KYBERNETIKA -- VOLUME 13 (1977), NUMBER 1

On a Problem of Evasion

Milan Medveď

A strategy of evasion for a class of nonlinear differential game is constructed.

B. N. Pchenitchny [1] has solved a differential game described by the system of differential equations

(1) $\dot{z} = f(z, u, v),$

where $z \in \mathbb{R}^n$, $u \in U \subset \mathbb{R}^r$, $v \in V \subset \mathbb{R}^s$, $f : \mathbb{R}^n \times \mathbb{R}^r \times \mathbb{R}^s \to \mathbb{R}^n$. He suppose that the function f has continuous derivatives with respect to z of sufficiently high orders, satisfying the Lipschitz condition with respect to all their arguments on arbitrary compact set. Furthermore, the function f is assumed to be of the form $f(z, u, v) = f_0(z, u) + f_1(z, u) v$, where $f_0 \in \mathbb{R}^n$ and f_1 is an $n \times s$ matrix, i.e. the function f is convex in the variable v.

We shall construct a strategy of evasion for a class of nonlinear games described by the system (1), where

$$f(z, u, v) = \sum_{j=0}^{m-1} g_j(z, u, v_1, v_2, \ldots, v_{j+1}),$$

where $g_j(z, u, v_1, v_2, \ldots, v_{j+1}) = f_{1j}(z, u, v_1, \ldots, v_j) + f_{2j}(z, u, v_1, \ldots, v_j) v_{j+1}$, $j = 1, 2, \ldots, m-1$, $g_0(z, u, v_1) = f_{10}(z, u) + f_{20}(z, u) v_1$, $z \in \mathbb{R}^n$, $u \in \mathbb{R}^r$, $v = (v_1, v_2, \ldots, v_m)$, $v_i \in \mathbb{R}^{q_i}$, $i = 1, 2, \ldots, m$, $f_{1j}(z, u, v_1, \ldots, v_j) \in \mathbb{R}^n$ and $f_{2j}(z, u, v_1, \ldots, v_j)$, $j = 0, 1, \ldots, m-1$ are $n \times q_j$ matrices. The function f(z, u, v) need not be convex in v, but it is convex in v_m only. We shall construct a strategy of evasion $v(t) = (v_1(t), v_2(t), \ldots, v_m(t))$ in such way that first we shall construct $v_1(t)$ and then one after the other $v_i(t)$, $i = 2, 3, \ldots, m$, where for the construction of each $v_i(t)$, $i = 1, 2, \ldots, m$ we shall use the method of Pchenitchny. For m = 1 we get the result of Pchenitchny [1].

We shall suppose that the terminal set M is a subspace of \mathbb{R}^n of dimension $\leq n - 2$.

Definition. A mapping $E: \mathbb{R}^n \times U \times [0, \infty) \to \mathbb{R}^s$ is said to be a strategy, if for every absolutely continuous function x(t), $0 \leq t < \infty$, and for every measurable function $u(t) \in U$, $0 \leq t < \infty$, the function E(x(t), u(t), t) is a measurable function with values in V. This strategy is called a strategy of evasion, if for arbitrary $z_0 \notin M$ and for arbitrary measurable function u(t), $0 \leq t < \infty$, the solution z(t), $0 \leq t < \infty$, of the equation

$$\dot{z}(t) = f(z(t), u(t), E(z(t), u(t), t))$$

with initial condition $z(0) = z_0$ does not intersect the subspace M for any $t \ge 0$. We shall assume that

