The Continuous Dynamic Robbins-Monro Procedure

VÁclav Dupač

The proving methods developed in the book by Nevel'son and Has'minskij [4] are utilized to prove the asymptotic normality of the multidimensional continuous dynamic Robbins-Monro procedure, under assumptions similar to those usually made in the theory of stochastic approximation.

1. Suppose the zero point of a regression function is a time-varying parameter, its evolution law being known to certain extent; the Robbins-Monro stochastic approximation procedure can be then adapted to track this moving point. We shall consider the continuous-time case (investigated already by Cypkin [1] from the viewpoint of adaptive systems theory). Exploiting the proving methods developed (for the non-dynamic case) in Nevel'son and Has'minskij [3], [4], we obtain results concerning mean-square convergence, the rate of a.s. convergence, and asymptotic normality of the procedure.
2. We shall make the following assumptions:
(i) $R^{0}(t, x), \sigma_{r}^{0}(t, x), 1 \leqq r \leqq k$, are continuous mappings of $\left[t_{0},+\infty\right) \times E_{l}$ into $E_{l} ; t_{0}>0$.
(ii) For every bounded region $D \subset\left[t_{0},+\infty\right) \times E_{l}$, there is a $K_{D}>0$ such that

$$
\left|R^{0}(t, x)-R^{0}(t, y)\right|+\sum_{r=1}^{k}\left|\sigma_{r}^{0}(t, x)-\sigma_{r}^{0}(t, y)\right| \leqq K_{D}|x-y|
$$

everywhere in D.
(iii) $x=0$ is the unique zero point of $R^{0}(t, x)$ for all $t \geqq t_{0}$.
(iv) There is a positive definite matrix C and a $\lambda>0$ such that $\left(C R^{0}(t, x), x\right) \leqq$ $\leqq-\lambda(C x, x)$, for all $x \in E_{l}, t \geqq t_{0}$.
(v) $\sum_{r=1}^{k}\left|\sigma_{r}^{0}(t, x)\right| \leqq K(1+|x|)$, for all $x \in E_{l}, t \geqq t_{0}$, and some $K>0$.
(vi) $\zeta_{r}(t), 1 \leqq r \leqq k$, are independent (standard) Wiener processes, consistent with a non-decreasing family $\left\{\mathscr{F}_{t}, t \geqq t_{0}\right\}$ of σ-fields of events.
(vii) $Q(t)$ and $q(t), \theta(t)$ are matrix-valued and vector-valued functions, respectively; Q, q continuous, θ differentiable, satisfying

$$
\mathrm{d} \theta(t) / \mathrm{d} t=Q(t) \theta(t)+q(t), \quad t \geqq t_{0}
$$

Q is known, $R^{0}, \sigma_{r}^{0}, q, \theta$ are unknown in general.
(viii) $R(t, x)=R^{0}(t, x-\theta(t)), \sigma_{r}(t, x)=\sigma_{r}^{0}(t, x-\theta(t)), 1 \leqq r \leqq k$.
(ix) $a(t)$ is a (given) positive function, $t \geqq t_{0}$.
(x) $X^{x}(t)$ is the regular solution of the stochastic differential equation

$$
\mathrm{d} X(t)=Q(t) X(t) \mathrm{d} t+a(t)\left(R(t, X(t)) \mathrm{d} t+\sum_{r=1}^{k} \sigma_{r}(t, X(t)) \mathrm{d} \xi_{r}(t)\right), \quad t \geqq t_{0}
$$

with the initial condition $X\left(t_{0}\right)=x, x \in E_{l}$.
This is the dynamic Robbins-Monro procedure for tracking $\theta(t)$, corresponding to a situation, when at time t, the values of $R(t, x)$ are observable with experimental errors $\sum_{r=1}^{k} \sigma_{r}(t, x) \dot{\zeta}_{r}(t)$; the term $Q(t) X(t) \mathrm{d} t$ is a correction for trend in $\theta(t)$.

