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The Continuous Dynamic
Robbins-Monro Procedure

VAcLAv DuUpAC

The proving methods developed in the book by Nevel’son and Has’minskij [4] are utilized
to prove the asymptotic normality of the multidimensional continuous dynamic Robbins-Monro
procedure, under assumptions similar to those usually made in the theory of stochastic approxim-
ation.

1. Suppose the zero point of a regression function is a time-varying parameter,
its evolution law being known to certain extent; the Robbins-Monro stochastic
approximation procedure can be then adapted to track this moving point. We shall
consider the continuous-time case (investigated already by Cypkin [1] from the view-
point of adaptive systems theory). Exploiting the proving methods developed (for
the non-dynamic case) in Nevel'son and Has'minskij [3], [4], we obtain results
concerning mean-square convergence, the rate of a.s. convergence, and asymptotic
normality of the procedure.

2. We shall make the following assumptions:

(i) R°(t, x), 62(t,x), 1 < r <k, are continuous mappings of [t,, +w) x E,
into E;; ty > 0.

(i) For every bounded region D < [t,, + ) x E,, there is a K;, > 0 such that

iRO(z, x) _ R(’(t, y)' + r;]‘a?(t, x) — ﬂ?(l, y)i < K0|x — yl .

everywhere in D.
(iii) x = 0 is the unique zero point of R(t, x) for all ¢ 2 f,.

(iv) There is a positive definite matrix C and a 2 > 0 such that (CR%(%, x), x) <
£ ~MCx, x), forall xeE,, t 2 t,.



k
(v) ¥ |eX(t, x)] = K(1 + |x), forall xe E,,  Z t,, and some K > 0.
r=1
(vi) &(r), 1 £ r <k, are independent (standard) Wiener processes, consistent
with a non-decreasing family {f/",, t= to} of g-fields of events.
(vii) Q(r) and g(z), 0(r) are matrix-valued and vector-valued functions, respectively;
0, g continuous, 0 differentiable, satisfying
do(t)fde = Q(1) 6(1) + q(t), t =103
Q is known, R°, 6°, g, 0 are unknown in general.
(vii) R(t, x) = R°(t, x — 0(1)), o(t,x) = a2(t, x — O(1)), 1 < r < k.
(ix) a(1) is a (given) positive function, ¢ 2 #,.

(x) X*(r) is the regular solution of the stochastic differential equation
k
dX(r) = Q) X(1) dt + a(t) (R(t, X(1)) dt + Y a1, X(1) dELD)), (= 16,
=t

with the initial condition X(t,) = x, x € E;.
This is the dynamic Robbins-Monro procedure for tracking 6(), corresponding
to a situation, when at time ¢, the values of R(l, x) are observable with experimental

k
errors Y, ,(t, x) £,(t); the term Q(t) X(¢) dt is a correction for trend in 0(t).
r=1

Theorem 1. Under the assumptions (i)—(x) and

J “a(ydi = voo . |00 = ofa()) . |a()] = ofa() for 1 0

to
we have
XXty - 0(t) >0 for t—- oo,
in the mean square.
Further assume:
(xi) a(t)=aff,a>0,12<a<l
it) [00)] = o1/ [a(0] = 0(1/*2), 1 = .

(xiii) R°(t, x) = Bx + §(t, x), |6(r, \)i = o(|x|) for x — 0, uniformly in te
€ [to, + w); B is a matrix such that all its eigenvalues have negative real parts.

(xiv) Iim  @l(t, x) = s, exists.
t2oc,x20
(xv) lim £P*2q(r) = q,, exists (with q,, = 0if |g(r)] = o(t™>*/2)).

o
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Theorem 2. Under the assumptions (i)—(xii), we have for any 5,0 £ y < « — 1/2,

(X¥(t) — 6(1)) » 0 as. for t— .
Theorem 3. Unter the assumptions (i)—(xv), the asymptotic distribution of
2(X*(1) — 6(t)) for t - oo is normal with mean value a~'B™!g_ and covariance
£ k
matrix a | €*Se®" dv, with S = Y 5,5
r=1

0

Remark. The conditions (vii), (xii), (xv) are satisfied especially if 0(f) = bt? + ¢
(Q a known matrix of constants, b, ¢ unknown vectors) and a = 2/3. The differential
equation (vii) then becomes dffds = Q17! §(1) — Qct™"', ie., Q) = Qt™', g(1) =
= —Qct™!, g, = —Qc. If Q =1, we have the linear trend in 6 : 0(t) = br + c.