- U is a compact set and V = V₁ × V₂ × ... × V_m, where V_i ⊂ R^{q_i} are compact convex sets, ∑^m_{i=1} q_i = s, int V_i ≠ Ø in R^{q_i}.
- (2) We suppose that the function f(z, u, v) has the above form where the functions $g_j(z, u, v_1, v_2, \ldots, v_{j+1}), j = 0, 1, \ldots, m-1$, have continuous derivatives with respect to z of sufficiently high orders, satisfying the Lipschitz condition with respect to all their arguments on arbitrary compact set.
- (3) There exists a constant C > 0 such that $|(z, f(z, u, v))| \leq C(1 + ||z||^2)$ for all $(z, u, v) \in \mathbb{R}^n \times U \times V$, where we denote by (x, y) the scalar product of the vectors x and y and ||z|| is the euclidean norm of the vector z.
- (4) Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a \mathbb{C}^1 function. Denote

$$\nabla_z \, \varphi(z) = D \, \varphi(z) f(z, u, v) \, ,$$

where $D \ \varphi(z)$ is the matrix of the first derivatives of $\varphi(z)$ at z. We shall suppose that

- (A) there is a subspace $W \subset L(L)$ is the orthogonal complement of M in \mathbb{R}^n) of dimension $q \ge 2$ and an ineger k such that all functions $\varphi^0(z) = \pi z$, $\varphi^i(z) = \nabla_z \varphi^{i-1}(z), i = 1, 2, ..., k - 1$ do not depend on u and v, where $\pi : \mathbb{R}^n \to W$ is the orthogonal projection.
- (B) The function $f^k(z, u, v) = \nabla_z \varphi^{k-1}(z)$ depends on u and v. The assumption (2) implies that $f^k(z, u, v) = \sum_{j=0}^{x} g_j^k(z, u, v_1, v_2, \dots, v_{j+1})$, where $g_j^k(z, u, v_1, v_2, \dots, v_{j+1}) = f_1^k(z, u, v_1, v_2, \dots, v_j) + f_2^k(z, u, v_1, v_2, \dots, v_j) v_{j+1}$, $j = 0, 1, \dots, m-1$. It is clear that $f^k(z, u, v) \in W$.
- (C) Denote

(2)

$$F_0(z) = \bigcap_{u \in U} g_0^k(z, u, V_1),$$

$$F_j(z) = \bigcap_{\substack{(u,v_1,\dots,v_j) \in \\ v \in V \times u, \times w \neq V}} g_j^k(z, u, v_1, \dots, v_j, V_{j+1})$$

j = 1, 2, ..., m - 1. Let there exist continuous functions $\varphi_i^k : \mathbb{R}^n \to \mathbb{R}^n$ 59 and $\varepsilon : \mathbb{R}^n \to \mathbb{R}^1$ such that for all $z \in \mathbb{R}^n \varepsilon(z) > 0$ and

$$\varphi_j^k(z) + \varepsilon(z) \, \pi S \subset F_j(z) \,, \quad j = 0, 1, \ldots, m-1 \,,$$

where S is the unit sphere in R^n .

(3)

Theorem. Under the assumptions (1)-(4) there exists a strategy of evasion. Before proving this theorem consider the following equations

(4)
$$f_{1j}^k(z, u, v_1, v_2, \dots, v_j) + f_{2j}^k(z, u, v_1, v_2, \dots, v_j) v_{j+1} =$$
$$= \varphi_j^k(z_0) + \frac{1}{m} \varepsilon(z_0) \xi_0, \quad j = 0, 1, \dots, m-1,$$

in a neighbourhood of a point $(z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0) \in \mathbb{R}^n \times U \times V_1 \times \ldots \times V_j \times V_j$ $\begin{array}{l} \pi \text{ an balance and the defined of the point } (z_{0j}, a_{0j}, c_{1j}, \ldots, a_{jj}, c_{0j}, c_{0j}) < 1 \\ \times \pi S \text{ in } v_{j+1} \text{ for } j = 0, 1, \ldots, m - 1. \text{ The assumption } (C) \text{ implies that for arbitrary such point, there exists a point } v_{j+1}^{i} \in V_{j+1} \text{ that } f_{1j}^{i}(z_{0}, u_{0}, v_{1}^{0}, \ldots, v_{j}^{0}) + f_{2j}^{i}(z_{0}, u_{0}, v_{1}^{0}, \ldots, v_{j}^{0}) v_{j+1}^{i} = \varphi_{j}^{i}(z_{0}) + (1/m) \varepsilon(z_{0}) \xi_{0}, j = 0, 1, \ldots, m - 1. \end{array}$

