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On a Problem of Evasion

MiLAN MEDVED

A strategy of evasion for a class of nonlinear differential game is constructed.

B. N. Pchenitchny [1] has solved a differential game described by the system
of differential equations

(1) 2= f(z,u,0);

where ze R, ueU c R, veV < R’ f:R" x R" x R® - R". He suppose that the
function f has continuous derivatives with respect to z of sufficiently high orders,
satisfying the Lipschitz condition with respect to all their arguments on arbitrary
compact set. Furthermore, the function f is assumed to be of the form f(z, u, v) =
= fo{z,u) + fi(z, u) v, where fo € R" and f is an n x s matrix, i.c. the function f
is convex in the variable v.

We shall construct a strategy of evasion for a class of nonlinear games described
by the system (1), where

m=-1
f(Z, u, U) = 2 gj(za U, Vg, U35 - - oy Uj+1) s
j=o0

where gz, u, vy, Uy, - Ojy) = F102 U, V0 oL 0) + oz w00 L 0) Uy,
=12 ...,m—1, go(z,u,v,) =fio(z, u)y + fao(z, ) v, zeR", uekR, v=
= (05,05 ..., U 0;€RT, i =1,2,...,m, fi(z, 4,04, ..., 0;) € R* and fy;(z, u,
vy, ...,0,), j=0,1,...,m — 1 are n x q; matrices. The function f(z, u, v) need

not be convex in v, but it is convex in v,, only. We shall construct a strategy of evasion
u(t) = (v4(1), v5(2), ..., v,(r)) in such way that first we shall construct »(f) and
then one after the other v,»(t), i=2,3,...,m, where for the construction of each
v,-(t), i=1,2, ..., m we shall use the method of Pchenitchny. For m = 1 we get the
result of Pchenitchny [1].

We shall suppose that the terminal set M is a subspace of R" of dimension < n — 2.
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Definition. A mapping E : R” x U x [0, o) — R® is said to be a strategy, if for
every absolutely continuous function x(1), 0 £ ¢ < w0, and for every measurable
function u(t)e U, 0 < t < oo, the function E(x(f), u(t), ) is a measurable function
with values in V. This strategy is called a strategy of evasion, if for arbitrary z, ¢ M
and for arbitrary measurable function u(r), 0 < ¢ < oo, the solution z(£), 0 £ ¢ < o,
of the equation

() = f(2(2), u(t), E(=(t), u(?), 1)
with initial condition z(()) = z, does not intersect the subspace M for any t = 0.
We shall assume that

(1) Uis a compact set and V=V, x V; x ... x ¥, where V; = R? are compact
m

convex sets, y. g; = s, int V; # 0 in R"".
i=1

(2) We suppose that the function f(z, u, v) has the above form where the functions
9z, 1, 01,05, .., v541)s J=0,1,...,m — 1, have continuous derivatives
with respect to z of sufficiently high orders, satisfying the Lipschitz condition
with respect to all their arguments on arbitrary compact set.

(3) There exists a constant € > 0 such that |(z, f(z, u, v)| £ C(1 + ”2“2) for all
(z,u,v)e R" x U x V, where we denote by (x, y) the scalar product of the
vectors x and y and |z|| is the cuclidean norm of the vector z.

(4) Let ¢ : R*—> R" be a C' function. Denote
() V. o(z) = D o(z) f(z, u, ),

where D ¢(z) is the matrix of the first derivatives of ¢(z) at z. We shall suppose
that

(A) there is a subspace W = L (Lis the orthogonal complement of M in R")
of dimension ¢ = 2 and an ineger k such that all functions ¢%(z) = 7z,
¢'(z) =V, 0" Yz), i=1,2,...,k — 1 do not depend on u and v, where
7 : R* - W is the orthogonal projection.

(B) The function f¥(z, u, v) = V, ¢*"!(z) depends on u and v. The assumption
m—1

(2) implies that f%(z, u, v) =_zog’}(z, U, 0y, Uy, ., Dysy), Where gi(z, u, vy,
P=

Vs« vy Uj+1) =f;‘j(z~ U, 0y, U5 - s Uj) +f§j[z, U, 0y, Vg5 -+ o Uj) Vjrr, J =
=0,1,...,m — L It is clear that 4z, u, v) e W.
(C) Denote

Fo(z) = Q gﬁ(z, u, Vl) ,

k
Fiz) = 8] g5z u, 04, .05 Viy)
(#,01,.00,05)€
eUxVix..xVj




j=12,...,m— 1. Let there exist continuous functions (pjE :R" - R”
and ¢ : R* —» R* such that for all ze R"&(z) > 0 and

) 04(2) + o) S c Fi(z), j=01,..,m—1,
where S is the unit sphere in R".

Theorem. Under the assumptions (1)—(4) there exists a strategy of evasion.