Theorem 1. Under the assumptions (i) - (x) and

$$
\int_{t_{0}}^{\infty} a(t) \mathrm{d} t=+\infty, \quad|Q(t)|=o(a(t)), \quad|q(t)|=o(a(t)) \text { for } t \rightarrow \infty
$$

we have

$$
X^{x}(t)-\theta(t) \rightarrow 0 \quad \text { for } t \rightarrow \infty
$$

in the mean square.
Further assume:
(xi) $a(t)=a / t^{x}, a>0,1 / 2<\alpha<1$.
(xii) $|Q(t)|=o\left(1 / t^{\alpha}\right),|q(t)|=O\left(1 / t^{3 \alpha / 2}\right), t \rightarrow \infty$.
(xiii) $R^{0}(t, x)=B x+\delta(t, x), \quad|\delta(t, x)|=o(|x|)$ for $x \rightarrow 0$, uniformly in $t \in$
$\in\left[t_{0},+\infty\right) ; B$ is a matrix such that all its eigenvalues have negative real parts.
(xiv) $\lim _{t \rightarrow \infty, x \rightarrow 0} \sigma_{r}^{0}(t, x)=s_{r}$ exists.
(xv) $\lim _{t \rightarrow \infty} t^{3 \alpha / 2} q(t)=q_{\infty}$ exists (with $q_{\infty}=0$ if $|q(t)|=o\left(t^{-3 z / 2}\right)$).

Theorem 2. Under the assumptions (i) - (xii), we have for any $\gamma, 0 \leqq \gamma<\alpha-1 / 2$,

$$
t^{y}\left(X^{x}(t)-\theta(t)\right) \rightarrow 0 \quad \text { a.s. for } \quad t \rightarrow \infty
$$

Theorem 3. Unter the assumptions (i) $-(\mathrm{xv})$, the asymptotic distribution of $t^{x / 2}\left(X^{x}(t)-\theta(t)\right)$ for $t \rightarrow \infty$ is normal with mean value $a^{-1} B^{-1} q_{\infty}$ and covariance matrix $a \int_{0}^{\infty} \mathrm{e}^{B r} S \mathrm{e}^{B T_{v}} \mathrm{~d} v$, with $S=\sum_{r=1}^{k} s_{r} S_{r}^{T}$.

Remark. The conditions (vii), (xii), (xv) are satisfied especially if $\theta(t)=b t^{2}+c$ (Q a known matrix of constants, b, c unknown vectors) and $\alpha=2 / 3$. The differential equation (vii) then becomes $\mathrm{d} \theta / \mathrm{d} t=Q t^{-1} \theta(t)-Q c t^{-1}$, i.e., $Q(t)=Q t^{-1}, q(t)=$ $=-Q c t^{-1}, q_{\infty}=-Q c$. If $Q=I$, we have the linear trend in $\theta: \theta(t)=b t+c$.
3. Proof of Theorem 1. Subtract $\mathrm{d} \theta(t)$ from both sides of the equation (x); using (vii) and denoting $Z(t)=X(t)-\theta(t), z=x-\theta\left(t_{0}\right)$, we get
(1) $\mathrm{d} Z(t)=Q(t) Z(t) \mathrm{d} t-q(t) \mathrm{d} t+a(t)\left(R^{0}(t, Z(t)) \mathrm{d} t+\sum_{r=1}^{k} \sigma_{r}^{0}(t, Z(t)) \mathrm{d} \xi_{r}(t)\right), t \geqq t_{0}$

$$
Z\left(t_{0}\right)=z
$$

Let L be the differential operator corresponding to (1):
(2) $L=\partial / \partial t+\left(Q(t) z-q(t)+a(t) R^{0}(t, z), \partial / \partial z\right)+(1 / 2) a^{2}(t) \sum_{r=1}^{k}\left(\sigma_{r}^{0}(t, z), \partial / \partial z\right)^{2}$.

