Generalized Cooperative Games and Markets

Tran Quoc Chien

In the last time, we are witnesses of an unprecendented development of mathematical applications in economy including the theory of games and markets. It is sufficient to name the works of Aumann, Peleg, Rosenmüller, Hildenbrand, Vind and others. This paper is a contribution to that field. It suggests a generalization of one part of theory of games and markets in which the existence of side payments is not assumed, and in which we suppose the validity of so called Direct democracy law. The presented work is restricted to games and markets with finite number of participants only. The theory, instituted on continuum or on countably infinite number of participants, is mathematically nice, though, hardly applicable, as the condition of so called absolute competition does not seem to be practically real.

The paper is divided to three chapters. In the first chapter, some contributions to the game theory are given, the second chapter is devoted to market theory, and, eventually, in the last one, some relations between markets and their correspondent games are presented.

AbBREVIATIONS AND NOTATIONS

$\Omega=\{1, \ldots, n\}$	set of players participants class of all subsets of Ω
$\exp \Omega$	set of all available coalitions
$\mathscr{K} \subset \exp \Omega$	number of all elements of set S
$\|S\|$	
$y^{S}=\left(y^{i}\right)_{i \in S}$	$x^{i} \geqq y^{i}$ for all i
$x \geqq y$	
$v^{S}=\left(v^{i}\right)_{i \in S}$	$x \leqq y$ and $x \neq y$
$x \ngtr y$	$x^{i}>y^{i}$ for all i
$x>y$	
$S(y \mid x)$	set of players from S which prefer $h(S)$ $\mathscr{F}(\mathscr{K})$
$h \in \mathscr{F}(\mathscr{K})$	decision coefficient of S
set of all mappings from \mathscr{K} to $(0,1\rangle$	
decision function	

$\mathfrak{C}^{G}(P)=P-\operatorname{dom}_{G} P$
$\mathfrak{C}(\boldsymbol{G})==\mathfrak{C}^{G}(H)$
n-dimensional real space; $R=R^{1}$
non-negative orthant of R^{m}
domination via S in game G
domination in game \boldsymbol{G}
cooperative game
P-core
core of game
$J(H)=\{x \in H: \neg(\exists y \in H ; y>x)\}$
$f_{T}(x)=\max _{i, \infty}\left(x^{i} x^{j}\right)$ for such an x that $x^{\Omega-T}>0$
$\|y\|_{S}=\left\|y^{S}\right\|=\max _{i \in S}\left|y^{i}\right|$
$\mathrm{S}^{\mathrm{G}}(P) \quad P$-solution
$\mathcal{S}(\boldsymbol{G})=\mathcal{S}^{G}(\bar{A})$
solution of game
set of individually rational distribuin game
set of group rational distributions in game
preference*
equivalence
ure preferences
system of initial quantities of goods
$\boldsymbol{m}=\left(\Omega, \mathscr{K}, R_{+}^{m},\left(\geqq_{i}\right)_{i \in \Omega},\left(a^{i}\right)_{i \in \Omega}, h\right) \quad$ cooperative market
$(K)=\left\{(x)_{i \in \Omega}: x^{i} \in R_{+}, i \in \Omega\right.$ and $\left.\sum_{K} x^{i} \leqq \sum_{K} a^{i}\right\}$
$P=\left\{p=\left(p^{1} \ldots p^{m}\right)^{\prime} \in R_{+}^{m}, \sum_{i=1}^{m} p^{i}=1\right\} \quad$ price space
$\boldsymbol{B}_{p}^{K}=\left\{\left(x^{i}\right)_{i \in \Omega}: x^{i} \in R_{m}^{+}, \quad i \in \Omega, \sum_{K} p^{\prime} x^{i} \leqq \sum_{K} p^{\prime} a^{i}\right\}$ budget-set
$K(x \succ y)=\left\{i \in K: x^{i} \succ_{i} y^{i}\right\}$
$\succ_{\boldsymbol{m}(K)} \quad$ domination via K in market
\succ_{m} domination in market
$\operatorname{dom}_{m(K)} P=\left\{x \in \times R_{+}^{m}: \exists y \in P: y \succ_{m(K)} x\right\}$
$\operatorname{dom}_{m} P=\bigcup_{K \in \mathscr{X}} \operatorname{dom}_{m(K)} P$

[^0]```
\(\mathbb{C}^{m}(P)=P-\operatorname{dom}_{m} P\)
\(\mathfrak{C}(\boldsymbol{m})=\mathbb{C}^{\boldsymbol{m}}(\boldsymbol{m}(\Omega))\)
\(\Theta^{m}(P)\)
\(\Theta(m)=\Theta^{m}(m(\Omega))\)
\(\boldsymbol{G}_{\boldsymbol{m}}\).
\(E_{m}\)
\(A_{\mathrm{m}}=\bar{A}_{\mathrm{m}} \cap E_{\mathrm{m}}\)
\(A_{\mathrm{m}}=\bar{A}_{\mathrm{m}} \cap E_{\mathrm{m}}\)
```

$P$-core
core of market
$P$-solution
solution of market
game corresponding to market $\boldsymbol{m}$ set of individually rational distributions in market
set of group rational distributions in market

## CHAPTER I: COOPERATIVE GAMES WITHOUT TRANSFERABLE UTILITY

In this chapter, we present a generalized model of game without transferable utility. On establishing the concept of domination we suppose that in each admissible coalition the direct democracy law (it means each decision in each coalition certified by voting among all players of the coalition) holds.

## 1. Fundamental definitions

Definition 1.1. The triple ( $\Omega, \mathscr{K}, \boldsymbol{v}$ ) is called characteristic function if $\Omega$ is a finite set, $\mathscr{K} \subset \exp \Omega, \Omega \in \mathscr{K}$ and $v$ is a mapping from $\mathscr{K}$ to $\exp R^{|\Omega|}$ which fulfills the following conditions
(1) $v(S)$ is convex for all $S \in \mathscr{K}$,
(2) $v(S)$ is closed for all $S \in \mathscr{K}$,
(3) $v(\emptyset)=R^{|\Omega|}$,
(4) $x \in \boldsymbol{v}(S), y \in R^{|\Omega|}, y^{s} \leqq x^{s} \Rightarrow y \in \boldsymbol{v}(S)$ for all $S \in \mathscr{K}$.

Definition 1.2. Let $S \in \mathscr{K}$ be an arbitrary coalition. Let $x$ and $y$ be two possible payment distributions among players from $S$. Let $S(y / x)$ denotes the set of the players from $S$ who prefer $y$ to $x$. Then the number $h(S), h(S) \in(0,1\rangle$ is called decision coefficient, if coalition $S$ accepts $y$ if and only if

$$
\frac{|S(y \mid x)|}{|S|} \geqq h(S)
$$

Let $\mathscr{F}(\mathscr{K})$ be the set of all mappings from $\mathscr{K}$ to $(0,1\rangle . h \in \mathscr{F}(\mathscr{K})$ is called decision function of $\mathscr{K}$ if $h(S)$ is decision coefficient for all coalitions $S \in \mathscr{K}$.

Definition 1.3. Cooperative game with characteristic function is a quintuple $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$, where $(\Omega, \mathscr{K}, \boldsymbol{v})$ is a characteristic function, $H$ is a convex and compact subset of $v(\Omega)$, and $h \in \mathscr{F}(\mathscr{K})$ is a decision function.