Before proving this theorem consider the following equations
)] iz a0 050 oy 0) + iz Uy 01, 00 - 0) Uiy =

:(p’j-(zo)-%ic(zo)én, j=01...,m—1,
m

in a neighbourhood of a point (zg, ug, 15, ..., v5 &) R x U x ¥V x ... x ¥; x
x nSinvj4; forj = 0,1, ..., m — 1. The assumption (C) implies that for arbitrary
such point, there exists a point i}_?+1 €V, that ffj(zo, Uy, 0d L, v?) +

+ 155 (20 0 15, -, 0}) 00t = ol(zo) + (Ufm) &(zo) &0, G =0,1, ..., m — 1.

Lemma 1. Let X be a compact set in R". Then for j = 0, 1, ..., m — 1 there exists

a number & > 0 such that for arbitrary (2o, o, ol .., vﬁ»’, E)EX x U X Vy x ...

. x V; x nS thete exists a continuous function vz, 4, vy, . . ., v}, &|zo, g, 05, . ..

.., 0%, &) with values in V,,,, which is the solution of the equation (4) for all

j» G0 j+1 o ) q 0

(zou, vy, .. 2 O He{z .0y, ..., 59 | max (|2 — zo|, |7 — uol, |5, — v}

N o], € = &) = &5} Moreover v(zo, o, 0%, - . -, 97, &o | 2oy o 035 . ., 0,
&p eint Vg q.

s y e

Proof. The proof is almost the same as the proof of [1, Lemma 3] and therefore
we shall sketch it only. Let V(z, u, vy, ..., 05, &) = {041 € Vjuy | g5zt 000 . ..

o vy1) = @5(z) + (1/m) e(z)}. By the same procedure as in the proof of [1,
Lemma 1] it is possible to prove that ¥V{(z, u, vy, ..., v}, &) N (int V) % 0 for
arbitrary ¢ e nS.

If «(v;+,) is a continuous function, then by [1, Lemma 2] the function
Bz u, 04y ..y 05, &) = max {&(v;41) | 041 € V(z us 0y, ..., 05, &)} is a continuous

vi+1

function of the variables z, ue U, v, eV, k = 0,1, ...,j,enS.

Let o(v;,,) = min {Hﬁjﬂ = vy44|| | 541 € 8V;4,}, where 0V}, is the boundary

Ui+l

of the convex setj Visy. Since V(z,u, vy, ..., 05 &) 0 (int Vjuq) * 0, then Bz, u,
Dis +ovs Uy é) > 0. This means that if X is a compact set in R", then there exists
a number 1% > 0 such that for arbitrary ze X, ue U, v,e Vi, k = 1,2, ..., j there
is a point v},, € V(z, u, vy, ..., v;, &) which is contained in the interior of the set
V(z, u, vy, ..., v}, &) together with the ball with center v}, ; and radius r¥.
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Consider the equation defining the set ¥(z, u, vy, ..., v;, &) 1 fifz, u, vy, ..., 0) +
+ iz w0, o 0)) 0500 = 0%(2) + (1/m) &(z) € in a neighbourhood of (z,,
[T S U?, &o). This equation is solvable in v, for z = zy, u = ug, v = vy,
k=1,2,...,j for arbitrary ¢ € nS and therefore there exist v linearly independent
columns of the matrix f5,(z, u, vy, ..., v;), where v = dim W. Let J; denote the set
of indices of arbitrary chosen columns of the matrix f;‘j(z, u, vy, ...,v,) and let
f5ifz, u, vy, ..., v;) be the corresponding matrix. Denote

m(z, u, vy, ..., v;) = max det(f35 (z. u, vy, -, ) f3rfz w00, ., D)),
Ji

where A* means the transpose of a matrix 4. Let Jo; be the set of such indices for
which

max det (57 (2o, 1o, ¥, - . ., 03) fhs(Z0n i 05, .., 0Y)) =
I
= det (f’}foj(zo, Ug, v, L, v(})féjnj(z(,, Ug, oY ., v?)) .
Then
det(fé*lm(z, U, Dyy -y vj)f’;hj(z, u, vy, ..., 0;)) >0

in some neighbourhood of the point (zn, Ug, o0, v?). Let vy,, be a vector with
components of the vector vgﬂ with indices from Jo;.

Consider the following equation
6 filz wvg, oo v) + iz vy, o 0) 00y +
1 .
+ 02 s 01s <5 0) (005, — vor,) = ¢(2) + ;5(2) G-

The condition (5) implies that the equation (6) is equivalent to the following one:

(7) fg#uj(z’ Uy Ugs - oo ui)ngnj(ZJ Us Dgs ooy U.i) (vJoj - UOJOj) =

1 ... ;
— v ) [<p§(z) B I T
m
— 5z u, 0y, ..., 05) vj'-H] .