Putting $V(z)=(C z, z), C$ that of (iv), we have
(3) $L V(z)=2 a(t)\left(C R^{0}(t, z), z\right)+2(C Q(t) z, z)-2(C q(t), z)+a^{2}(t) \sum_{r=1}^{k}\left(C \sigma_{r}^{0}, \sigma_{r}^{0}\right)$.

The first term on the right is less than $-2 \lambda a(t) V(z)$, according to (iv); all the other terms are bounded by $b(t)(1+V(z))$, with $b(t)=o(a(t))$, which follows from $|Q|=o(a(t)),|q|=o(a(t))$, from (v) and from the inequality $|z| \leqq 1+|z|^{2}$. Hence,

$$
\begin{gathered}
L V(z) \leqq-\lambda a(t) V(z)+b(t), \quad t \geqq t_{1} \\
\int_{t_{0}}^{\infty} a(t) \mathrm{d} t=+\infty, \quad b(t)=o(a(t)), \quad V(z) \geqq K(z, z) .
\end{gathered}
$$

(Here, as well as in the sequel, K with or without subscript will denote positive constants, possibly of different values in different formulas.)

According to Lemma 1.2 in Nevel'son, Has'minskij [3], the assertion of Theorem 1 follows.

Proof of Theorem 2. The first term on the right hand side of (3) is now less than $-2 \lambda a t^{-\alpha} V(z)$, the second one is bounded by $\varepsilon(t) t^{-\alpha} V(z)$ with $\varepsilon(t) \searrow 0$, and the fourth one by $K t^{-2 x}(1+V(z))$; we have used (xi) and (xii). Using the inequality

$$
\begin{equation*}
|z| \leqq \delta^{-1} t^{-x / 2}+\delta t^{x / 2}|z|^{2}, \quad \delta>0 \tag{4}
\end{equation*}
$$

and (xii), we obtain a bound for the third term:

$$
2|(C q(t), z)| \leqq K_{1} t^{-2 \alpha}+\delta K_{2} t^{-\alpha} V(z)
$$

K_{2} independent of δ; choosing δ sufficiently small, we get

$$
\begin{equation*}
L V(z) \leqq-\lambda a t^{-\alpha} V(z)+K_{3} t^{-2 \alpha}, \quad t \geqq t_{1} \tag{5}
\end{equation*}
$$

Now put $V_{1}(t, z)=t^{2 \gamma} V(z)+t^{-\varepsilon}$ where

$$
\begin{equation*}
0<\gamma<\alpha-1 / 2, \quad 0<\varepsilon<2\left(\alpha-\frac{1}{2}-\gamma\right) \tag{6}
\end{equation*}
$$

Obviously,

$$
L V_{1}(t, z)=t^{2 \gamma} L V(z)+2 \gamma t^{2_{i}-1} V(z)-\varepsilon t^{-\varepsilon-1}
$$

inserting (5) for $L V(z)$, we have

$$
L V_{1}(t, z) \leqq-\lambda a t^{2 \gamma-x} V(z)+K_{3} t^{2 \gamma-2 \alpha}+2 \gamma t^{2 \gamma-1} V(z)-\varepsilon t^{-\varepsilon-1}
$$

The sum of terms containing $V(z)$ is negative for $t \geqq t_{1}$, since (xi) implies $2 \gamma-\alpha>$ $>2 \gamma-1$, and so is the sum of the remaining two terms, since (6) implies $-\varepsilon-1>$ $>2 \gamma-2 \alpha$. Hence, $L V_{1}(t, z)<0, t \geqq t_{2}$.