Definition 1.4. Cooperative game $G$ is called guaranted if it fulfills

$$
\begin{align*}
& x \in \mathfrak{v}\left(S_{i}\right), \quad i=1,2, \ldots, k ; \quad S_{i} \cap S_{j}=\emptyset \quad \text { for } \quad i \neq j, \quad S_{i} \in \mathscr{K}  \tag{5}\\
& i=1,2, \ldots, k \Rightarrow \exists y \in R^{|\Omega-s|}:\left(x^{s}, y\right) \in v(\Omega), \quad \text { where } \quad S=\bigcup_{i=1}^{k} S_{i}
\end{align*}
$$

Definition 1.5. Cooperative game $\boldsymbol{G}$ is called ordinary if

$$
\begin{equation*}
x \in v(\Omega) \Leftrightarrow \exists y \in H: x \leqq y \tag{6}
\end{equation*}
$$

2. Domination, rationality

Definition 2.1. Let $G$ be a cooperative game. Let $x, y \in H, S \in \mathscr{K}$. We say that $x$ dominates $y$ via $S$ and write $x \succ_{G(S)} y$ if $x \in v(S), x^{S} \nless y^{s}$ and

$$
\frac{|S(x>y)|}{|S|} \geqq h(S), \quad \text { where } \quad S(x>y)=\left\{i \in S: x^{i}>y^{i}\right\}
$$

Definition 2.2. Let $x, y \in H$. We say that $x$ dominates $y$ and write $x \succ_{\boldsymbol{c}} y$ if there exists $S \in \mathscr{K}$ such that $x$ dominates $y$ via $S$.

Note. Let us denote $I(G)=\{i:\{i\} \in \mathscr{K}\}$. It follows from Definition 1.1 that if $i \in I(\boldsymbol{G})$ then there exists $v^{i} \in R$ such that $\boldsymbol{v}(\{i\})=\left\{x \in R^{|\Omega|}: x^{i} \leqq v^{i}\right\}$.

Definition 2.3. Let $P \subset H, S \in \mathscr{K}$, then we denote

$$
\begin{aligned}
& \operatorname{dom}_{G(S)} P=\left\{y: \exists x \in F, x \succ_{G(S)} y\right\} \\
& \operatorname{dom}_{\boldsymbol{G}} P=\left\{y: \exists x \in P, x \succ_{G} y\right\}
\end{aligned}
$$

Definition 2.4. Payments vector $x \in H$ is called individually rational if $x^{i} \geqq v^{i}$ for all $i \in I(\boldsymbol{G}) . x$ is called group rational if there exists no $y \in H$ such that $y \succ_{G(\Omega)} x$. We denote $\bar{E}=H, E$ the set of all group rational vectors from $H, \bar{A}$ the set of all individually rational vectors from $H, A=\bar{A} \cap E$. If $I(G)=\emptyset$ we put $\bar{A}=H$.

## 3. Core

Definition 3.1. Let $G$ be a cooperative game, $P \subset H$ be an arbitrary set. Then we call the set $\mathfrak{C}(G P)=P^{G}-\operatorname{dom}_{G} P$ a $P$-core. The set $\mathbb{C}^{G}(H)$ is called game core and it is denoted also by $\mathbb{C}(G)$.

Theorem 3.1. Let $\boldsymbol{G}_{1}=\left(\Omega, \mathscr{K}_{1}, \boldsymbol{v}_{1}, H, h_{1}\right), \boldsymbol{G}_{2}=\left(\Omega, \mathscr{K}_{2}, \boldsymbol{v}_{2}, H, h_{2}\right)$ be cooperative games that fulfil

$$
\begin{equation*}
\mathscr{K}_{1} \subseteq \mathscr{K}_{2}, \tag{3.1.1}
\end{equation*}
$$

$$
\begin{equation*}
S \in \mathscr{K}_{1} \Rightarrow v_{1}(S) \subset v_{2}(S) \text { and } h_{1}(S) \geqq h_{2}(S) . \tag{3.1.2}
\end{equation*}
$$

Then $\mathbb{C}^{G_{2}}(P) \subset \mathbb{C}^{G_{1}}(P)$ for arbitrary $P \subset H$.
Proof. The statement of this Theorem obviously follows from the previous definitions.

Theorem 3.2. Let $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$ be an arbitrary cooperative game and let $\bar{A} \neq \emptyset$. Then $\mathfrak{C}^{\boldsymbol{G}}(\bar{E}) \subset \mathfrak{C}^{\boldsymbol{G}}(\bar{A})$.

Proof. If $I(\boldsymbol{G})=\emptyset$ then $\bar{A}=\bar{E}$ and $\mathfrak{C}^{\boldsymbol{G}}(\bar{E})=\mathfrak{C}^{\boldsymbol{G}}(\bar{A})$. Let, hence, $I(\boldsymbol{G}) \neq \emptyset$ and let $x \in \mathbb{C}^{\boldsymbol{G}}(\bar{E})$. If $x \notin \bar{A}$ then there exists $i \in I(\boldsymbol{G})$ such that $x^{i}<v^{i}$. Let $z$ be an arbitrary vector from $\bar{A}$, obviously $z^{i} \geqq v^{i}$. There exists $y \in H$ such that $y \geqq z$ for $\boldsymbol{G}$ is ordinary. Let $y_{1}$ lie on the segment $[x, y]$ so near to $x$ that $v^{i} \geqq y_{1}^{i}>x^{i} . y_{1} \in \bar{E}$ for convexity of $\bar{E}$. Then $y_{1} \succ_{G(i)} x$; that contradicts to $x \in \mathbb{C}^{G}(\bar{E})$. Hence $x \in \mathbb{C}^{G}(\bar{A})$.

Theorem 3.3. Let $\boldsymbol{G}$ be an ordinary and guaranted cooperative game. Then $\bar{A} \neq \emptyset$ and $\mathbb{C}^{\boldsymbol{G}}(\bar{E})=\mathbb{C}^{\boldsymbol{G}}(\bar{A})$.

Proof. If $I(G)=\emptyset$ then $\mathbb{C}^{G}(\bar{A})=\mathbb{C}^{G}(\bar{E})$ for $\bar{A}=\bar{E}$. Suppose that $I(G) \neq \emptyset$. By (5) there exists $x \in R^{[\Omega-I(G)]}$ such that $\left(v^{I(G)}, x\right) \in v(\Omega)$. By (6) there exists $y \in H$ such that $y \geqq\left(v^{I(G)}, x\right)$. Hence, $y \in \bar{A} \Rightarrow \bar{A} \neq \emptyset$. By the foregoing Theorem is $\mathbb{C}^{G}(\bar{E}) \subset \mathbb{C}^{G}(\bar{A})$. It remains to prove $\mathbb{C}^{G}(\bar{A}) \subset \mathbb{C}^{G}(\bar{E})$. Let $z \in \mathbb{C}^{G}(\bar{A})$. Then obviously $z \in \bar{E}$. If $z \notin \mathbb{C}^{G}(\bar{E})$ then there exists $z_{1} \in \bar{E}$ and $S \in \mathscr{K}$ such that $z_{1} \succ_{G(S)} z$. We set

$$
z_{2}=\left(v^{I(G)-S}, z^{S \cup(\Omega-I(G))}\right),
$$

then evidently $z_{2} \in \boldsymbol{v}(S)$ and $z_{2} \in \boldsymbol{v}(\{i\})$ for $i \in I(\boldsymbol{G})-S$. Hence, by (5), there exists $x_{1} \in R^{[\Omega-(I(G) \cup S) \mid}$ so that

$$
z_{3}=\left(z^{S \cup I(G)}, x_{1}\right) \in v(\Omega)
$$

By (6) there exists $w \in H$ such that $w \geqq z_{3}$. Obviously,

$$
w^{I(G)-S} \geqq z_{3}^{I(G)-S}=v^{I(G)-S},
$$

and

$$
\boldsymbol{w}^{S_{\cap} I(G)} \geqq z_{3}^{S \cap I(G)}=z_{2}^{S \cap I(G)}=z_{1}^{S \cap I(G)} \geqq z^{S_{\cap} \cap I(G)} \geqq v^{S_{\cap I} \cap(G)},
$$

thus $w \in \bar{A}$. Let $w_{1}$ lie on the segment $[z, w]$ so near to $z$ that

$$
z_{1}^{S\left(z_{1}>z\right)} \geqq w_{1}^{S\left(z_{1}>z\right)}>z^{S\left(z_{1}>z\right)},
$$

(evidently $z_{1}^{S-S\left(z_{1}>z\right)}=w_{1}^{S-S\left(z_{1}>z\right)}=z^{S-S\left(z_{1}>z\right)}$ ). $w_{1} \in \bar{A}$ as $\bar{A}$ is convex. Further, by (4), $w_{1} \in v(S)$, hence $w_{1} \succ_{G(S)} z$. It contradicts to $z \in \mathbb{C}^{\boldsymbol{G}}(\bar{A})$. Hence, $z \in \mathbb{C}^{\boldsymbol{G}}(\bar{E})$.