The equation (7) has the unique solution v, j(z, u, vy, ..., v;, &) which is continuous
in all its arguments and v,oj(zo, U, o), ..., v?, &) = gy, It is easy to see that the
vector vy +1(z, U, Vyy o vus Uy é) constructed from the components of the vector
v,oj(z, Uy Uy ey Uy 5) completed with the remaining components of the vector
v9,1 Is a solution of the equation (4). We shall denote it by v;4 ,(z, u, vy, ..., v;, €| 2o,
ug, 19, ..., 15, &). In the same way as in the proof [1, Lemma 3] it is possible to
prove that there exists a number a{{ > 0 which is the same for all (zo, ug, 03, ...




conth E)eX x Vy x ... x V; x nS such that the function v, ,(z, u, vy, ...
o Uy &l 2, gy 09, .., 0], &) is defined and continuous for all (z, u, vy, ..., v;, &)
from the gj-neighbourhood of the point (20> Uos v), u?, &,). From the construc-
tion of the function v, (2, u, vy, ..., v}, & | zg, g, 15, . .., 05, &) it is clear that

0 0 0 0 .
Uj+x(zo- Ugs Vs + -5 U Ep l Zos Ugs Vgs + s Uy éo)emt Vier-

The proof is complete.
Denote Uj+1(z, U, g, 5 05 € I Zo) = Uj+1(zv Us Vg, oo 05 & | Zos Uy Uyy oo Uy f)
In the same way as [1, Lemma 3] it is possible to prove the following lemma.

Lemma 2. The functions v;,,(z, u, vy, ..., 0, €),j = 0,1, ..., m — 1 are defined
and continuous for all z, ]z - Zo” St ueU, v,eV,i=12,...,]j, EenS.

Let z, ¢ M. Consider the following function

k=1 i k
o(t, &)=Y % 0'(zo) + (96(z0) + 0i(z0) + .- + (ﬂﬁ.—l(zo))b +

i=1
T
+ J (i — O ) de,
0
where £(1), 0 < © < tis a measurable function with values in (1/m) &(z,) ©S.

Lemma 3. (cf. [1, § 3]). Let 2 > 0. There exists a measurable function &(t),0 < ©
< 4 with values in (1/m) &(zo) ©S such that o(t, &) + 0 for 0 < ¢ < .

IA

Proof of the Theorem. Let zo ¢ M and let u(f)e U, o(t) e V be measurable
controls. Then by the assumptions (2) and (4) the corresponding solution z(f) of the
equation (1) is such that 7 z(z) is of the class C* and

d! ; ,
d—t-inz(t)ltzo =¢i(z), i=0,1,..,k—1,

and by Taylor’s formula
1
(k - 1)t

k—1 tl' . m—1 . lk
=Y 3 #(z0) + (Y, #i(z0)) — +
i=0 i! i=0 k!

(8) (1) =‘:);; z—;(pi(z(,) + JZ (t = o A (2(e), u(z), v(z)) de =

1 ‘ k1T £k " Am_l(lfz T
) e a0 ) T el e

Let 8/zp), j = 0,1, ..., m — 1 be the diameter of the maximal sphere where the
function v;,((z, u, vy, ..., v;, & | zo) is continuous (cf. Lemma 1). Denote by 7,(z,)
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the maximal time during which the solution z(t), z(0) = z, of the-system (1) does not
leave this sphere. By Lemma 2 J,(z,) 2 4§ and by the Gronwall's lemma t(z,) 2
2 i > 0. Denote ey = min &, z, = min 7,(z), 8(zo) = min &,(z,).

J ) j

J
By Lemma 3, it is possible to choose a measurable function &(f), 0 < ¢ < 1(z0)
with values in (1/m) &(zo) nS such that (1, &) # 0 on (0, ©{z,)].

Denote vz, u, & | zo) = (v,(z, w, & | Zo), - - -, vz, w, v4(2, 4, €] 20), €| zp), - -

o Vu(z vz, u, €] 2g), .., €] Z). By Lemma 1 this function is defined and
continuous for all ¢ € zS, ue U and z € R” such that Hz - 20” = 5(20). Therefore
for a given measurable function u(f)e U, 0 £ t < 1(z,) there exists a solution
2(t), 0 £ ¢ £ 1(zo) of the equation

0) 2 = (e 0 oz 0. €0) | 20)
2(0) = z,

and we can choose o(t) = v(z(1), u(f), &(1)]| zo). The definition of v(z, u, & | z,)
implies the following equalities: g%(z(z), u(z), v,(7), . .., v;41(v)) — @f(zo) = 1fm .
.&e(z0) &(z); j=10,1,...,m — 1. Now using these equalities and the formula (8),
we get

k§‘1 o m—1 . * 1 t 1
T z(t) = — 0 + izo)) — + -—— t— 1)~ dt,
0=, o) + (oo + oo [ dwar
where &(t) = (1/m) &(z,) &(r) and such that (1, &) = m z(r) & 0 for all 0 < t < 1(z,)
(cf. Lemma 3) and therefore z(¢) ¢ M for all 1 € [0, 7(z,)].

For t; = t(z,) we can take z(t,) instead of the initial point and we can find the
strategy of evasion on the interval [#,, t; + 7(z,)] by the same construction as before.
Therefore we can extend the game for arbitrary long time. This proves the Theorem.

(Received May 6, 1976.)
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