Lemma 1. Let X be a compact set in \mathbb{R}^n . Then for $j = 0, 1, \ldots, m - 1$ there exists a number $\varepsilon_X^j > 0$ such that for arbitrary $(z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0) \in X \times U \times V_1 \times \ldots$ a number $e_X > 0$ such that for albituary $(z_0, u_0, v_1, ..., v_j, \zeta_0) \in X \times U \times V_1 \times ...$ $\dots \times V_j \times \pi S$ there exists a continuous function $v_j(z, u, v_1, ..., v_j, \xi|z_0, u_0, v_1^0, ...$ $\dots, v_j^0, \zeta_0)$ with values in V_{j+1} , which is the solution of the equation (4) for all $(z, u, v_1, ..., v_j, \xi) \in \{(\bar{z}, \bar{u}, \bar{v}_1, ..., \bar{v}_j, \bar{\xi}) \mid \max(\|\bar{z} - z_0\|, \|\bar{u} - u_0\|, \|\bar{v}_1 - v_1^0\|, ...$ $\dots, \|\bar{v}_j - v_j^0\|, \|\bar{\xi} - \zeta_0\|) \le \epsilon_X^{i}\}$. Moreover $v_j(z_0, u_0, v_1^0, ..., v_j^0, \zeta_0 \mid z_0, u_0, v_1^0, ..., v_j^0)$, $\xi_0 \in \operatorname{int} V_{i+1}$.

Proof. The proof is almost the same as the proof of [1, Lemma 3] and therefore we shall sketch it only. Let $V(z, u, v_1, ..., v_j, \xi) = \{v_{j+1} \in V_{j+1} \mid g_j^k(z, u, v_1, ..., v_j, \xi)\}$ $\dots, v_{j+1} = \varphi_j^k(z) + (1/m) \varepsilon(z)$. By the same procedure as in the proof of [1, Lemma 1] it is possible to prove that $V(z, u, v_1, ..., v_j, \xi) \cap (int V_{j+1}) \neq \emptyset$ for arbitrary $\xi \in \pi S$.

If $\alpha(v_{i+1})$ is a continuous function, then by [1, Lemma 2] the function $\beta_i(z, u, v_1, \dots, v_j, \xi) = \max \{ \alpha(v_{j+1}) \mid v_{j+1} \in V(z, u, v_1, \dots, v_j, \xi) \}$ is a continuous function of the variables $z, u \in U, v_k \in V_k, k = 0, 1, \dots, j, \zeta \in \pi S$. Let $\alpha(v_{j+1}) = \min\{\|\overline{v}_{j+1} - v_{j+1}\| \mid \overline{v}_{j+1} \in \partial V_{j+1}\}$, where ∂V_{j+1} is the boundary

of the convex set V_{j+1} . Since $V(z, u, v_1, \ldots, v_j, \xi) \cap (\text{int } V_{j+1}) \neq \emptyset$, then $\beta_j(z, u, v_1, \ldots, v_j, \xi) > 0$. This means that if X is a compact set in \mathbb{R}^n , then there exists a number $r_X^j > 0$ such that for arbitrary $z \in X$, $u \in U$, $v_k \in V_k$, k = 1, 2, ..., j there is a point $v_{j+1}^0 \in V(z, u, v_1, \ldots, v_j, \xi)$ which is contained in the interior of the set $V(z, u, v_1, \ldots, v_j, \xi)$ together with the ball with center v_{j+1}^0 and radius r_X^j .