Theorem 3.4. Let $\boldsymbol{G}=(\Omega, \mathscr{K}, v, H, h)$ be an ordinary cooperative game, let $h(S)=1$ for all $S \in \mathscr{K}$ and let $H$ be a polyhedron. Then

$$
\mathfrak{C}^{\boldsymbol{G}}(E)=\mathfrak{C}^{\boldsymbol{G}}(\bar{E}) \quad \text { and } \quad \mathfrak{C}_{-}^{\boldsymbol{G}}(A)=\mathfrak{C}^{\boldsymbol{G}}(\bar{A})
$$

Proof. See the proof given in [3], Theorem 8, page 546.
Theorem 3.5. Let $\boldsymbol{G}$ be an ordinary and guaranted cooperative game, let $h(S)=1$ for all $S \in \mathscr{K}$ and let $H$ be a polyhedron. Then

$$
\mathfrak{C}^{\boldsymbol{G}}(E)=\mathfrak{C}^{\boldsymbol{G}}(\bar{E})=\mathfrak{C}^{\boldsymbol{G}}(A)=\mathfrak{C}^{\boldsymbol{G}}(\bar{A})
$$

Proof. The assertion follows immediately from Theorems 3.3 and 3.4.
Corollary 3.1. Let $\boldsymbol{G}$ be an ordinary and guaranted cooperative game, let $H$ be a polyhedron and let $h(S)>(|S|-1) /|S|$ for all $S \in \mathscr{K}, S \neq \emptyset$. Then $\mathbb{C}^{\boldsymbol{G}}(E)=$ $=\mathfrak{C}^{\boldsymbol{G}}(\bar{E})=\mathbb{C}^{G}(A)=\mathbb{C}^{\boldsymbol{G}}(\bar{A})$.
Let $H \in R^{n}$, we denote

$$
J(H)=\{x \in H:\urcorner(\exists y \in H: y>x)\} .
$$

Further, for arbitrary $T \subset \Omega$ we define

$$
f_{T}(x)=\max _{i, j \in \Omega-T}\left(x^{i} / x^{j}\right) \text { for such } x \text { that } x^{\Omega-T}>0
$$

Lemma 3.1. Let $x, y \in R^{n}, x^{\Omega-T}>0, y^{\Omega-T}>0$. Then

$$
f_{T}(x+y) \leqq \max \left\{f_{T}(x), f_{T}(y)\right\}
$$

Proof. Let $c=\max \left\{f_{T}(x), f_{T}(y)\right\}$. Then $x^{i} / x^{j} \leqq c, y^{i} / y^{j} \leqq c$ for all $i, j \in \Omega-T$.
Hence

$$
\left(x^{i}+y^{i}\right) /\left(x^{j}+y^{j}\right) \leqq\left(c x^{j}+c y^{j}\right) /\left(x^{j}+y^{j}\right)=c
$$

for all $i, j \in \Omega-T$, so that $f_{T}(x+y) \leqq c$.
Lemma 3.2. Let $H$ be a closed polyhedron in $R^{n}$ and let it fulfills the following condition
(7) $\quad x \in H, \quad y \in H, \quad y^{T} \leqq x^{T}, \quad T \subset \Omega, \quad|T| \leqq \max _{x-(\Omega\}}|S|(1-h(S)) \Rightarrow$ $\Rightarrow\left(x^{\Omega-T}, y^{T}\right) \in H$.

334 Then there exists for arbitrary $T \subset \Omega$ a number $K>0$ such that for each $x \in H-$ $-J(H)$ there exists $x^{\prime} \in H$ for which $x^{\prime \Omega-T}>x^{\Omega-T}, x^{\prime T}=x^{T}$ and $f_{T}\left(x^{\prime}-x\right) \leqq K$. Proof. Let $H=\left\{x \in R^{n}: L_{1}(x) \geqq b_{1}, \ldots, L_{m}(x) \geqq b_{m}\right\}$, where $L_{i}, i \in M=$ $=\{1, \ldots, m\}$, is a linear functional in $R^{n}$, and let $Q \subset M$. We define

$$
H_{Q}=\left\{x \in H: L_{i}(x)>b_{i} \text { for } i \in Q \text { and } L_{i}(x)=b_{i} \text { for } i \in M-Q\right\} .
$$

Nonempty sets $H_{Q}$ are mutually disjoint and

$$
H=\bigcup_{Q=M} H_{Q} .
$$

For such a $Q$ for which $H_{Q}-J(H) \neq \emptyset$, we choose $x_{Q} \in H_{Q}-J(H)$. Then there exists $y_{Q}^{\prime} \in H$ such that $y_{Q}^{\prime}>x_{Q}$. If we set

$$
y_{Q}=\left(y_{Q}^{\prime \Omega-T}, x_{Q}^{T}\right)
$$

then, by (7), $y_{Q} \in H$. Now, let $x \in H_{Q}-J(H), \delta>0$. We define

$$
y_{\delta}=x+\delta\left(y_{Q}-x_{Q}\right) .
$$

For sufficiently small $\delta>0$ we have

$$
\begin{equation*}
L_{i}\left(y_{\delta}\right)>b_{i} \text { for } i \in Q \tag{3.2.1}
\end{equation*}
$$

and for arbitrary $\delta>0$

$$
\begin{equation*}
L_{i}\left(y_{\partial}\right) \geqq b_{i} \text { for } \quad i \in M-Q \tag{3.2.2}
\end{equation*}
$$

We fix such a $\delta>0$ for which (3.2.1) and (3.2.2) hold. It means that $y_{\delta} \in H$ and obviously $y_{\delta}^{\Omega-T}>x^{\Omega-T}, y_{\delta}^{T}=x^{T}$. Let $x^{\prime}=y_{\delta}$. Then $x^{\prime}-x=\delta\left(y_{Q}-x_{Q}\right)$, hence

$$
f_{T}^{\prime \prime}\left(x^{\prime}-x\right)=f_{T}\left(y_{Q}-x_{Q}\right) .
$$

We put

$$
K=\max _{Q \subset M} f_{T}\left(y_{Q}-x_{Q}\right)
$$

Then $f_{T}\left(x^{\prime}-x\right) \leqq K$ for all $x \in H-J(H)$ because

$$
H-J(H)=\bigcup_{Q \subset M}\left(H_{Q}-J(H)\right) .
$$

Lemma 3.3. Let $H \subset R^{n}$ be a compact polyhedron fulfilling condition (7). Then there exists a number $K>0$ such that $\forall T \subset \Omega, \forall x \in H-J(H), \exists x^{\prime \prime} \in J(H)$ such that $x^{\prime \prime \Omega-T}>x^{\Omega-T}, x^{\prime \prime T}=x^{T}$ and $f_{T}\left(x^{\prime \prime}-x\right) \leqq K$.

