $?g be given. Consider a closed 
curve <tf such that all zeros of a lie inside <& and the function f is analytic inside f€ 
and on c€. 

f í d x - f ř 
J«a J w -

Ғ d л = f ^ d x = ^ 2 я j , 

where 
n = 3a 

[ F ] . - / - / o + / . x + . . . +/.-!= 

J-f E*. 
2t j J (fl) a 

denotes the sum of residues inside ^ (in the zeros of m). j imaginary unit. 

Proof . Residue theorem gives 

F A Í F
 Л 

— dx = — dx 

It is evident that 

and hence 

h dx — 0 for any h e 2F a 

(«) 

f ^ d x = f *-±*«d.*. 
J(«)a J(«) « 

Choosing the function h such that F + ha = [E ] 0 we obtain 

- dx = f £ dx , 



The integral 

- dx , j , a polynomials, df < da , 
1 ( a ) < 

can be evaluated by using 

- dл- = — 2тrj . residuum at co 
. a 

f-áx=f-*=±гщ. 

Example 3. Given the Laplace transform of a function j in the form b(s)/a(s) 

where b, a polynomials, db < da. Computej(a) for some real a. 

Inversion theorem for Laplace transform gives 

2 j t U r - J „ a(s) 

where y is any positive real number greater than the maximum real part of all zeros 

of a(s). 

In our case using Jordan's Lemma we can write 

j(0 = - L r v M i ) d s = _if e,K^ds. 
2 7 r j J r - J » «(«) 2niJ(a) a(s) 

Using Theorem 13 we obtain 

f{l) . r [ q i k i d s = ^ 
2*J J (•) «(s) «« 

where 

n = 3a , 

c = c 0 + c , s + . . . + r„_ 1sB~ 1 = [e s ( b(sj]a(s). 

For 

1-) - 7" 6 + l i s + 6s2 + s3 

and a = 0.5 we obtain 

j(0.5) = 4.695096611976623 . 10^2 

using Theorem 3 and Theorem 9 in computer algorithm. 



Example 4. The following rational function 

3024 - 1344s + 252s2 - 24s3 + s4 

Ңs) = 5 
15 120s + 8400s2 + 2100s3 + 300s4 + 25s5 + s6 

giving the Laplace transform of a function/(f) was previously inverted by the con

ventional method with the aid of a computer (Longman 1966). 

Some values of /(f) obtained analytically are compared in Table below with 

values obtained by the tadious method of Longman and Sharir [3] and by the method 

based on the congruence of analytic functions modulo a polynomial described in this 

paper. 

TABLE 

t Л0 Л (0-/(0 лo-лo 
0 0 0 0 
0-2 -0061994089 _ ю"9 - 10~ 9 

0-4 0-108183033 - 2 . 1 0 " 9 - 2 . 1 0 ~ 9 

0-6 0141936276 0 0 
0-8 0-018957791 - 10~ 9 - 10~ 9 

1 0 0-564698377 - 2 . Ю " 9 - 10~ 9 

1-2 0-946068875 - 2 . Ю " 9 0 
1-4 1-03645770 - 10~ 9 0 
1-6 1.01057147 0 0 
1-8 0-993023461 26 . Ю " 9 10~ 9 

2 0 0-996131698 - 6 . 1 0 ~ 9 0 

where /.(f) is computed by the method given in [3],/2(f) is computed by the recom

mended method. The computations reported in this paper were carried out on the 

IBM 370/135 computer with double precision arithmetics and PL/I language. 

CONCLUSION 

This paper is the first part of a series of papers to be published on the polynomial 

approach to some numerical problems related to the Laplace and Z transformations, 

evaluation of some complex integrals etc. This approach is based on algorithms 

for the numerical computation of the reduction of an analytic function modulo 

a polynomial. 

(Received June 8, 1976.) 
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