According to Nevel'son Has'minskij [4], Corollary 3.8.1., $\left\{V_{1}(t, Z(t)), \mathscr{F}_{t}\right\}$ is a nonnegative supermartingale, which implies the a.s. existence of finite $\lim V_{1}(t, Z(t))$, i.e., of finite $\lim _{t \rightarrow \infty} t^{2 ;} V(Z(t))$. Hence, $t^{2 v}|Z(t)|^{2} \rightarrow 0$ a.s., which entails the assertion of Theorem 2 .

Proof of Theorem 3. Owing to the uniformity condition in (xiii), there are $\varepsilon>0$ and $K>0$ such that $\left|R^{0}(t, z)\right| \leqq K$ for all $|z| \leqq \varepsilon$ and $t \geqq t_{0}$. Let ε be chosen in such a way that also $\left|\sigma_{r}^{0}(t, z)\right| \leqq K_{1}$ for all $|z| \leqq \varepsilon$ and $t \geqq t_{0}$; this can be done owing to (i) and (xiv). With this ε, define (for $t \geqq t_{0}$)

$$
\begin{array}{ll}
\hat{R}(t, z)= & |z| \leqq \varepsilon \tag{7}\\
R^{0}(t, z), & |z| \leqq \varepsilon, \\
R^{0}(t, \varepsilon z /|z|)|z| / \varepsilon, & |z|<\varepsilon \\
\sigma_{r}^{0}(t, z) & |z|>\varepsilon \\
\sigma_{r}^{0}(t, z z| | z \mid),
\end{array}
$$

$$
\hat{\delta}(t, z)=\hat{R}(t, z)-B z
$$

Together with (1), consider the auxiliary equation

$$
\begin{align*}
& \mathrm{d} \hat{Z}(t)=Q(t) \hat{Z}(t) \mathrm{d} t-q(t) \mathrm{d} t+a t^{-\alpha}\left(\hat{R}(t, \hat{Z}(t)) \mathrm{d} t+\sum_{r=1}^{k} \hat{\sigma}_{r}(t, \hat{Z}(t)) \mathrm{d} \xi_{r}(t)\right), \tag{8}\\
& t \geqq s\left(\geqq t_{0}\right),
\end{align*}
$$

with the initial condition $\hat{Z}(s)=\zeta, \zeta$ being a \mathscr{F}_{s}-measurable random variable, $\mathrm{E}|\zeta|^{2}<+\infty$. The corresponding differential operator is

$$
L=\partial / \partial t+\left(Q(t) z-q(t)+a t^{-\alpha} \hat{R}(t, z), \partial / \partial z\right)+(1 / 2) a^{2} t^{-2 \alpha} \sum_{r=1}^{k}\left(\hat{\sigma}_{r}(t, z), \partial / \partial z\right)^{2}
$$

Put $V(z)=(C z, z)$; we have as in (5)

$$
L V(z) \leqq-\lambda a \dot{V}(z)+K t^{-2 \alpha}, \quad t \geqq t_{1}
$$

hence (see Nevel'son, Has'minskij [4], formula 3.5.5, which is valid here, owing to the definition of $\hat{R}, \hat{\sigma}_{r}$)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E} V\left(\hat{Z}^{\zeta}(t)\right)=\mathrm{E} L V\left(\hat{Z}^{c}(t)\right) \leqq-\lambda a t^{-x} \mathrm{E} V\left(\hat{Z}^{\zeta}(t)\right)+K t^{-2 x}, \quad t \geqq s
$$

From this differential inequality, we get (see Lemmas 1, 2. 3 in Dupač [2])

$$
\begin{equation*}
\mathrm{E}\left|\hat{Z}^{5}(t)\right|^{2} \leqq K_{1} t^{-\alpha} \tag{9}
\end{equation*}
$$