Proof. For $x \in H-J(H)$, we denote

$$
F_{x}=\left\{x^{\prime} \in H: x^{\prime} \text { fulfills Lemma 4.2 }\right\}
$$

and define

$$
g(y)=\max _{\Omega-T}\left|y^{i}-x^{i}\right|=\|y-x\|_{\Omega-T} \text { for } y \in F_{x} .
$$

$F_{x}$ is bounded, hence there exists

$$
\begin{equation*}
L=\sup _{F_{x}} g(y) . \tag{3.3.1}
\end{equation*}
$$

Let $\left\{y_{k}\right\}_{k=1}^{\infty}, y_{k} \in F_{x}$ for all $k$ such that $g\left(y_{k}\right)$ converges to $L$ and $y_{k} \rightarrow x^{\prime \prime}$.

$$
f_{T}\left(y_{k}-x\right) \leqq K \Rightarrow f_{T}\left(x^{\prime \prime}-x\right) \leqq K \Rightarrow x^{\prime \prime \Omega-T}>x^{\Omega-T} .
$$

If $x^{\prime \prime} \notin J(H)$ then there exists $y^{\prime} \in H$ such that $y^{\prime \Omega-T}>x^{\prime \prime \Omega-T}, y^{\prime T}=x^{\prime \prime T}$ and $f_{T}\left(y^{\prime}-x^{\prime \prime}\right) \leqq K$ according to Lemma 3.1.

$$
f_{T}\left(y^{\prime}-x\right)=f_{T}\left(y^{\prime}-x^{\prime \prime}+x^{\prime \prime}-x\right) \leqq \max \left\{f_{T}\left(y^{\prime}-x^{\prime \prime}\right), f_{T}\left(x^{\prime \prime}-x\right)\right\} \leqq K .
$$

Thus $y^{\prime} \in F_{x}$. But

$$
g\left(y^{\prime}\right)=\left\|y^{\prime}-x\right\|_{\Omega-T}=\left\|\left(y^{\prime}-x^{\prime \prime}\right)+\left(x^{\prime \prime}-x\right)\right\|_{\Omega-T}>\left\|x^{\prime \prime}-x\right\|_{\Omega-T}
$$

and it is a contradiction with (3.3.1). Hence $x^{\prime \prime} \in J(H)$.
Lemma 3.4. Let $H \subset R$ be a compact polyhedron fulfilling condition (7). Then there exists a number $K>0$ such that

$$
\begin{gathered}
\forall T \subset \Omega, \quad \forall x \in H-J(H), \quad \exists x^{\prime \prime} \in J(H): x^{\prime \prime T}= \\
=x^{T} \& x^{\prime \prime \Omega-T}>x^{\Omega-T} \& \forall(i \in \Omega-T): x^{\prime \prime i}-x^{i} \geqq\left(\left\|x^{\prime \prime}-x\right\|_{\Omega-T}\right) / K .
\end{gathered}
$$

Proof. The assertion follows immediately from Lemma 3.3.
Theorem 3.6. Let $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$ be a cooperative game. Let $H$ be a polyhedron fulfilling condition (7) and let $y \in J(H)$. If there exist $z \in H$ and $S \in \mathscr{K}$ such that $z \succ_{G(S)} y$ then there exists $w \in J(H)$ such that $w \succ_{G(S)} y$.

Proof. Suppose, without loss of generality, that $y=0$. Let $V=R_{+}^{n}=\left\{x \in R^{n}\right.$ : $: x \geqq 0\}$ and $V^{\circ}$ be the interior of $V .0=y \in J(H) \Rightarrow H \cap V^{\circ}=\emptyset$. As $H$ is a compact polyhedron, there exists a hyperplane $g(x)=\sum_{\Omega} c^{i} x^{i}=0$ which separates $H$ from $V$. Without loss of generality we suppose that $g(x) \leqq 0$ for $x \in H$ and $g(x) \geqq 0$ for $x \in V$. Thus $c^{i} \geqq 0$ for all $i$. Note that

$$
\begin{equation*}
x \in H, \quad g(x) \geqq 0 \Rightarrow x \in J(H) . \tag{3.6.1}
\end{equation*}
$$

If $z \in J(H)$ then there is nothing to prove. Let $z \notin J(H), z \succ_{\boldsymbol{G}(S)} 0 \Rightarrow S \neq \Omega$, otherwise it leads to contradiction with $z \notin J(H)$. Set

$$
f(x)=\sum_{\Omega-S} c^{i} x^{i}
$$

336 then the implication

$$
\begin{equation*}
x \succ_{\boldsymbol{G}(S)} 0, \quad f(x) \geqq 0 \Rightarrow x \in J(H) \tag{3.6.2}
\end{equation*}
$$

follows from (3.6.1) and

$$
\sum_{\Omega} c^{i} x^{i}=\sum_{S} c^{i} x^{i}+f(x)
$$

$z \notin J(H) \Rightarrow f(z)<0$. Put

$$
\begin{equation*}
k=\min _{S(z>0)} z^{i} / 2>0 \tag{3.6.3}
\end{equation*}
$$

and

$$
M=\left\{x \in H: x^{S(z>0)} \nless 0, x^{S-S(z>0)}=0 \text { and }\left\|x^{S(z>0)}\right\|=k\right\} .
$$

As $H$ is convex, there exists a point of the segment $[z, 0]$ which lies in $M$, thus $M \neq \emptyset$. For $M$ is compact and $f$ is continuous, there exists $x_{1} \in M$ such that

$$
\begin{equation*}
f\left(x_{1}\right)=\max _{M} f(x) \tag{3.6.4}
\end{equation*}
$$

If $x_{1} \notin J(H)$ then there exists $x_{2} \in H, x_{2}>x_{1}$. We have

$$
\begin{gather*}
\left\|x_{2}^{S(z>0)}\right\|>\left\|x_{1}^{S(z>0)}\right\|=k  \tag{3.6.5}\\
f\left(x_{2}\right) \geqq f\left(x_{1}\right) \tag{3.6.6}
\end{gather*}
$$

Put

$$
x_{3}=\left(k /\left\|x_{2}^{S(z>0)}\right\|\right) x_{2}
$$

Obviously, $\left\|x_{3}^{S(z>0)}\right\|=k$ and $x_{3}^{S(z>0)}>0 . x_{3} \in H$ for convexity of $H$. Set $w_{3}=$ $=\left(x_{3}^{(\Omega-S) \cup s(z>0)}, o^{s-S(z>0)}\right)$. Then $w_{3} \in H$ for (7), hence $w_{3} \in M$. It follows from (3.6.4) that

$$
\begin{equation*}
f\left(x_{1}\right)>f\left(w_{3}\right) \tag{3.6.7}
\end{equation*}
$$

Obviously, $z^{S(z>0)}>x_{3}^{S(z>0)}=w_{3}^{S(z>0)}>0$, so $w_{3} \in v(S)$ according to (4), and $w_{3} \succ_{G(S)} 0$. If $w_{3} \in J(H)$, proof is finished $\left(w=w_{3}\right)$, otherwise (3.6.2) implies $f\left(w_{3}\right)<$ $<0$. But it follows from $f\left(w_{3}\right)=\left(k\| \| x_{2}^{S(z>0)} \|\right) f\left(x_{2}\right)$ and $k /\left\|x_{2}^{S(z>0)}\right\|<1$ that $f\left(x_{2}\right)<f\left(w_{3}\right)$ what contradicts to (3.6.6) and (3.6.7). We conclude $x_{1} \in J(H)$. Obviously $0>x_{1}^{S(z>0)}<z^{S(z>0)}$ and $x_{1}^{S-S(z>0)}=0$, so $x_{1} \in \mathfrak{v}(S)$ according to (4). If $x_{1}^{S(z>0)}>0$ then $x_{1} \succ_{G(S)} 0$ and proof is finished $\left(w=x_{1}\right)$. Therefore, it remains only to deal with the case in which one of the coordinates of $x_{1}^{5(z>0)}$ vanishes. Then we construct $x_{4}$ such that $x_{4}=\alpha_{1} 0+\alpha_{2} x_{1}+\alpha_{3} z$, where $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$, $\alpha_{i}>0, i=1,2,3$, and $x_{4}$ is so near to $x_{1}$ that

$$
\begin{equation*}
\left\|x_{4}-x_{1}\right\|_{\Omega-T} \leqq \delta, \text { where } \delta=k /(K+1) \tag{3.6.8}
\end{equation*}
$$

where $K$ is the constant from Lemma 3.4 for $T=S-S(z>0)$. Convexity of $H$ implies that $x_{4} \in H$. Further, $x_{4}^{S-S(z>0)}=0, x^{S(z>0)}<z^{S(z>0)}$. So, $x_{4} \in v(S)$ and $x_{4}>_{\boldsymbol{G}(S)} 0$. If $x_{4} \in J(H)$, the proof is finished $\left(w=x_{4}\right)$. If $x_{4} \in H-J(H)$, we choose $x_{4}^{\prime \prime}$ for $T=\Omega-S(z>0)$ according to Lemma 3.4. It may have two cases.
