KYBERNETIKA – VOLUME 12 (1976), NUMBER 6

The Continuous Dynamic Robbins-Monro Procedure

Václav Dupač

The proving methods developed in the book by Nevel'son and Has'minskij [4] are utilized to prove the asymptotic normality of the multidimensional continuous dynamic Robbins-Monro procedure, under assumptions similar to those usually made in the theory of stochastic approximation.

1. Suppose the zero point of a regression function is a time-varying parameter, its evolution law being known to certain extent; the Robbins-Monro stochastic approximation procedure can be then adapted to track this moving point. We shall consider the continuous-time case (investigated already by Cypkin [1] from the view-point of adaptive systems theory). Exploiting the proving methods developed (for the non-dynamic case) in Nevel'son and Has'minskij [3], [4], we obtain results concerning mean-square convergence, the rate of a.s. convergence, and asymptotic normality of the procedure.

2. We shall make the following assumptions:

- (i) $R^{0}(t, x)$, $\sigma_{r}^{0}(t, x)$, $1 \leq r \leq k$, are continuous mappings of $[t_{0}, +\infty) \times E_{l}$ into $E_{l}; t_{0} > 0$.
- (ii) For every bounded region $D \subset [t_0, +\infty) \times E_l$, there is a $K_D > 0$ such that

$$|R^{0}(t, x) - R^{0}(t, y)| + \sum_{r=1}^{k} |\sigma_{r}^{0}(t, x) - \sigma_{r}^{0}(t, y)| \le K_{b}|x - y|$$

everywhere in D.

- (iii) x = 0 is the unique zero point of $R^{0}(t, x)$ for all $t \ge t_{0}$.
- (iv) There is a positive definite matrix C and a $\lambda > 0$ such that $(CR^{0}(t, x), x) \leq \lambda \leq -\lambda(Cx, x)$, for all $x \in E_{1}, t \geq t_{0}$.

$$(v) \sum_{r=1}^{k} |\sigma_{r}^{0}(t, x)| \leq K(1 + |x|), \text{ for all } x \in E_{t}, t \geq t_{0}, \text{ and some } K > 0$$

(vi) $\xi_r(t)$, $1 \le r \le k$, are independent (standard) Wiener processes, consistent with a non-decreasing family $\{\mathscr{F}_t, t \ge t_0\}$ of σ -fields of events.

(vii) Q(t) and q(t), $\theta(t)$ are matrix-valued and vector-valued functions, respectively; Q, q continuous, θ differentiable, satisfying

$$\mathrm{d}\theta(t)/\mathrm{d}t = Q(t)\,\theta(t) + q(t)\,, \quad t \ge t_0\,;$$

Q is known, R^0 , σ_r^0 , q, θ are unknown in general.

(viii) $R(t, x) = R^{0}(t, x - \theta(t)), \ \sigma_{r}(t, x) = \sigma_{r}^{0}(t, x - \theta(t)), \ 1 \leq r \leq k.$

- (ix) a(t) is a (given) positive function, $t \ge t_0$.
- (x) $X^{x}(t)$ is the regular solution of the stochastic differential equation

$$dX(t) = Q(t) X(t) dt + a(t) (R(t, X(t)) dt + \sum_{r=1}^{k} \sigma_r(t, X(t)) d\xi_r(t)), \quad t \ge t_0,$$

with the initial condition $X(t_0) = x, x \in E_l$.

This is the dynamic Robbins-Monro procedure for tracking $\theta(t)$, corresponding to a situation, when at time t, the values of R(t, x) are observable with experimental errors $\sum_{i=1}^{k} \sigma_r(t, x) \dot{\xi}_r(t)$; the term Q(t) X(t) dt is a correction for trend in $\theta(t)$.

Theorem 1. Under the assumptions (i)-(x) and

$$\int_{t_0}^{\infty} a(t) dt = +\infty, \quad |Q(t)| = o(a(t)), \quad |q(t)| = o(a(t)) \quad \text{for} \quad t \to \infty,$$

we have

$$X^{x}(t) - \theta(t) \to 0 \quad \text{for} \quad t \to \infty$$
,

in the mean square.