Consider the equation defining the set $V(z, u, v_1, \ldots, v_j, \xi) : f_{1j}^k(z, u, v_1, \ldots, v_j) + f_{2j}^k(z, u, v_1, \ldots, v_j) v_{j+1} = \varphi_j^k(z) + (1/m) \varepsilon(z) \xi$ in a neighbourhood of $(z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0)$. This equation is solvable in v_{j+1} for $z = z_0$, $u = u_0$, $v_k = v_k^0$, $k = 1, 2, \ldots, j$ for arbitrary $\xi \in \pi S$ and therefore there exist v linearly independent columns of the matrix $f_{2j}^k(z, u, v_1, \ldots, v_j)$, where $v = \dim W$. Let J_j denote the set of indices of arbitrary chosen columns of the matrix $f_{2j}^k(z, u, v_1, \ldots, v_j)$ and let $f_{2j}^k(z, u, v_1, \ldots, v_j)$ be the corresponding matrix. Denote

$$m(z, u, v_1, \ldots, v_j) = \max_{J_j} \det(f_{2J_j}^{**}(z, u, v_1, \ldots, v_j) f_{2J_j}^{*}(z, u, v_1, \ldots, v_j)),$$

where A^* means the transpose of a matrix A. Let J_{0j} be the set of such indices for which

$$\max_{J_j} \det \left(f_{2J_0}^{**}(z_0, u_0, v_1^0, \dots, v_j^0) f_{2J_0}^k(z_0, u_0, v_1^0, \dots, v_j^0) \right) = \\ = \det \left(f_{2J_0}^{**}(z_0, u_0, v_1^0, \dots, v_j^0) f_{2J_0}^k(z_0, u_0, v_1^0, \dots, v_j^0) \right).$$

Then

 $\det\left(f_{2\,J_{0\,i}}^{k*}(z,\,u,\,v_{1},\,\ldots,\,v_{j})f_{2\,J_{0\,i}}^{k}(z,\,u,\,v_{1},\,\ldots,\,v_{j})\right)>0$

in some neighbourhood of the point $(z_0, u_0, v_1^0, \ldots, v_j^0)$. Let $v_{J_{0j}}$ be a vector with components of the vector v_{j+1}^0 with indices from J_{0j} .

Consider the following equation

(6)
$$f_{1j}^{k}(z, u, v_{1}, \dots, v_{j}) + f_{2j}^{k}(z, u, v_{1}, \dots, v_{j}) v_{j+1}^{0} + f_{2J_{0}j}^{k}(z, u, v_{1}, \dots, v_{j}) (v_{J_{0}j} - v_{0J_{0}j}) = \varphi_{j}^{k}(z) + \frac{1}{m} v(z) \xi.$$

The condition (5) implies that the equation (6) is equivalent to the following one:

(7)
$$f_{2J_{0j}}^{k*}(z, u, v_1, \dots, v_j) f_{2J_0j}^k(z, u, v_1, \dots, v_j) (v_{J_{0j}} - v_{0J_{0j}}) =$$
$$= f_{2J_{0j}}^{k*}(z, u, v_1, \dots, v_j) \left[\varphi_j^k(z) + \frac{1}{m} \varepsilon(z) \xi - f_{ij}^k(z, u, v_1, \dots, v_j) - f_{2j}^k(z, u, v_1, \dots, v_j) v_{j+1}^k \right].$$

The equation (7) has the unique solution $v_{J_0j}(z, u, v_1, \ldots, v_j, \xi)$ which is continuous in all its arguments and $v_{J_0j}(z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0) = v_{0J_0j}$. It is easy to see that the vector $v_{j+1}(z, u, v_1, \ldots, v_j, \xi)$ constructed from the components of the vector $v_{J_0j}(z, u, v_1, \ldots, v_j, \xi)$ completed with the remaining components of the vector v_{j+1} is a solution of the equation (4). We shall denote it by $v_{j+1}(z, u, v_1, \ldots, v_j, \xi| z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0)$. In the same way as in the proof [1, Lemma 3] it is possible to prove that there exists a number $e_X^j > 0$ which is the same for all $(z_0, u_0, v_1^0, \ldots)$