(i) $\left\|x_{4}^{\prime \prime \prime}-x_{4}\right\|_{\Omega-T}>K \delta$, then $x_{4}^{\prime \prime i}-x_{4}^{i}>\delta, i \in \Omega-T$, according to Lemma 3.4. Hence,

$$
x_{4}^{\prime \prime i}-x_{1}^{i}=x_{4}^{\prime \prime i}-x_{4}^{i}+x_{4}^{i}-x_{1}^{i}>\delta-\left\|x_{4}-x_{1}\right\|_{\Omega-T} \geqq 0,
$$

for $i \in \Omega-T$, according to (3.6.8). If $x_{4}^{\prime \prime S(z>0)} \leqq z^{S(z>0)}$ then $x_{4}^{\prime \prime} \in \boldsymbol{v}(S)$ and $x_{4}^{\prime \prime} \succ_{G(S)} 0$ and proof is finished ( $w=x_{4}^{\prime \prime}$ ). Otherwise we set $x_{5}=\alpha x_{1}+$ $+(1-\alpha) x_{4}^{\prime \prime}$ which is so near to $x_{1}$ that $0<x_{5}^{S(z>0)}<z^{S(z>0)}$. Obviously, $\left.x_{5}\right\rangle_{G(S)} 0 . x_{5} \geqq x_{1}$ so $x_{5} \in J(H)$ and proof is finished ( $w=x_{5}$ ).
(ii) $\left\|x_{4}^{\prime \prime}-x_{4}\right\|_{\Omega-T} \leqq K \delta$. Then from

$$
\left\|x_{4}^{\prime \prime}-x_{1}\right\|_{\Omega-T} \leqq\left\|x_{4}^{\prime \prime}-x_{4}\right\|_{\Omega-T}+\left\|x_{4}-x_{1}\right\|_{\Omega-T} \leqq K \delta+\delta=k
$$

follows that

$$
\left\|x_{4}^{\prime \prime}\right\|_{S_{(z>0)}} \leqq\left\|x_{4}^{\prime \prime}-x_{1}\right\|_{S_{(z>0)}}+\left\|x_{1}\right\|_{S(z>0)} \leqq 2 k=\min _{S(z>0)} z^{i}
$$

Thus $x_{4}^{\prime \prime S(z>0)} \leqq z^{S(z>0)}$. So $x_{4}^{\prime \prime} \in v(u)$ and $x_{4}^{\prime \prime}>_{G(S)} 0$. By setting $w=x_{4}^{\prime \prime}$ the proof is complete.

Theorem 3.7. Let $\boldsymbol{G}$ be a cooperative game and let $H$ be a polyhedron fulfilling condition (7). Then

$$
\mathfrak{c}^{\boldsymbol{c}}(J(H))=\mathfrak{c}^{\boldsymbol{G}}(H) \cap J(H) .
$$

Proof. Let $y \in \mathbb{C}^{\boldsymbol{G}}(J(H))$. Obviously $y \in J(H)$. If $y \notin \mathbb{C}^{G}(H)$ then there exists $z \in H$ such that $z \succ_{\boldsymbol{G}} y$. According to the foregoing Theorem, there exists $w \in J(H)$, $w \succ_{G} y$ and it contradicts to $y \in \mathbb{C}^{G}(J(H))$. On the other hand, if $y \in \mathbb{C}^{G}(H) \cap J(H)$ then obviously $y \in \mathbb{C}^{G}(J(H))$.

Similarly we derive the following statement.
Corollary 3.2. Let $\boldsymbol{G}$ be a cooperative game, let $H$ be a polyhedron fulfilling (7) and let $\bar{A} \neq \emptyset$. Then

$$
\mathfrak{C}^{\mathfrak{G}}(J(\bar{A}))=\mathfrak{C}^{\boldsymbol{G}}(\bar{A}) \cap J(\bar{A}) .
$$

Theorem 3.8. Let all assumptions of Theorem 3.7 hold. Then

$$
\mathfrak{C}^{\boldsymbol{G}}(H)=\mathbb{C}^{\boldsymbol{G}}(J(H))
$$

If, in addition, $\bar{A} \neq \emptyset$, then

$$
\mathfrak{C}^{G}(\bar{A})=\mathfrak{C}^{G}(J(\bar{A})) .
$$

Proof. We show that $\left.\mathbb{C}^{\boldsymbol{G}}(H) \subset J(H) . \quad y \in \mathbb{C}^{\boldsymbol{G}}(H) \Rightarrow \neg(\exists z: z\rangle_{G(\Omega)} y\right) \Rightarrow$ $\Rightarrow \neg(\exists z \in H: z>y) \Rightarrow y \in J(H)$. Now, using Theorem 3.7, we obtain the assertion. Similarly we proceed for the second equality.
The following theorem follows from Theorems 3.3 and 3.8.
Theorem 3.9. Let $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$ be a cooperative guaranted and ordinary game, and let $H$ be a polyhedron fulfilling (7). Then

$$
\mathfrak{C}^{G}(\bar{E})=\mathfrak{C}^{G}(J(\bar{E}))=\mathfrak{C}^{\boldsymbol{G}}(\bar{A})=\mathfrak{C}^{\boldsymbol{G}}(J(\bar{A})
$$

Remark 3.1. Without condition (7), Theorem 3.6 can fail. We show the following counter-example. Let $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$, where $\Omega=\{1,2,3,4\}, \mathscr{K}=\exp \Omega$, $v(\Omega)=\left\{x \in R^{4}: x^{i} \leqq 100, i=1,2,3,4\right\}, v\left(S^{4}\right)=\left\{x \in R^{4}:\left(x^{1}, x^{2}, x^{3}\right) \leqq(1,1,0)\right\}$ $S^{4}=\{1,2,3\}, v(S)$ is arbitrary for other $S \in \exp \Omega$.