Further assume:

(xi) $a(t) = a/t^{\alpha}, a > 0, 1/2 < \alpha < 1.$

(xii) $|Q(t)| = o(1/t^{\alpha}), |q(t)| = O(1/t^{3\alpha/2}), t \to \infty.$

(xiii) $R^0(t, x) = Bx + \delta(t, x)$, $|\delta(t, x)| = o(|x|)$ for $x \to 0$, uniformly in $t \in [t_0, +\infty)$; B is a matrix such that all its eigenvalues have negative real parts.

- (xiv) $\lim_{t \to \infty, x \to 0} \sigma_r^0(t, x) = s_r$ exists.
- (xv) $\lim_{t\to\infty} t^{3\alpha/2}q(t) = q_{\infty}$ exists (with $q_{\infty} = 0$ if $|q(t)| = o(t^{-3\alpha/2})$).

Theorem 2. Under the assumptions (i) – (xii), we have for any γ , $0 \leq \gamma < \alpha - 1/2$,

$$t^{\gamma}(X^{x}(t) - \theta(t)) \to 0$$
 a.s. for $t \to \infty$.

Theorem 3. Unter the assumptions (i) -(xv), the asymptotic distribution of $t^{s/2}(X^s(t) - \theta(t))$ for $t \to \infty$ is normal with mean value $a^{-1}B^{-1}q_{\infty}$ and covariance matrix $a \int_0^{\infty} e^{Br} S e^{B^T v} dv$, with $S = \sum_{r=1}^k s_r S_r^r$.

Remark. The conditions (vii), (xii), (xv) are satisfied especially if $\theta(t) = bt^{Q} + c$ (Q a known matrix of constants, b, c unknown vectors) and $\alpha = 2/3$. The differential equation (vii) then becomes $d\theta/dt = Qt^{-1}\theta(t) - Qct^{-1}$, i.e., $Q(t) = Qt^{-1}$, $q(t) = -Qct^{-1}$, $\dot{q}_{\alpha} = -Qc$. If Q = I, we have the linear trend in $\theta : \theta(t) = bt + c$.

3. Proof of Theorem 1. Subtract $d\theta(t)$ from both sides of the equation (x); using (vii) and denoting $Z(t) = X(t) - \theta(t)$, $z = x - \theta(t_0)$, we get

(1)
$$dZ(t) = Q(t)Z(t) dt - q(t) dt + a(t) (R^{0}(t, Z(t)) dt + \sum_{r=1}^{k} \sigma_{r}^{0}(t, Z(t)) d\xi_{r}(t)), t \ge t_{0}$$

 $Z(t_{0}) = z$.

Let L be the differential operator corresponding to (1):

(2)
$$L = \partial/\partial t + (Q(t) z - q(t) + a(t) R^0(t, z), \partial/\partial z) + (1/2) a^2(t) \sum_{r=1}^{k} (\sigma_r^0(t, z), \partial/\partial z)^2.$$

Putting V(z) = (Cz, z), C that of (iv), we have

(3)
$$LV(z) = 2a(t) (CR^{0}(t, z), z) + 2(CQ(t) z, z) - 2(Cq(t), z) + a^{2}(t) \sum_{r=1}^{k} (C\sigma_{r}^{0}, \sigma_{r}^{0}).$$

The first term on the right is less than $-2\lambda a(t) V(z)$, according to (iv); all the other terms are bounded by b(t)(1 + V(z)), with b(t) = o(a(t)), which follows from |Q| = o(a(t)), |q| = o(a(t)), from (v) and from the inequality $|z| \le 1 + |z|^2$. Hence,

$$L V(z) \leq -\lambda a(t) V(z) + b(t), \quad t \geq t_1,$$

$$\int_{t_0}^{\infty} a(t) dt = +\infty, \quad b(t) = o(a(t)), \quad V(z) \geq K(z, z).$$

(Here, as well as in the sequel, K with or without subscript will denote positive constants, possibly of different values in different formulas.)

According to Lemma 1.2 in Nevel'son, Has'minskij [3], the assertion of Theorem 1 follows.

