Now the optimal decoupled control problems considered in the paper can be
formally defined as follows.

(6.47) Decoupling and stable time optimal control

Given a system & which is a minimal realization of
S=BA;' = A]'Bye & iz}
and a reference input sequence

W= ge?‘ﬂ,l{z_l}"
p

Find a controller # which is a minimal realization of some

Re G, {z7"}

such that the closed-loop system is stably decoupled, the control sequence U is
stable, and the error component e;, i = 1,2, ..., I vanishes in a minimum time k;p,
and thereafter.

(6.49) Decoupling and finite time optimal control

Given a system & which is a minimal realization of

S=BA" = A{'By € Fr iz ™Y}
and a reference input sequence
w=2eg (1.
p
Find a controller # which is a minimal realization of some
Re ‘&,,,,,{z'l}

such that the closed-loop system is stably decoupled, the control sequence U is
finite, and the error component e;, i = 1,2, ..., I vanishes in a minimum time Kimin

and thereafter.

(6.50) Decoupling and least squares control

Given a system & which is a minimal realization of
S =BA;" = A]'B,e Fialz ™!}
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and a reference input sequence

W= g e fz"1 .
P

Find a controller # which is a minimal realization of some

Re§,{z""}

such that the closed-loop system is stably decoupled, the control sequence U is
stable, and the quadratic norm |e;]? of the i-th error e, i = 1,2, ..., I, is minimized.
The solution of these problems is given in the following three subsections.

Stable time optimal decoupled control

Theorem 6.6. Let & be an arbitrary field with valuation ¥ and let the closed-loop
system can be stably decoupled. Then problem (6.48) has a solution if and only
if the linear Diophantine equations

(6.51) bix;+appyi=4q , i=0L2..,1,
have solutions x?, y? such that

& =min, i=1,2,...1,
subject to Y
+ .0 *
(6.52) J=%, i=12..,10,
r; Piobi ¥

and to stability of the resulting control sequence

U=, 2.
P

The optimal controller is not unique, in general, and all optimal controllers are
given as minimal realizazions of (6.46), where the matrices involved sat:sfy (6.42)
through (6.45) and (6.47), (6.52). .

Moreover,
e=apa W, i=12..,1,
and -
Kimin = 1 + 6ajp + dg7 + 0y7 .
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Proof. If the system can be stably decoupled then all decoupling controllers are
given by (6.46). It remains to further specify the My, N; and M,, N, by choosing the
D; and D, so as to make the i-th error component e;, i = 1,2, ..., 1, vanish in
a minimum time by application of a stable control sequence U.

Viewing

as a virtual single-input single -output subsystem and applying Theorem 1 in [32],
the controller

.
_GioX;

R, =
Piobi\byi

where x;, y; is any solution of equation (6.51), acomplishes the job.

‘We have denoted

S; N N

-1 3 2 !

D, D; :dlag{—’, ==y,
LEY T2 r

where the s;/r; plays the role of the virtual controller R;. Hence we have to restrict
D; and D, so that

-
Si . GioX:

6.53 = N
( ) T Piobi+,Vf

i=1,2,..,1.
It follows that
e = a;q; yi-

In order to make the e; vanish in a minimum time, we have to choose the solution
x{, y? of equation (6.51) that satisfies dyf = min subject to (6.53) and to stability
of the resulting control sequence

U= 4,M, Q ’
4
as required. Then

Kiin = 1 + 66, = 1 + dagy + 0g7 + 80, i=1,2,..,1.

Therefore, only the D, and D, satisfying (6.47) and (6.52) can be used in expressions
(6.45) and (6.46) for the optimal controller. O
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Example 6.6. Given a minimal realization of

" over the field R valuated by (2.25), solve problem (6.48) for the reference input sequence

-1
S = 05272

— g2

P S S

1 - 05z

iwﬁﬁﬂ -

_ 271 0 1—05z71 711 _
T105z7 271 — 05z [ 0 1 -

0 i[z"t —z2
1] [0 271 - 0-52'1)]

_Jt-o0s5:71
- — 05271

oo bl

T 1-05z71

We first solve the decoupling problem. Compute

B, = z72 0 , adjBy; = z’l(l - 0'52_1)
05272 z7}(1 — 0527 %) — 05272

det By, = z (1 — 0-5z7Y),

and

— o1
by =z71,

boy = z (1 — 05271}, by,

A =[1-052"10
- 052711

bpo=:z"",

, adj 4, =[

=z (1 - 05z71)

1 0 ,
05271 1 — 05271

detd; =1—-05z7",

a;; =1,

Aop.=1—05z"1, ay,

Equation (6.44) becomes

0

224

[2‘1(1 — 05271 0

z7Y(1 - 0:5271)

Ay =

D, + D,[1
0

1

1—05z71.