$H=\left\{x \in v(\Omega): x^{i} \geqq-100, i=1,2,3,4, x^{4} \leqq 0, x^{1}+x^{2}+x^{4}-x^{3} \leqq 0\right\}, h \in$ $\in \mathscr{F}(\mathscr{K})$ such that $h\left(S^{4}\right) \in(1 / 3,2 / 3)$. Obviously, $0 \in J(H)$. Set $z=(1,1,0,-2)$ then $z \in H, z \succ_{\boldsymbol{G}\left(S^{4}\right)} 0$, but $z \notin J(H)$. If there exists $w \in J(H), w \succ_{G\left(S^{4}\right)} 0$, then $w \in$ $\in v\left(S^{4}\right)$. It means $w^{3}=0$ and $0<w^{1}, w^{2} \leqq 1$. But $w \in H$, hence $w^{1}+w^{2}+w^{4}-$ $-w^{3} \leqq 0, x^{4} \leqq 0 \Rightarrow w^{4} \leqq-\left(w^{1}+w^{2}\right)<0$. It follows that we can construct $y \in H$ such that $y>w$ and it is in contradiction to $w \in J(H)$.

Remark 3.2. Without the assumption that $H$ is a polyhedron, Theorem 3.6 can fail, too. Conter-example (see [3]).
$\Omega=\{1,2,3\}, \mathscr{K}=\exp \Omega, h \equiv 1, H$ is the convex hull of sets $C$ and $D$, where

$$
\begin{aligned}
& C=\left\{x: x^{1} \geqq 0, x^{2} \geqq 0, x^{3}=0,\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2} \leqq 1\right\}, \\
& D=\left\{x: x^{1} \geqq 0, x^{2} \geqq 0, x^{3}=1,\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2} \leqq 4\right\} .
\end{aligned}
$$

Then $J(H)=D \cup\left\{x: x^{1}=0, x^{2}=1,0 \leqq x^{3} \leqq 1\right\}$. We define

$$
v(\Omega)=\{x: \exists y \in H, y \geqq x\}, \quad v^{\Omega}=0
$$

$$
v(\{i, j\})=\left\{x: x^{i} \leqq 1 / 2, x^{j} \leqq 1 / 2\right\}, \quad i, j \in \Omega .
$$

Then obviously $(1 / 2,1 / 2,1 / 2) \in H,(0,1,0) \in J(H)$ and

$$
(1 / 2,1 / 2,1 / 2) \succ_{\boldsymbol{G}(1,3\})}(0,1,0),
$$

but there exists no $y \in J(H), y \succ_{G}(0,1,0)$.
Theorem 3.10. Let $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$ be a cooperative game. Then $\mathbb{C}^{\boldsymbol{G}}(J(H)) \subset$ $\subset \mathbb{C}^{\boldsymbol{G}}(E)$. If, in addition, $\bar{A} \neq \emptyset$ then $\mathbb{C}^{\boldsymbol{G}}(J(\bar{A})) \subset \mathbb{C}^{\boldsymbol{G}}(A)$.

Proof. Let $x \in \mathbb{C}^{G}(J(H))$ then $x \in E$. If $x \notin \mathbb{C}^{\boldsymbol{G}}(E)$ then $x \notin \mathbb{C}^{G}(J(H))$ for $E \subset J(H)$ what is a contradiction. Analogically for the second inclusion.

Theorem 3.11. Let $\boldsymbol{G}$ be a cooperative game, let $H$ fulfil condition (7) and let the following inequality

$$
\begin{equation*}
|\Omega| h(\Omega)>\max _{K-\{\Omega\}}|S| \tag{3.11.1}
\end{equation*}
$$

holds. Then $\mathbb{C}^{\boldsymbol{G}}(J(H))=\mathbb{C}^{\boldsymbol{G}}(E)$; in addition, if $\bar{A} \neq \emptyset$ then $\mathbb{C}^{\boldsymbol{G}}(J(\bar{A}))=\mathbb{C}^{\boldsymbol{G}}(A)$.
Proof. Let $x \in \mathbb{C}^{\boldsymbol{G}}(E)$. We prove that $x \in \mathfrak{C}^{\boldsymbol{G}}(J(H))$. Suppose that $x \notin \mathbb{C}^{\boldsymbol{G}}(J(H))$. Then there exists $y \in J(H)-E, S \in \mathscr{K}, y \succ_{G(S)} x$. Set

$$
M_{x}=\left\{z \in J(H): z^{S}=y^{S}\right\}
$$

As $M_{x}$ is nonempty, closed and bounded, there exists $y_{1} \in M_{x}$ such that

$$
\begin{equation*}
\sum_{\Omega-S}\left(y_{1}^{i}-y^{i}\right)=\max _{M_{x} \Omega-S}\left(z^{i}-y^{i}\right) \tag{3.11.2}
\end{equation*}
$$

If $y_{1} \notin E$ then there exists $y_{2} \in H, y_{2} \succ_{\boldsymbol{G}(\Omega)} y_{1}$. It follows from (3.11.1) that there exists $k \in \Omega-S$ such that $y_{2}^{k}>y_{1}^{k}$. Set $y_{3}=\left(y^{s}, y_{2}^{\Omega-S}\right)$. Then $y_{3} \in H$, according to (7), and obviously $y_{3} \in J(H)$. So $y_{3} \in M_{x}$. But,

$$
\sum_{\Omega-S}\left(y_{3}^{i}-y^{i}\right)>\sum_{\Omega-S}\left(y_{1}^{i}-y^{i}\right)
$$

what contradicts to (3.11.2). Hence $y_{1} \in E$ and $y_{1} \succ_{\boldsymbol{G}(S)} x$, what contradicts to $x \in \mathbb{C}^{\boldsymbol{G}}(E)$. Consequently, $x^{\boldsymbol{G}} \in \mathbb{C}(J(H))$. We have proved that $\mathbb{C}_{\dot{G}}^{\boldsymbol{G}}(E) \subset \mathbb{C}^{\boldsymbol{G}}(J(H))$. Using Theorem 3.10 , we obtain $\mathbb{C}^{\boldsymbol{G}}(E)=\mathbb{C}^{G}(J(H)$ ). For the second equality we can proceed analogously.

Lemma 3.5. Let $\boldsymbol{G}$ be a cooperative game. Then

$$
E=J(H)-\operatorname{dom}_{G(\Omega)} J(H), \quad A=J(\bar{A})-\operatorname{dom}_{\boldsymbol{G}(\Omega)} J(\bar{A})
$$

Proof. Lemma follows from the respective definitions.
Lemma 3.6. Let $G$ be a cooperative game. Then

$$
\operatorname{dom}_{\boldsymbol{G}(\Omega)} E=\operatorname{dom}_{\boldsymbol{G}(\Omega)} J(H)
$$

and

$$
\operatorname{dom}_{G(\Omega)} A=\operatorname{dom}_{G(\Omega)} J(\bar{A})
$$

Proof. It follows from Lemma 3.5 immediately that

$$
\operatorname{dom}_{G(\Omega)} E \subset \operatorname{dom}_{G(\Omega)} J(H)
$$

$$
\operatorname{dom}_{G(\Omega)} J(H) \subset \operatorname{dom}_{G(\Omega)} E
$$

Let $x \in \operatorname{dom}_{\boldsymbol{G}(\Omega)} J(H)$ then there exists $x_{1} \in J(H), x_{1} \succ_{G(\Omega)} x$.