Denoting $\hat{Y}(t)=t^{\alpha / 2} \hat{Z}^{\zeta}(t)$, we obtain from (8) the equation

$$
\begin{gathered}
\mathrm{d} \hat{Y}=\left(\frac{1}{2} \alpha I t^{-1}+a B t^{-\alpha}\right) \hat{Y} \mathrm{~d} t+Q(t) \hat{Z} t^{\alpha / 2} \mathrm{~d} t-q(t) t^{\alpha / 2} \mathrm{~d} t+ \\
+a t^{-\alpha / 2} \hat{\delta}(t, \hat{Z}) \mathrm{d} t+a t^{-\alpha / 2} \sum_{r=1}^{k} \hat{\sigma}_{r}(t, \hat{Z}) \mathrm{d} \xi_{r}(t), \quad t \geqq s \\
\hat{Y}(s)=s^{\alpha / 2} \zeta
\end{gathered}
$$

Its solution is

$$
\begin{align*}
& \hat{Y}(t)=t^{\alpha / 2} \exp \left\{a(1-\alpha)^{-1} B\left(t^{1-\alpha}-s^{1-\alpha}\right)\right\} \zeta+ \\
& \quad+\int_{s}^{t}(t / u)^{\alpha / 2} \exp \left\{a(1-\alpha)^{-1} B\left(t^{1-\alpha}-u^{1-\alpha}\right)\right\} \tag{10}
\end{align*}
$$

$\cdot\left[\left(Q(u) \hat{Z}(u) u^{\alpha / 2}-q(u) u^{\alpha / 2}+a \hat{\delta}(u, \hat{Z}) u^{-\alpha / 2}\right) \mathrm{d} u+a u^{-\alpha / 2} \sum_{r=1}^{k} \hat{\sigma}_{r}(u, \hat{Z}) \cdot \mathrm{d} \xi_{r}(u)\right]$.
Disclosing the brackets, the integral in (10) splits into four ones; the first of them tends to zero in the mean and hence also in probability:

$$
\begin{equation*}
\mathrm{E}\left|\int_{S}^{t}(t / u)^{\alpha / 2} \exp \left\{a(1-\alpha)^{-1} B\left(t^{1-\alpha}-u^{1-\alpha}\right)\right\} Q \hat{Z} u^{\alpha / 2} \mathrm{~d} u\right| \leqq \tag{11}
\end{equation*}
$$

$$
\begin{gathered}
\leqq \int_{s}^{t}(t / u)^{\alpha / 2}|\exp \{.\}||Q| \mid \hat{\mathrm{Z} \mid u^{\alpha / 2} \mathrm{~d} u \leqq} \\
\leqq K \int_{s}^{t} \exp \left\{-\lambda_{1}\left(t^{1-\alpha}-u^{1-\alpha}\right)\right\} \varepsilon(u) u^{-\alpha} \mathrm{d} u, \quad \lambda_{1}>0, \quad \varepsilon(u) \searrow 0,
\end{gathered}
$$

where we have utilized the properties of the matrix B and $Q((x i i i)$ and (xii)) and the inequality (9); after the substitution $t^{1-\alpha}-u^{1-\alpha}=v$, the last line of (11) is transformed into

$$
K(1-\alpha)^{-1} \int_{0}^{t^{1-\alpha-s} 1-\alpha} \mathrm{e}^{-\alpha_{1} v} \varepsilon\left(t\left(1-v / t^{1-\alpha}\right)^{1 /(1-\alpha)}\right) \mathrm{d} v,
$$

which tends to 0 for $t \rightarrow \infty$.
The second integral can be written (in view of (xv)) as

$$
-\int_{s}^{t}(t / u)^{x / 2} \exp \{.\}\left(q_{\infty}+\varepsilon_{1}(u)\right) u^{-\alpha} \mathrm{d} u, \quad \varepsilon_{1}(u) \searrow 0
$$

the same substitution changes it into

$$
\begin{gathered}
-(1-\alpha)^{-1} \int_{0}^{t^{1-\alpha-s^{1-\alpha}}}\left(1-v / t^{1-\alpha}\right)^{-\alpha /(2-2 \alpha)} \exp \left\{a(1-\alpha)^{-1} B v\right\} . \\
\cdot\left(q_{\infty}+\varepsilon_{1}\left(t\left(1-v / t^{1-\alpha}\right)^{1 /(1-\alpha)}\right)\right) \mathrm{d} v,
\end{gathered}
$$