—05z71 0
1-—05z71

0
z

]



and hence
D, ={t, 0|,D, = 1 -1 0
—— = 7y
0t 1-05z71 1 21t
T ne.-—-1  ~ 2
0 1—05z7*
for arbitrary #;, 1, € Eﬁ+{:_l}. This equation is equivalent to the first equation (6.42) together

with (6.45).

The second equation (6.42) becomes

1—05z71 27V N, + M|zt —z72 =10
0 1 0 z‘l(l - 0'52_1) 01

and it yields

Ny, =[l+z",, —z7'—z"%, +z ", ,
27, 1~ z7%, + 2z (1 = 0527 vy,

M,=[05-(1-05"Yoy,; —z7 ", —v,— z'lvn]
—V2y V22

for arbitrary v;; € %)I"{z" .
The mutual relations (6.43) then give

vy = 03 t v, =0
It 15> D2 >
-1
z
vy = 1 osst (t1 - tz)a Vyy = —1.

Therefore, all controllers that stably decouple the closed-loop system are given as minimal
realizations of

R=[1-05"" "1 — 05z 0][1 ~ 0527 0 ~1p,D;!
0 1 —05z7t 1{}0 1— 0527t

by (6.39).

For control purposes we introduce the virtual systems

—1fy _ 0.5z~ 1 =11 _ 0.5,-1
(6.54) 5123_(£_°_5:21__)=Z-1, 5, = * (1 05-21 ) _
1— 05z 1 - 05z
and the virtual controllers
R e P (e S T

T -05z2 Yy T 1oz 105z Y
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Partitioning W conformably, we obtain

1 1
We=——\ W
YT 05t 2

Ti-o0st
The equations (6.51) read
27+ (1—-05z2"Y)y, =1i=12,
and the general solutions are
x; =05 + (1 - 0527y,
vi=1-2z""y
for any u;gﬂt[z'l], i=1,2.

By (6.52) we obtain the equations

(1 - 0‘52'1) t; 05+ (1 - 0-52"‘) vy i= 1.2
1—z (1 -052"0¢ (1-05"0(1~z"") o
which necessitate the choice
t; =—0—5—~+v.-, i=12.
1 - 05271
To minimize the degree of y;, we take v; = 0, i = 1, 2. Then
=05, y=1,
he 05 i
1—-05z7"1
and hence
D, = 0-5 0 , Dy,=110].
1~05z7* 05 01
0 105271
It follows that
Re — 0-5 L ~z7t —02527% z7*
1-05z71 —-05z7 1 :

is the unique solution and

" . =1
U = 05 1+ 05z )
1~05z711

E=[1:], Eimin =1, kyma =1.
1
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The reader can verify that the (coupled) stable time optimal control would give the same
U and E but, of course, a greater variety of controllers would be available.

Example 6.7. Given a minimal realization of

z71 0 l
-1 =11 _ H,—1
gLz 271 . 2279 _

1-2z1

=[z"t0 1—2z710 Tt
z7l 71— 2271 |0 1—z7*
= 1 -2z 0 et oo
— 14zt 1t —-z1 0 271 = 2z7Y)

over the field R valuated by (2.25), solve problem (6.48) for the reference input sequence

-z
Compute
adj By, = z“‘(l - 22‘1) 0 s
—~z7! z7!
byy =271, by, =271,
boy = z7'(1 — 2271, boy =z7M(1 —227Y)
and
adjd, =[1-z"*0 ,
1—z'1—-z71
_ -1 - -1
ay=1-z"", ap,=1-z74,
gy =1—2z"1, agy=1—2z"1,
Equations (6.42) become

z7' 0 M, +NJ[ 1—-z710 =
z7t 71— 227Y) 1 +z7 1 -zt

1—z710 N, + M,[z7' 0 =(10]}],
0 1 —2z7! 0 2*1(1—22_1) 01
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and have the solutions

M, = [1 + (1 =z (g — t12) 1-2z7Y tu],

T+ (=27t — 1) =1+ —zY1y,

No=[1-2z"%, —z7Yy,
R 27y — zﬁl(l - 27‘*1) thy 142270 — 27y, — (Z¥1 - 22_2) t2

N, =[1+z7 %, 271 - 2z7% 0,57,
27l 14227 + 271 = 227 Y vy,

M, =[1—-(1 -z, — (1 =z"Yue,,
| — (1 =z vy —1—(l =z,

for arbitracy #;;, v;; eRF{z71}.
The mutual relations (6.43) yield

v; = —t;,

Lj=1,2.