Proof of Theorem 2. The first term on the right hand side of (3) is now less than $-2\lambda at^{-\alpha}V(z)$, the second one is bounded by $\varepsilon(t) t^{-\alpha}V(z)$ with $\varepsilon(t) \searrow 0$, and the fourth one by $Kt^{-2\alpha}(1 + V(z))$; we have used (xi) and (xii). Using the inequality

(4)
$$|z| \leq \delta^{-1} t^{-\alpha/2} + \delta t^{\alpha/2} |z|^2, \quad \delta > 0,$$

and (xii), we obtain a bound for the third term:

$$2|(Cq(t), z)| \leq K_1 t^{-2\alpha} + \delta K_2 t^{-\alpha} V(z),$$

 K_2 independent of δ ; choosing δ sufficiently small, we get

(5)
$$L V(z) \leq -\lambda a t^{-\alpha} V(z) + K_3 t^{-2\alpha}, \quad t \geq t_1.$$

Now put $V_1(t, z) = t^{2\gamma} V(z) + t^{-\epsilon}$ where

(6)
$$0 < \gamma < \alpha - 1/2, \quad 0 < \varepsilon < 2(\alpha - \frac{1}{2} - \gamma).$$

Obviously,

$$L V_1(t, z) = t^{2\gamma} L V(z) + 2\gamma t^{2\gamma - 1} V(z) - \varepsilon t^{-\varepsilon - 1};$$

inserting (5) for L V(z), we have

$$LV_1(t, z) \leq -\lambda a t^{2\gamma - \alpha} V(z) + K_3 t^{2\gamma - 2\alpha} + 2\gamma t^{2\gamma - 1} V(z) - \varepsilon t^{-\varepsilon - 1}.$$

The sum of terms containing V(z) is negative for $t \ge t_1$, since (xi) implies $2\gamma - \alpha > 2\gamma - 1$, and so is the sum of the remaining two terms, since (6) implies $-\varepsilon - 1 > 2\gamma - 2\alpha$. Hence, $LV_1(t, z) < 0, t \ge t_2$.

According to Nevel'son Has'minskij [4], Corollary 3.8.1., $\{V_1(t, Z(t)), \mathcal{F}_t\}$ is a nonnegative supermartingale, which implies the a.s. existence of finite lim $V_1(t, Z(t))$,

i.e., of finite $\lim_{t \to \infty} t^{2\gamma} V(Z(t))$. Hence, $t^{2\gamma} |Z(t)|^2 \to 0$ a.s., which entails the assertion of Theorem 2.

Proof of Theorem 3. Owing to the uniformity condition in (xiii), there are $\varepsilon > 0$ and K > 0 such that $|R^0(t, z)| \leq K$ for all $|z| \leq \varepsilon$ and $t \geq t_0$. Let ε be chosen in such a way that also $|\sigma_t^0(t, z)| \leq K_1$ for all $|z| \leq \varepsilon$ and $t \geq t_0$; this can be done owing to (i) and (xiv). With this ε , define (for $t \geq t_0$)

(7)
$$\hat{R}(t, z) = \begin{cases} R^{0}(t, z), & |z| \leq \varepsilon, \\ R^{0}(t, \varepsilon z/|z|) |z|/\varepsilon, & |z| < \varepsilon; \\ \sigma^{0}_{r}(t, z) & |z| \leq \varepsilon, \\ \sigma^{0}_{r}(t, \varepsilon z/|z|), & |z| > \varepsilon, \end{cases} \quad 1 \leq r \leq k;$$

$$\hat{\delta}(t,z) = \hat{R}(t,z) - Bz.$$

Together with (1), consider the auxiliary equation

(8)
$$d\hat{Z}(t) = Q(t) \hat{Z}(t) dt - q(t) dt + at^{-\alpha} (\hat{R}(t, \hat{Z}(t)) dt + \sum_{r=1}^{\kappa} \hat{\sigma}_r(t, \hat{Z}(t)) d\xi_r(t)),$$
$$t \ge s (\ge t_0),$$

with the initial condition $\hat{Z}(s) = \zeta$, ζ being a \mathscr{F}_s -measurable random variable, $E|\zeta|^2 < +\infty$. The corresponding differential operator is

$$L = \partial/\partial t + (Q(t) z - q(t) + at^{-x} \hat{R}(t, z), \partial/\partial z) + (1/2) a^2 t^{-2x} \sum_{r=1}^{N} (\hat{\sigma}_r(t, z), \partial/\partial z)^2.$$