which tends for $t \rightarrow \infty$ to

$$
\begin{gathered}
-q_{\infty}(1-\alpha)^{-1} \int_{0}^{\infty} \exp \left\{a(1-\alpha)^{-1} B v\right\} \mathrm{d} v=-q_{\infty} a^{-1} \int_{0}^{\infty} \mathrm{e}^{B w} \mathrm{~d} w= \\
=q_{\infty} a^{-1} B^{-1}
\end{gathered}
$$

The third integral, $a \int_{s}^{\prime}(t / u)^{x / 2} \exp \{.\} \hat{\delta} u^{-\alpha / 2} \mathrm{~d} u$, can be again shown to tend to 0 in probability (cf. Lemma 6 in Dupač [2]), as well as the integral

$$
a \int_{s}^{t}(t / u)^{\alpha / 2} \exp \{\cdot\} u^{-\alpha / 2} \sum_{r=1}^{k}\left(\hat{\sigma}_{r}(u, Z)-s_{r}\right) d \xi_{r}(u)
$$

(cf. the same paper, formulas (13), (14)).
As the first term in (10), $t^{\alpha / 2} \exp \{.\} \zeta$, tends obviously to 0 owing to the properties of B, we get thus that the distribution of $\hat{Y}(t)-q_{\infty} a^{-1} B^{-1}$ is asymptotically equivalent to the distribution of

$$
a \int_{s}^{t}(t / u)^{\alpha / 2} \exp \left\{a(1-\alpha)^{-1} B\left(t^{1-\alpha}-u^{1-\alpha}\right)\right\} u^{-\alpha / 2} \sum_{r=1}^{k} s_{r} \mathrm{~d} \xi_{r}(u),
$$

420 which is, however, a Gaussian process with zero mean and a covariance matrix, which can be calculated in a straightforward way, using the same substitution as above, and shown to tend to $a \int_{0}^{x} \mathrm{e}^{B v} S \mathrm{e}^{B^{T} v} \mathrm{~d} v$, for $t \rightarrow \infty$. The rest of the proof consists in proving the asymptotic equivalence of distributions of

$$
t^{x / 2}\left(X^{x}(t)-\theta(t)\right)=t^{\alpha / 2} Z^{z}(t) \quad \text { and of } \quad \widehat{Y}(t)=t^{\alpha / 2} Z^{y}(t)
$$

for properly related z and ζ; it is exactly the same as the end of the proof of the Theorem in Dupač [2].

It should be pointed out, that the proofs in the present paper as well as in the paper Dupač [2] more or less follow the pattern of proofs in Nevel'son, Has'minskij [4], Chapt. 6.
(Received May 12, 1976.)

REFERENCES

[1] Я. З. Цыпин: Алгорифмы динамической адаптации. Автоматика и телемеханика (1972), 1, 68-77.
[2] V. Dupač: Asymptotic normality of the continuous Robbins-Monro stochastic approximation procedure. In: Contributions to Statistics - Jaroslav Hájek Memorial Volume. Academia, Prague, and North Holland. (To appear.)
[3] М. Б. Невельсон, Р. З. Хасьминский: Непрерывные процедуры стохастической аппроксимации. Проблемы передачи информации 7 (1971), 58-69.
[4] М. Б. Невельсон, Р. З. Хасьминский: Стохастическая аппроксимация и рекуррентное оценивание. Наука, Москва 1972.

Doc. Dr. Václav Dupač, CSc., Matematicko-fyzikálni fakulta Karlovy university (Faculty of Mathematics and Physics - Charles University), Sokolovská 83, 18600 Praha 8-Karlin. Czechoslovakia.