Equation (6.44) becomes

FRRII LS )

and yields

(6.56) D, = [—1 +(1-2z"Y94 0 ]
0

—1+(1-z"Yg

D,=[1+4+2z""—z7Y1 - 22714, 0
0 142270 — 2741 = 227Y)y,

for any #;, #, € R* {z7'}. Relations (6.45) then give
ty=~2+01 22"t +8, =1,
ty =t +t, ty=1t, .
and all cqntmllers that stably decouple the closed-loop system are given as minimal realization of
R= [1 —2z71 0] D,D;*,
-1 1
where Dy and D, are given in (6.56).
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To solve the control problem, consider

and solve the equation (6.51),
M-z Y+ (-2 Yy, =1, i=12.
The general solutions are

X

It

= =1+ —-2z"Yu,,

If

Vi
forany y; € Rz "1, i=1,2.
Relations (6.52) yield

1+2z70 — 2711 — 227 Yy,

—-1+(1~-zYe _ 1+ (1l =z" Yy
1+227 =z (1 =220 1+2270 — 271 = 227N

that is,

To minimize the degree of y;, we take u; = 0. Then

x)=—1, yY=142"1", i=1,2,

D, =[-1 0], D,=[1+2210
0 -1 0 1+ 2271

and the optimal controller is given as a minimal realization of

R=[1-2710)[-1-22"" 0 -t
-1 1| o -1 -2z

and it is unique. The resulting centrot

L e

0 1~z 1 —1 1 -zt 0
is stable, as required, and the error becomes

E=[142z""], kimin= Kamin =2
142271
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We also obtain

K, = [~(z)_l(l -227Y 0 ]

—z_l(l — 2)2_1

It is easy to verify that the (coupled) stable time optimal control is obtained when using

R=]1 1-z"Yw]1 —z7w, -t
0 1+ (1 —zHw |[11+227" -zt — 2741 — 27 Yw,

where wy, w, E$+{z_1} arbitrary. It follows that

- U=[1], E=[1], kyn=1
0 1

but the associated matrix

K =
=zt =z (1 -z"YYw 27 (1 =z wy,
2271 —z )=z 1=z Yw, = -z (1 =224z -z ) w, +
—z (=21 =2z w, +z7 1=z (1 = 227w,

cannot be made diagonal for any choice of wy, w,.
Note that the decoupled control is inferior to the coupled one due to the requirement of
diagonality. v

Finite time optimal decoupled control

Theorem 6.7. Let § be an arbitrary field with valuation ¥ and let the closed-loop
system can be stably decoupled. Then problem (6.49) has a solution if and only if the
linear Diophantine equations
(6.57) bx; + agpy;i=q;i, i=1,2,...,1,

. have solutions x?, y? such that

0y? =min, i=1,2,..1,

subject to
+ .0
(6.58) R AN
ri Pl
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and to finiteness of the resulting control sequence
v=am2.

The optimal controller is not unique, in general, and all optimal controllers are

given as minimal realizations of (6.46) where the matrices involved satisfy (6.42)
through (6.45) and (6.47), (6.58).

Moreover,

, i=1,2,..,1,
and

kimin = 1 + 8ajy + 0q;7 + 8y?.

Proof. If the system can be stably decoupled then ali decoupling controllers are
given by (6.46). It remains to further specify the M;, N; and M,, N, by choosing

the D, and D, so as to make the i-th error component e;, i = 1,2, ..., ], vanish
in a minimum time by application of a finite control sequence U.
Viewing
b,
S;=~—, i=12..,1,
a

as a virtual single-input single-output subsystem and applying Theorem 2 in [32],
the reasoning analogous to Theorem 6.6 proves our claim.

0

Example 6.8. Consider the finite automaton that is a minimal realization of

z7t g7t 27t . 1
q_lo 0 izt [zto 0 é+z (l)i R
S “lo =t o =

10

0

=[14+z2 0} [zt z7t 27t
0 1 0 0 :z7?!

over the field 3, valuated by (2.24) and solve problem (6.49) for the reference input sequence

1
z7l 4272
w==02 T2 J

1+ 2z71
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Equations (6.42) become

2710 O|M, +N[1+zt0]=[10
0 z7'0 0 1 01

L+z 11N, + Mzt 27t z7 ) =[100
0 01 o 0 z! 010
0 10 001

and have the solutions

My=[1+ (0 +zYy t,], Ny=[1+z"", 27,1,
1 +z"Y 6 27y 1+ 27,

31 132 |

Ny, =[L+z70 1+ 2700 1+ 27 vy + vy,)],
27ty 270y 1+ 27 vz + v23)
-

1 -1 -1
vy 1+ z7 vy, 27 (v3y + v33)

My=[1+(+z27Y) 0y + 03y +05y (14270, + 0,5 + 13,

U3y V32

L Uy U22
for arbitrary #;;, v;; € 35 {z~ 11, The mutual relations (6.43) yield
1j» Pij € 32
fin = 011, tiy = V2,
tyy = V3, 1, = Uy,

tyy = vy (L + 277, t3 =05

B,,=[zt0 7, adjB;;=[z"*0 ],
0 z! 0 z7*!

detB;, =z,

Now compute

-1
byy=z"", b,=2z"",

boy =z7%, by =12z""!