 $\ldots, v_j^0, \xi_0) \in X \times V_1 \times \ldots \times V_j \times \pi S \text{ such that the function } v_{j+1}(z, u, v_1, \ldots , v_j, \xi \mid z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0) \text{ is defined and continuous for all } (z, u, v_1, \ldots, v_j, \xi) \text{ from the } e_X^{j-\text{neighbourhood of the point } (z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0). \text{ From the construction of the function } v_{j+1}(z, u, v_1, \ldots, v_j, \xi \mid z_0, u_0, v_1^0, \ldots, v_j^0, \xi_0) \text{ it is clear that }$

$$v_{j+1}(z_0, u_0, v_1^0, \dots, v_j^0, \xi_0 \mid z_0, u_0, v_1^0, \dots, v_j^0, \xi_0) \in \text{int } V_{j+1}.$$

The proof is complete.

Denote $v_{j+1}(z, u, v_1, \ldots, v_j, \xi | z_0) = v_{j+1}(z, u, v_1, \ldots, v_j, \xi | z_0, u, v_1, \ldots, v_j, \xi)$. In the same way as [1, Lemma 3] it is possible to prove the following lemma.

Lemma 2. The functions $v_{j+1}(z, u, v_1, \ldots, v_j, \xi)$, $j = 0, 1, \ldots, m-1$ are defined and continuous for all z, $||z - z_0|| \leq \frac{1}{2}e_x^j$, $u \in U$, $v_i \in V_i$, $i = 1, 2, \ldots, j$, $\xi \in \pi S$. Let $z_0 \notin M$. Consider the following function

$$\begin{split} \varphi(t,\,\xi) &= \sum_{i=1}^{k-1} \frac{t^i}{i!} \,\varphi^i(z_0) \,+\, (\varphi_0^k(z_0) \,+\, \varphi_1^k(z_0) \,+\, \ldots \,+\, \varphi_{m-1}^k(z_0)) \frac{t^k}{k!} \,+\, \\ &+\, \int_0^t \left(t \,-\, \tau\right)^{k-1}\,\xi(\tau)\,\mathrm{d}\tau\,, \end{split}$$

where $\xi(\tau)$, $0 \leq \tau \leq t$ is a measurable function with values in $(1/m) \epsilon(z_0) \pi S$.

Lemma 3. (cf. [1, § 3]). Let $\lambda > 0$. There exists a measurable function $\xi(\tau), 0 \le \tau \le \lambda$ with values in $(1/m) \epsilon(z_0) \pi S$ such that $\varphi(t, \xi) \neq 0$ for $0 \le t \le \lambda$.

Proof of the Theorem. Let $z_0 \notin M$ and let $u(t) \in U$, $v(t) \in V$ be measurable controls. Then by the assumptions (2) and (4) the corresponding solution z(t) of the equation (1) is such that $\pi z(t)$ is of the class C^k and

$$\frac{\mathrm{d}^{i}}{\mathrm{d}t^{i}} \pi z(t)|_{t=0} = \varphi^{i}(z_{0}), \quad i = 0, 1, \ldots, k-1,$$

and by Taylor's formula

(8)
$$\pi z(t) = \sum_{i=0}^{k-1} \frac{t^i}{i!} \varphi^i(z_0) + \frac{1}{(k-1)!} \int_0^t (t-\tau)^{k-1} f^k(z(\tau), u(\tau), v(\tau)) \, \mathrm{d}\tau =$$
$$= \sum_{i=0}^{k-1} \frac{t^i}{i!} \varphi^i(z_0) + \left(\sum_{i=0}^{m-1} \varphi^k_i(z_0)\right) \frac{t^k}{k!} +$$
$$+ \frac{1}{(k-1)!} \int_0^t (t-\tau)^{k-1} \left[f^k(z(\tau), u(\tau), v(\tau)) - \sum_{i=0}^{m-1} \varphi^k_i(z_0) \right] \mathrm{d}\tau \, .$$