$$
\begin{gathered}
M_{x_{1}}=\left\{y \in J(H): y \geqq x_{1}\right\} \\
g(y)=\sum_{\Omega}\left(y^{i}-x^{i}\right)
\end{gathered}
$$

$M_{x_{1}}$ is compact and nonempty, hence there exists $z \in M_{x_{1}}$ such that

$$
g(z)=\max _{M_{x}} g(y)
$$

It is easy to verify that $z \in E$, so $x \in \operatorname{dom}_{G(\Omega)} E$. Analogically for the second equality.
Theorem 3.12. Let $\boldsymbol{G}$ be a two-person cooperative game. Then $\mathbb{C}^{\boldsymbol{G}}(A)=\mathbb{C}^{\boldsymbol{G}}(J(\bar{A}))$.
Proof. Note that in two-person game only the domination via $\Omega$ can be realized. Hence, by lemma 3.6 and Lemma 3.5,

$$
\begin{gathered}
\mathfrak{C}^{\boldsymbol{G}}(A)=A-\operatorname{dom}_{\mathbf{G}} A=A-\operatorname{dom}_{\mathbf{G}(\Omega)} A=A-\operatorname{dom}_{\boldsymbol{G}(\Omega)} J(\bar{A})= \\
=\left[J(\bar{A})-\operatorname{dom}_{\boldsymbol{G}(\Omega)} J(\bar{A})\right]-\operatorname{dom}_{\left.\boldsymbol{G}_{\boldsymbol{G}} \Omega\right)} J(\bar{A})= \\
=J(\bar{A})-\operatorname{dom}_{\mathbf{G}(\Omega)} J(\bar{A})=\mathbb{C}^{\boldsymbol{G}}(J(\bar{A})) .
\end{gathered}
$$

Remark 3.3. We show an example in which $\mathbb{C}^{\boldsymbol{G}}(A) \neq \mathfrak{C}^{\boldsymbol{G}}(J(\bar{A})) . \Omega=\{1,2,3\}$, $\mathscr{K}=\{\{1\},\{2\},\{3\},\{1,2\}, \Omega\}, v^{1}=v^{2}=v^{3}=0, v(\{1,2\})=\left\{x \in R^{3}: x^{2}+x^{3} \leqq\right.$ $\left.\leqq 2, x^{2}+2 x^{1} \leqq 2, x^{3}+2 x^{1} \leqq 2\right\}, H=\left\{x \in R_{+}^{3}: x^{2}+x^{3} \leqq 2, x^{2}+x^{1} \leqq 2\right.$, $\left.x^{3}+x^{1} \leqq 2\right\}, v(\Omega)=\left\{x \in R^{3}: \exists y \in H: y \geqq x\right\}, h(\Omega)=1 / 3, h(\{1,2\})=h(\{i\})=$ $=1$. Game $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$ is guaranted and ordinary. $H$ is a compact polyhedron fulfilling (7). Let $x=(0,0,2)$, obviously $x \in A=E$. Let $0<\varepsilon<0,1$ and $y=(\varepsilon / 3, \varepsilon, 2-\varepsilon)$. We can easily verify that $y \in J(\bar{A})=J(H)$ and $y \in v(\{1,2\})$, thus $y \succ_{\boldsymbol{G}(\{1,2\})} x$. We conclude $x \notin \mathbb{C}^{G}(J(\bar{A}))$. We show that $x \in \mathbb{C}^{\boldsymbol{G}}(A)$ by contradiction. Let there exists $z \in A$ such that $z\rangle_{G} x$. We see that $z$ dominates $x$ only via $\{1,2\}$. Hence $0<z^{1}, z^{2}<2, z^{2}+2 z^{1} \leqq 2, z^{3}+2 z^{1} \leqq 2$. Set $z_{1}=\left(2 z^{1}, z^{2}, z^{3}\right)$ then obviously $z_{1} \in H=\bar{A}, z_{1} \succ_{\boldsymbol{G}(\Omega)} z$ what contradicts to $z \in A$. So $x \in \mathbb{C}^{\boldsymbol{G}}(A)$.

## 4. Solution

Definition 4.1. Let $\boldsymbol{G}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$ be a cooperative game and let $P \subset H$. Then a set $V \subset P$ is called $P$-solution iff

$$
V=P-\operatorname{dom}_{G} V
$$

We denote it by $\Theta^{G}(P)$.

Remark 4.1. If $\mathbb{S}^{\boldsymbol{G}}(P)$ exists then $\mathbb{C}^{\boldsymbol{G}}(P) \subset \mathfrak{S}^{\boldsymbol{G}}(P)$.
Remark 4.2. Suppose that

$$
\begin{equation*}
x \in P \cap \operatorname{dom}_{G} P \Rightarrow \exists y \in P-\operatorname{dom}_{G} P: y \succ_{G} x \tag{4.2.1}
\end{equation*}
$$

Then $\mathfrak{C}^{G}(P)=\mathbb{S}^{G}(P)$.
Proof. $\mathbb{C}^{\boldsymbol{G}}(P)=P-\operatorname{dom}_{\boldsymbol{G}} P$. It follows from (4.2.1) that

$$
P \cap \operatorname{dom}_{G} P \subset P \cap \operatorname{dom}_{G} \mathbb{C}^{G}(P) \Rightarrow P \cap \operatorname{dom}_{G} P=P \cap \operatorname{dom}_{G} \mathbb{C}_{G}^{G}(P)
$$

for $\operatorname{dom}_{\boldsymbol{G}} \mathbb{C}^{\boldsymbol{G}}(P) \subset \operatorname{dom}_{\boldsymbol{G}} P$. Hence, $P-\operatorname{dom}_{\boldsymbol{G}} \mathbb{C}^{\boldsymbol{G}}(P)=P-P \cap \operatorname{dom}_{\boldsymbol{G}} \mathbb{C}^{\boldsymbol{G}}(P)=$ $=P-P \cap \operatorname{dom}_{\boldsymbol{G}} P=P-\operatorname{dom}_{\boldsymbol{G}} P=\mathbb{C}^{\boldsymbol{G}}(P) \Rightarrow \mathbb{C}^{\boldsymbol{G}}(P)$ is $P$-solution.

Theorem 4.1. Let $\boldsymbol{G}$ be a cooperative game. Then for every $x \in H-E$ there exists $y \in E$ such that $y \succ_{G(\Omega)} x$. In addition, if $\bar{A} \neq \emptyset$ then for every $x \in \bar{A}-A$ there exists $y \in A$ such that $y \succ_{G(\Omega)} x$.

Proof. Let $x \in H-E$. If $x \in J(H)$ then, according to Lemma 3.5 and Lemma 3.6, there exists $y \in E, y \succ_{G(\Omega)} x$. If $x \notin J(H)$, we set

$$
M_{x}=\{z \in H: z>x\}, \quad f(z)=\min _{i \in \Omega}\left(z^{i}-x^{i}\right) \text { for } z \in H
$$

$H$ is compact, consequently there exists $y_{1} \in H$ such that

$$
f\left(y_{1}\right)=\max _{\boldsymbol{H}} f(z)
$$

$M_{x} \neq \emptyset \Rightarrow f\left(y_{1}\right)>0 \Rightarrow y_{1} \in M_{x}$, i.e. $y_{1}>x$. Obviously $y_{1} \in J(H)$ and, applying the foregoing reasoning, we obtain the assertion. Analogically for the second assertion.

Theorem 4.2. Let $G$ be a cooperative game and let $\bar{A} \neq \emptyset$. Let $A \subset P \subset \bar{A}$ be an arbitrary set. Then a set $K$ is $A$-solution if and only if it is $P$-solution.