Put V(z) = (Cz, z); we have as in (5)

$$LV(z) \leq -\lambda a V(z) + Kt^{-2\alpha}, \quad t \geq t_1;$$

hence (see Nevel'son, Has'minskij [4], formula 3.5.5, which is valid here, owing to the definition of \hat{R} , $\hat{\sigma}_r$)

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathsf{E} V(\hat{Z}^{t}(t)) = \mathsf{E} L V(\hat{Z}^{t}(t)) \leq -\lambda a t^{-\alpha} \mathsf{E} V(\hat{Z}^{t}(t)) + K t^{-2\alpha}, \quad t \geq s.$$

From this differential inequality, we get (see Lemmas 1, 2. 3 in Dupač [2])

(9)
$$\mathsf{E}|\hat{Z}^{\zeta}(t)|^2 \leq K_1 t^{-\alpha}.$$

Denoting $\hat{Y}(t) = t^{\alpha/2} \hat{Z}^{\zeta}(t)$, we obtain from (8) the equation

$$d\hat{Y} = (\frac{1}{2}\alpha I t^{-1} + aBt^{-\alpha})\hat{Y}dt + Q(t)\hat{Z}t^{\alpha/2} dt - q(t)t^{\alpha/2} dt + + at^{-\alpha/2}\hat{\delta}(t,\hat{Z}) dt + at^{-\alpha/2}\sum_{r=1}^{k}\hat{\sigma}_{r}(t,\hat{Z}) d\xi_{r}(t), \quad t \ge s, \hat{Y}(s) = s^{\alpha/2}\zeta.$$

Its solution is

$$\begin{split} \hat{Y}(t) &= t^{\alpha/2} \exp \left\{ a(1-\alpha)^{-1} B(t^{1-\alpha} - s^{1-\alpha}) \right\} \zeta + \\ 10) &+ \int_{s}^{t} (t/u)^{\alpha/2} \exp \left\{ a(1-\alpha)^{-1} B(t^{1-\alpha} - u^{1-\alpha}) \right\} . \\ \cdot \left[(Q(u) \hat{Z}(u) u^{\alpha/2} - q(u) u^{\alpha/2} + a \, \hat{\delta}(u, \, \hat{Z}) \, u^{-\alpha/2}) \, \mathrm{d}u + a u^{-\alpha/2} \sum_{r=1}^{k} \hat{\sigma}_{r}(u, \, \hat{Z}) \, \mathrm{d}\zeta_{r}(u) \right] . \end{split}$$

(10)

Disclosing the brackets, the integral in
$$(10)$$
 splits into four ones; the first of them tends to zero in the mean and hence also in probability:

(11)
$$\mathsf{E}\left|\int_{s}^{t} (t/u)^{x/2} \exp\left\{a(1-\alpha)^{-1} B(t^{1-\alpha}-u^{1-\alpha})\right\} Q\hat{Z}u^{x/2} du\right| \leq \frac{1}{2}$$

$$\leq \int_{s}^{t} (t/u)^{\alpha/2} \left| \exp\left\{ \cdot \right\} \right| \left| Q \right| \left| \hat{Z} \right| u^{\alpha/2} du \leq$$
$$\leq K \int_{s}^{t} \exp\left\{ -\lambda_{1} (t^{1-\alpha} - u^{1-\alpha}) \right\} \varepsilon(u) u^{-\alpha} du , \quad \lambda_{1} > 0 , \quad \varepsilon(u) \searrow 0 ,$$

where we have utilized the properties of the matrix B and Q ((xiii) and (xii)) and the inequality (9); after the substitution $t^{1-\alpha} - u^{1-\alpha} = v$, the last line of (11) is transformed into

$$K(1-\alpha)^{-1}\int_0^{t^{1-\alpha}-s^{1-\alpha}}e^{-\lambda_1 v} \varepsilon(t(1-v/t^{1-\alpha})^{1/(1-\alpha)})\,\mathrm{d} v\,,$$

which tends to 0 for $t \to \infty$.