3. Proof of Theorem 1. Subtract df(t) from both sides of the equation (x);
using (vii) and denoting Z(f) = X(r) — 6(t), z = x — 0(t,), we get

(1) dz(t) = (1) Z(1) dr — g(1)dt + a(r) (R°(, Z(1)) dt f:zaf(r, Z(1)defn), t = 14

Z(ty) = z.

Let Lbe the differential operator corresponding to (1):

=

() L= 2ot + (00) = — a(0) + () R 2). 8/32) + (112) () ¥ (200 2). /o)

=1

Putting V(z) = (Cz, z), C that of (iv), we have

k
(3) LV(z) = 2a(1) (CR(1, 2),z) + 2(CQ(1) z, z) — 2(Cq(1), ) + a’(1) . (Ca?, o?).
r=1
The first term on the right is less than —24 a(t) V(z), according to (iv); all the other
terms arc bounded by b(1)(lL + V(z)), with b(t) = o(a(r)), which follows from
|0] = o(a(y)), iq‘ = ofa(r)), from (v) and from the inequality |z| <1+ 12‘2. Hence,

LV(z) £ —ia()V(z) + b(t), t21,,

to

J Caliydt = oo, b(t) = olalt)), V(z) = Kz, 2).

(Here, as well as in the sequel, K with or without subscript will denote positive
constants, possibly of different values in different formulas.)

According to Lemma 1.2 in Nevel'son, Has’minskij [3], the assertion of Theorem |
follows.



Proof of Theorem 2. The first term on the right hand side of (3) is now less than
—2)at™*V(z), the second one is bounded by &(f) t™* V(z) with &(r) ~ 0, and the
fourth one by Kt~2(1 + V(z)); we have used (xi) and (xii). Using the inequality

(4) lz] £ 671172 + 502

zlz , >0,
and (xii), we obtain a bound for the third term:

2/(Cq(r), 2)] < K172 + K17 V(z),
K, independent of 8; choosing & sufficiently small, we get

(5) LV(z) £ —lat™*V(z) + K5172*, 1

%

Now put ¥(t, z) = 17 V(z) + ¢~ where
(6) O<y<oa—1/2, O0<e<2Ax—4—1).
Obviously,

LV(t,2) = 'LV (z) + 2% ' V(z) — et

>

inserting (5) for L V(z), we have
LVy(t,z) £ —2ar™ 7 V(z) + Kt 2 4 2977 W(z) — e 75

The sum of terms containing V(z) is negative for ¢ Z t,, since (xi) implies 2y — o >
> 2y — 1, and so is the sum of the remaining two terms, since (6) implies — ¢ — | >
> 2y — 20 Hence, LV)(t,z) < 0,1 = t,.

According to Nevel’son Has'minskij [4], Corotlary 3.8.1., {V,(t, Z(t)), F,} is
a nonnegative supermartingale, which implies the a.s. existence of finite lim V,(t, Z(1)),

t=ao

i.e., of finite lim ¢** V(Z(t)). Hence, t*7
tudedd

Z(t)l2 — 0 a.s., which entails the assertion

of Theorem 2.

Proof of Theorem 3. Owing to the uniformity condition in (xiii), there are
&> 0and K > 0 such that |R°(l, :)| < K for all z] < eandt = t, Let & be chosen
in such a way that also a?(r, z)| < K, for all ‘z < g and t = ty; this can be done
owing to (i) and (xiv). With this ¢, define (for t > t,)

. o Ro(t, z) s |z| <e,
) R(, z) = \
SRO(L ezflz|) fzlfe, 7] <o »
al(t, z) |z| <e,
8t z)= < L<rsk;

.