Ay =[1+2z"10], adjd, =[10 ,
] 1 01+z!

detAd; =1+z71,

and

a;; =1, aj =1+z271,

agr=1+z"1, ap, =1.
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Then equation (6.44) can be written as

z710 D, +D,[1+zt0)=[10
0 z7! 0 1 01

and its diagonal solution is

D1=[1+(1+z‘1)t10:|, DZ:I:1+2‘1t10 ]

0 t, 0 L+ 2z,

for any t,, 2, € 35 {z7*}.

Since

M = [1 + (12, 712:|,

(L +z72 £y

equations (6.45) yield
tyy=t, tp=0,

=0, =1
and all decoupling controliers are given by (6.46), where

M =[1+(0+zYe 0], Ny=[1+2z"1%0 ,
0 t, 0 L+:z71,
(L +z7Y) vy 03,

Ny =[14zY% 1+z7% 1+z7,
0 0 1+ 271,
-1 -1 -1 -1
2 vy 1+ z7 0y 270y + 27 sy
My =140+ 2z 4 vy t, + 03,
L& V33

0 t,
To solve the control problem, we find the virtual subsystems

2—1
—_ — -1
§ = —, Se=z77,
14z

and
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Then equations (6.57) read
lx + L+ 2z Yy, =1,
7%, + y, =1
and the general solutions are
¥y =14+Q+zYu, yy=1+z""u,
Xy = Uy, ya=1+z"1u,
for any u; € 3?[2_1]. Equations (6.58) yield
t,=u;, i=12.

The solution x?, y? with 6y,9 = min is obtained when setting u; = 0, i = 1, 2. Then

(6.59) t, =0, t, =0, ‘
and the optimal controllers are given as minimal realizations of

R=MN'"=N;'"M, =[1+vs5, vy,
U3¢ 33

0 o

on using (6.59). The resulting controls are
U=[1+4 vy + 274,

vy + 27 ey,
0

and the optimal error becomes

z

K, =fz'0}, I,-K, =]1+:z"'0].
0 0 0 1

E=[1 ], kimin =1, Kkopn =2.
-1

Note also that
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Least squares decoupled control

Theorem 6.8. Let § be a subfield of € valuated by (2.25) and let the closed-loop
system can be stably decoupled. Then problem (6.50) has a solution if and only
if the linear Diophantine equations

(6.60) bixi + appiys = ap"qibr T, =121,
have solutions x?, y? such that

ay? < oby, i=1,2,..1,
subject to
+.0
(6.61) R S R
r; Piob; y?

and to stability of the resulting control
U = A,M, g
p
and the error components

_“_';"i‘l?_ i=12 .1,

.= ,

aip"q; " by T
The optimal controller is not unique, in general, and all optimal controllers are

given as minimal realizations of (6.46), where the matrices involved satisfy (6.42)
through (6.45) and (6.47), (6.61). Moreover

0N= /0
Jedn = ((25) (22)).
by b
Proof. If the system can be stably decoupled then all decoupling controllers are
given by (6.46). It remains to further specify the M;, N, and M,, N, by choosing
the D, and D, so as to minimize "einz by application of a stable control sequence U.
Viewing

i=12..,1,

s=b
a;
as a single-input single-output virtual subsystem and applying Theorem 3 in [32],
the reasoning analogous to Theorem 6.6 proves our claim. ]
It is obvious that the decoupled least squares control cannot give results better
than the (coupled) least squares control. The diagonality of K, is rather a severe
restriction.
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Example 6.9. Consider a minimal realization of

z™1 10
S=1_= [1 1 —22-1} =
z71 0 1—-z7t0 =
z7tz7 (1 —-271 ][0 1 -zt

1—-z7t0 trzmto
—14+2z11—-z1 0 z'(1-2z7Y

over R and solve problem (6.50) for the reference input sequence

We first solve equations (6.42) and (6.43). They are

21 0 M+ N[ 1—z0 =Tt o],
z7t 271~ 227 —1+z7'1-z1 01
1—z10 N+ Mz 0 0
0 1 -z 0 z“l(l, — 22"1) 1
1-z710 M, =M,[ L—-2z"t0 s
0 1-z1 —14+z7 1 -zt