Let $\delta_j(z_0), j = 0, 1, \dots, m-1$ be the diameter of the maximal sphere where the function $v_{j+1}(z, u, v_1, \dots, v_j, \xi \mid z_0)$ is continuous (cf. Lemma 1). Denote by $\tau_j(z_0)$

the maximal time during which the solution z(t), $z(0) = z_0$ of the system (1) does not leave this sphere. By Lemma 2 $\delta_j(z_0) \ge \frac{1}{2} e_X^j$ and by the Gronwall's lemma $\tau_j(z_0) \ge \tau_j^j$ of z_0 . $z = \tau_X^j > 0$. Denote $\varepsilon_X = \min_j \varepsilon_X^j$, $z_0 = \min_j \tau_j(z_0)$, $\delta(z_0) = \min_j \delta_j(z_0)$.

By Lemma 3, it is possible to choose a measurable function $\overline{\xi}(t)$, $0 \leq t \leq \tau(z_0)$ with values in $(1/m) \varepsilon(z_0) \pi S$ such that $\varphi(t, \overline{\xi}) \neq 0$ on $(0, \tau(z_0)]$.

Denote $v(z, u, \xi \mid z_0) = (v_1(z, u, \xi \mid z_0), \dots, v_2(z, u, v_1(z, u, \xi \mid z_0), \xi \mid z_0), \dots, v_m(z, u, v_1(z, u, \xi \mid z_0), \dots, \xi \mid z_0)$. By Lemma 1 this function is defined and continuous for all $\xi \in \pi S$, $u \in U$ and $z \in \mathbb{R}^n$ such that $||z - z_0|| \leq \delta(z_0)$. Therefore for a given measurable function $u(t) \in U$, $0 \leq t \leq \tau(z_0)$ there exists a solution $z(t), 0 \leq t \leq \tau(z_0)$ of the equation

(9)
$$\dot{z} = f(z, u(t), v(z, u(t), \xi(t) | z_0)),$$

 $z(0) = z_0$

and we can choose $v(t) = v(z(t), u(t), \xi(t) | z_0)$. The definition of $v(z, u, \xi | z_0)$ implies the following equalities: $g_j^k(z(\tau), u(\tau), v_1(\tau), \ldots, v_{j+1}(\tau)) - \varphi_j^k(z_0) = 1/m$. $\varepsilon(z_0) \xi(\tau), j = 0, 1, \ldots, m-1$. Now using these equalities and the formula (8), we get

$$\pi z(t) = \sum_{i=0}^{k-1} \frac{t^i}{i!} \varphi^i(z_0) + \left(\sum_{i=0}^{m-1} \varphi^i_i(z_0)\right) \frac{t^k}{k!} + \frac{1}{(k-1)!} \int_0^t (t-\tau)^{k-1} \bar{\xi}(\tau) \,\mathrm{d}\tau \,,$$

where $\bar{\xi}(\tau) = (1/m) \epsilon(z_0) \xi(\tau)$ and such that $\varphi(t, \xi) = \pi z(t) \neq 0$ for all $0 \leq t \leq \tau(z_0)$ (cf. Lemma 3) and therefore $z(t) \notin M$ for all $t \in [0, \tau(z_0)]$.

For $t_1 = \tau(z_0)$ we can take $z(t_1)$ instead of the initial point and we can find the strategy of evasion on the interval $[t_1, t_1 + \tau(z_0)]$ by the same construction as before. Therefore we can extend the game for arbitrary long time. This proves the Theorem.

(Received May 6, 1976.)

REFERENCES

[1] В. Н. Пшеничный: О задаче убегания. Кибернетика 1975, 4, 120-127.

RNDr. Milan Medved, CSc., Matematický ústav SAV (Mathematical Institute – Slovak Academy of Sciences), Obrancov mieru 49, 886 25 Bratislava. Czechoslovakia.