~ol(t, sz/|zh s ]z| >¢,
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8(t,z) = R(t,z) — Bz.
Together with (1), consider the auxiliary equation
(8) d2(t) = Q(t) 2(t)dt — g(¢) dt + at™*(R(t, 2(1)) dt + i&,(t, Z(z))d;“,(t)),
1z s(zt),

with the initial condition 2(s) = {, { being a % -measurable random variable,
El{ll < +oo. The corresponding differential operator is

L=2gfot + (Q(t) z — q(t) + at™* R(1, z), 8/8z) + (1/2) azrlui(ar(z. z), 6/0z)%.
Put ¥(z) = (Cz, z); we have as in (5)
LV() £ —2a V() + K™%, 121,

hence (see Nevel'son, Has'minskij [4], formula 3.5.5, which is valid here, owing
to the definition of R, ,)

&d’rE V(ZH(1) = EL V(Z() < —Aat™E V(Z(0) + K™%, 12 5.
From this differential inequality, we get (see Lemmas 1, 2. 3 in Dupag [2])
©) E|Z()] £ K7™
Denoting ¥(r) = 1/ ZX(t), we obtain from (8) the equation
d¥ = (alt™' + aB™*)Vdt + Q1) Zr¥2 dt — g(1) > dt +
+ at™¥? §(t, 2) dt + ai™*? i&,(z, 2)dé(). tzs,

P(s) = /2.
Its solution is

Y(t) = 2 exp{a(l — )™ Bt * ="} L+

’(10) + J“(t/u)”’z exp {a(l — o)™ B(t' ™ — u' ")} .

J(0(u) 2(u) w*’? — g(u) u* + a §(u, Z)u™**) du + au"’/zrlgl&,(u. 2)defu)] .

Disclosing the brackets, the integral in (10) splits into four ones; the first of them
tends to zero in the mean and hence also in probability:

(11) E

J'(t/u)”z exp {a(l — &) ' B(t' ™% — u'"%)} QZu*? du1 <



= [ ero () ol 2 0 =

t
éKJ- exp {—A4,(1' " —u'" Y e(w)u " du, 2, >0, &u)Nn0,

where we have utilized the properties of the matrix B and Q ((xiii) and (xii)) and the
inequality (9); after the substitution ' ~* — 4'~* = v, the last line of (11) is trans-
formed into

toe—gtox

K(l _ a)-—1 J. e~ MY t:(t(] _ v/tx—a)l/(lfa)) do,

0
which tends to 0 for t - oo.

The second integral can be written (in view of (xv)) as

- Jﬂ (tfuy exp {.} (g + e{u))u™*du, e(u) N0;

the same substitution changes it into

-(1- a)*ljh o (1 — vf1* =) =29 exp {a(l — o)™ Bu}.

0
(g + (11 — o[t "YOT Ny dp,

which tends for t — w to

o oo
— g (1 —a)™? [ exp {a(l — «)™' Bo} dv = —qma_‘J\ e dw =
0

.0
=gq.a 'B7'.

The third integral, a [{(t/u)*? exp {.} du~*? du, can be again shown to tend to 0
in probability (cf. Lemma 6 in Dupa¢ [2]), as well as the integral

a j‘t(t/u)”‘/2 exp {.} u'”zé‘(é’,(u, 2) — s5,) d&(u)

(cf. the same paper, formulas (13), (14)).

As the first term in (10), /2 exp {.} {, tends obviously to 0 owing to the properties
of B, we get thus that the distribution of ¥(f) — g,,a™'B~! is asymptotically equi-
valent to the distribution of

s

ajl(t/u)““ exp {al1 — o)t BT = i) S 06 ),
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which is, however, a Gaussian process with zero mean and a covariance matrix,
which can be calculated in a straightforward way, using the same substitution as
above, and shown to tend to a [Fe®S e® dv, for ¢ - co. The rest of the proof
consists in proving the asymptotic equivalence of distributions of

(X)) — (1)) = 1 Z%(r) and of ¥(r) = r2Z°(¥)

for properly related z and {; it is exactly the same as the end of the proof of the
Theorem in Dupag [2].

It should be pointed out, that the proofs in the present paper as well as in the paper
Dupag [2] more or less follow the pattern of proofs in Nevel'son, Has'minskij [4],
Chapt. 6.

(Received May 12, 1976.)
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