o N, =N [z7' 0
-1 z“l(l — 22_1) 0 z_l(l —2z71

and they have the solutions

i

[=2E

and

NN

(6.62)
My =141~z — t,) t=z"Y¢,],
. L1+ (0 —z2"(ty — ) —1+(1 -2zt
Ny =[1-z"1, —z7 1y,
1=z, —z7 (1 =227t 142270 =27, — 27 (1 =227 1) 8y,
Ny, =[1~—z71, —z7'(1—2z"Y¢, ,
| — 27, 142270 — 271 = 2271 1y,
My=[1+(1-z"Yt, 1 -z,
=zt —1+(1 =z,

. +g -1
for arbitrary £;; e R {z7'}.
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-z z

aiju=|:z"(l—22")0 :I adelz[l-—z'l(J ]
-1

! 1—-zt1-2z""1

1

4 -
byy=b,=27", ay=a,=1-z"",

boy =bgy =z"Y(1 —227Y), agy=ag;=1-—2""

’

equation (6.44) becomes

[(2)“(1 — 2271 2_1(1 ) 22_1)] D, + D, [(l) o 0 :_1] = [(1) ‘1)]

and the solution is

D1=[—1+(1—z'1)tl 0 ]

0 —l+(l—z_l)tz
D,=[1+2="'—z7(1-2="9¢, 0
0 L+2:7' =z 1 =-2:"Yg,
forany #;,¢t, € ﬁ*{z“l}. Equations (6.45) then yield
(6.63) N ty=—-2+(1 —224)1‘1, t,,=0,
=16 — 1, t2y =1;.

Thus all decoupling controllers are given as minimal realizations of (6.46), where the matrices
involved satisfy (6.62) and (6.63).

To solve the control problem, we shall solve the equations (6.60)

1 —22" )X+ (-2 Y=z =2, i=12.

We obtain

x=1+01-z"Yu,,

yi=—-2-2z"1 -1 -2:"Yu;, i=1,2,
and the solution x?, ¥? satisfying 99 < 2 becomes
x =1, y)=-2-2z"1

on setting u; = 0, i = 1, 2. Then relations (6.61) gives

-1+l -z _ |
14227 -z (1=-22"Ye —2-270

=12,
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that is,

Therefore, the optimal controller is unique and it is given as a minimal realization of (6.46),

where
-1
M, = [1-3l=27 ,
22—z
_ -1 -1
P S P RS Sl
L 2-z7! 2 -zt
- e .
N, =1+ 32—_—2: 0 ,
P43 P gy o227
B 2-2z7! 2—z7' |
-1 -
N, = (1 +3 - 0 s
—z
0 | 4ot 222270
| 2o
r -1
m=[1-3l=7 o
2zt
_ -1
0 1y Lz
| 2 -zt
The resulting control is
1 -2z~
- o _ 10
U=MA == i,
and the associated error
o leliin = Jleafin = 4.

The reader can verify that the (coupled) least squares control is generated by a minimal realiza-

tion of (6.46), where the matrices involved are given by (6.62) with £;; = 0, ¢,; = 0. The resulting
control and error are

U=|1], E=111, ”elnrznin = ”eZ“xznin =1.
0 1
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To conclude, it can be said that the decoupled optimal control is nonsuperior to
the (coupled) optimal control. Otherwise speaking, the optimal control system cannot
always be made diagonal, i.e. the coupling in the closed-loop system may be essential
for attaining the optimal performance.

7. CONCLUSIONS

This work has provided a new algebraic theory of discrete linear control for
multivariable systems. Unlike the common approaches, the algebraic method is
based exclusively on polynomial algebra. This makes it possible to reduce the synthe-
sis procedure for all optimal control problems to solving Diophantine equations
in polynomials, thus unifying the procedure and making it as simple as possible.

The present publication together with a series of papers on single-variable systems
[30; 31; 32; 33; 34; 35] forms a compact theory of discrete linear control which is
fairly general and computationally attractive.

We have discussed the open-loop control strategy, where all signals are known in
advance and, hence, the only problem is to ensure the optimality, as well as the
closed-loop control strategy, where optimality subject to stability of the closed-loop
system is required. Therefore, a whole chapter has been devoted to problems of
stability in closed-loop systems and the results contained there are of central import-
ance.

Although the algebraic method has been developed for deterministic control
problems, it can equally well be applied to stochastic control problems. This will
be done in future publications.
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