The second integral can be written (in view of (xv)) as

$$-\int_{s}^{t} (t/u)^{x/2} \exp\left\{\cdot\right\} (q_{\infty} + \varepsilon_{1}(u)) u^{-x} du, \quad \varepsilon_{1}(u) \searrow 0;$$

the same substitution changes it into

$$- (1 - \alpha)^{-1} \int_0^{t^{1-\alpha} - s^{1-\alpha}} (1 - v/t^{1-\alpha})^{-\alpha/(2-2\alpha)} \exp \left\{ a(1 - \alpha)^{-1} Bv \right\}.$$

$$\cdot \left(q_{\infty} + \varepsilon_1(t(1 - v/t^{1-\alpha})^{1/(1-\alpha)}) \right) \mathrm{d}v ,$$

which tends for $t \to \infty$ to

$$- q_{\infty}(1 - \alpha)^{-1} \int_{0}^{\infty} \exp \left\{ a(1 - \alpha)^{-1} Bv \right\} dv = -q_{\infty}a^{-1} \int_{0}^{\infty} e^{Bw} dw =$$
$$= q_{\infty}a^{-1}B^{-1}.$$

The third integral, $a \int_{a}^{t} (t/u)^{\nu/2} \exp\{.\} \delta u^{-\alpha/2} du$, can be again shown to tend to 0 in probability (cf. Lemma 6 in Dupač [2]), as well as the integral

$$a \int_{s}^{t} (t/u)^{\alpha/2} \exp\{.\} u^{-\alpha/2} \sum_{r=1}^{k} (\hat{\sigma}_{r}(u, \hat{Z}) - s_{r}) d\xi_{r}(u)$$

(cf. the same paper, formulas (13), (14)).

As the first term in (10), $t^{a/2} \exp\{.\} \zeta$, tends obviously to 0 owing to the properties of *B*, we get thus that the distribution of $\hat{Y}(t) - q_{\infty}a^{-1}B^{-1}$ is asymptotically equivalent to the distribution of

$$a \int_{s}^{t} (t/u)^{\alpha/2} \exp \left\{ a(1-\alpha)^{-1} B(t^{1-\alpha}-u^{1-\alpha}) \right\} u^{-\alpha/2} \sum_{r=1}^{k} s_r \, \mathrm{d}\xi_r(u) \,,$$

420 which is, however, a Gaussian process with zero mean and a covariance matrix, which can be calculated in a straightforward way, using the same substitution as above, and shown to tend to $a \int_0^\infty e^{Bv} S e^{B^T v} dv$, for $t \to \infty$. The rest of the proof consists in proving the asymptotic equivalence of distributions of

 $t^{\alpha/2}(X^{x}(t) - \theta(t)) = t^{\alpha/2} Z^{z}(t)$ and of $\hat{Y}(t) = t^{\alpha/2} Z^{z}(t)$

for properly related z and ζ ; it is exactly the same as the end of the proof of the Theorem in Dupač [2].

It should be pointed out, that the proofs in the present paper as well as in the paper Dupač [2] more or less follow the pattern of proofs in Nevel'son, Has'minskij [4], Chapt. 6.

(Received May 12, 1976.)

REFERENCES

- [1] Я. З. Цыпкин: Алгорифмы динамической адаптации. Автоматика и телемеханика (1972), 1, 68-77.
- [2] V. Dupač: Asymptotic normality of the continuous Robbins-Monro stochastic approximation procedure. In: Contributions to Statistics – Jaroslav Hájek Memorial Volume. Academia, Prague, and North Holland. (To appear.)
- [3] М. Б. Невельсон, Р. З. Хасьминский: Непрерывные процедуры стохастической аппроксимации. Проблемы передачи информации 7 (1971), 58-69.
- [4] М. Б. Невельсон, Р. З. Хасьминский: Стохастическая аппроксимация и рекуррентное оценивание. Наука, Москва 1972.

Doc. Dr. Václav Dupač, CSc., Matematicko-fyzikální fakulta Karlovy university (Faculty of Mathematics and Physics – Charles University), Sokolovská 83, 18600 Praha 8 - Karlín. Czechoslovakia.