Proof. Let $K$ be $A$-solution. We show that

$$
\begin{equation*}
P-A \subset \operatorname{dom}_{G} K \tag{4.2.2}
\end{equation*}
$$

According to Theorem 4.1

$$
x \in P-A \Rightarrow \exists y \in A, \quad y \succ_{G(\Omega)} x
$$

If $y \in K$ then $x \in \operatorname{dom}_{G} K$. If $y \in \operatorname{dom}_{G} K$ then $\exists z \in K, z \succ_{G} y \Rightarrow z \succ_{G} x \Rightarrow x \in$ $\in$ dom $_{G} K$. It follows from (4.2.2) that

$$
P-\operatorname{dom}_{G} K=A-\operatorname{dom}_{G} K=K
$$

So, $K$ is really $P$-solution. Let, now, $K$ be $P$-solution. Then, applying the same reasoning, we obtain (4.2.2), and, consequently, $K \subset A$; hence $K$ is $A$-solution.

Definition 4.2. $\Theta^{\boldsymbol{G}}(\bar{A})$, provided that it exists, is called a solution of game $\boldsymbol{G}$ and is denoted by $\mathbb{E}(\boldsymbol{G})$.

Theorem 4.3. Every two-person cooperative game has its unique solution and it is the set $A$.

Proof. Theorem follows immediately from foregoing definitions and theorems.
Definition 4.3. Cooperative game $G=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$ is called a constant-sum game if $H$ is a subset of the set

$$
\left\{x: \sum_{\Omega} x^{i}=e\right\}
$$

where $e$ is a constant number.
Theorem 4.4. Let $\boldsymbol{G}$ be a three-person cooperative constant-sum game. Let $h(S)>$ $>1 / 2$ for all two-person coalitions from $\mathscr{K}$. Then $\mathbb{S}^{G}(\bar{A})$ exists.
Proof. If $\mathscr{K} \neq \exp \Omega$ then for all $S \in \exp \Omega-\mathscr{K}$ we define $v(S)$ such that $v(S) \cap H=\emptyset$. It is easy to verify that in such game the relation of domination may be realized only via two-person coalition. Now, we can use the result given in [4] for the game $G_{1}=(\Omega, \exp \Omega, v, H, 1)$, where $1(S)=1$ for all $S \in \exp \Omega$, and the solutions of $\boldsymbol{G}_{1}$ are identical with the ones of $\boldsymbol{G}$.

Remark 4.3. Without the condition $h(S)>1 / 2$ for all two-person coalitions from $\mathscr{K}$ Theorem 4.4 could fail. We give the following counter-example. $\mathscr{K}=\exp \Omega, \Omega=$ $=\{1,2,3\}, \quad v^{i}=0 ; H=\left\{x \geqq 0: x^{1}+x^{2}+x^{3}=1\right\}=A, \quad v(\Omega)=\{x: \exists y \in H$, $y \geqq x\}=v(\{i, j\}), i, j=1,2,3 ; h \equiv 1 / 2$. Then $x, y \in A \Rightarrow x \succ_{G} y$ or $y \succ_{G} x$, hence there exists no solution of $\boldsymbol{G}$.

## CHAPTER II: COOPERATIVE MARKET WITHOUT TRANSFERABLE UTILITY

In this chapter we shall deal with markets with possibility of cooperation among participants but without any transferable utility. We shall define the concepts of core, solution, optimum and equilibrium in general sense. We shall derive some relations among these concepts and Theorem about the existence of equilibrium.

## 5. Preference, Utility Function

Definition 5.1. Linear relation $\geqq$ on $R_{+}^{m} \times R_{+}^{m}$ is called a preference if it fulfills the following conditions

1. Reflexivity $\quad x \in R_{+}^{m} \Rightarrow x \geqq x$.
2. Transitivity $\quad x, y, z \in R_{+}^{m}, x \geqq y$ and $y \geqq z \Rightarrow x \geqq z$.
3. Completness $x, y \in R_{+}^{m} \Rightarrow x \geqq y$ or $y \geqq x$.

Further we denote

$$
\begin{aligned}
& x \sim y \text { if } x \geqq y \text { and } y \geqq x, \\
& x \succ y \text { if } x \geqq y \text { and } \neg(y \geqq x) .
\end{aligned}
$$

Definition 5.2. Let $\geqq$ be a preference on $R_{+}^{m} \times R_{+}^{m}$. A function $u: R_{+}^{m} \rightarrow R$ is called utility function corresponding to $\geqq$, if $x \geqq y \Leftrightarrow u(x) \geqq u(y)$ for all $x, y \in R_{+}^{m}$.

Definition 5.3. Let $\geqq$ be a preference on $R_{+}^{m} \times R_{+}^{m}$. For every $\bar{x} \in R_{+}^{m}$ we set

$$
\begin{aligned}
& G_{\bar{x}}(\geqq)=\left\{x \in R_{+}^{m}: \bar{x} \geqq x\right\}, \\
& F_{\bar{x}}(\geqq)=\left\{x \in R_{+}^{m}: x \geqq \bar{x}\right\} .
\end{aligned}
$$

Then $\geqq$ is called continuous if $G_{\bar{x}}(\geqq)$ and $F_{\bar{x}}(\geqq)$ are closed for all $\bar{x} \in R_{+}^{m}$.
Theorem 5.1. A preference $\geqq$ is continuous if and only if there exists a continuous utility function corresponding to $\geqq$.

Proof. See [1], page 4.2, Theorem 2.1.
Definition 5.4. A preference $\geqq$ is called convex if

$$
x \geqq y, \quad 0 \leqq \alpha \leqq 1 \Rightarrow \alpha x+(1-\alpha) y \geqq y \quad \text { for all } \quad x, y \in R_{+}^{m}
$$

strictly convex if

$$
x \geqq y, \quad x \neq y, \quad 0<\alpha<1 \Rightarrow \alpha x+(1-\alpha) y>y,
$$

monotonous if

$$
x \geqq y \Rightarrow x \geqq y,
$$

strictly monotonous if

$$
x \neq y, \quad x \geqq y \Rightarrow x \succ y,
$$

and positively monotonous if

$$
x>y \Rightarrow x>y .
$$

## 6. Definition of Market

We suppose that there are altogether $n$ participants (players) and $m$ sorts of goods (commodities). Every participant has certain initial quantity of goods and values it according to his preference. Participants barter their goods in order to make the

344 consequent distribution as advantageous as possible for all of them. There are only some permissible coalitions in which we suppose so called direct democracy law (see Chapter I).

Definition 6.1. A cooperative market is the sixtuple

$$
\mathbf{m}=\left(\Omega, \mathscr{K}, R_{+}^{m},\left(\succeq_{i}\right)_{i \in \Omega},\left(a^{i}\right)_{i \in \Omega}, h\right),
$$

where $\Omega=\{1,2, \ldots, n\}$ is the set of participants, $\mathscr{K} \subset \exp \Omega, \Omega \in \mathscr{K}$, is the set of available coalitions, $\geqq_{i}, i \in \Omega$, is the preference of participant $i, a^{i} \in R_{+}^{m}, a^{i} \nleftarrow 0$, is the initial quantity of goods of player $i, h \in \mathscr{F}(\mathscr{K})$ is a decision function (see Chapter I, Definition 1.2).

Further we denote

$$
\boldsymbol{m}(K)=\left\{\left(x^{i}\right)_{i \in \Omega}: x^{i} \in R_{+}^{m} \text { for all } i \in \Omega, \sum_{K} x^{i} \leqq \sum_{K} a^{i}\right\}
$$

for $K \in \mathscr{K}$,

$$
m(0)=\underset{\Omega}{\times} R_{+}^{m}=\left\{\left(x^{i}\right)_{i \in \Omega}: x^{i} \in R_{+}^{m}, i \in \Omega\right\} .
$$

Definition 6.2. The set

$$
\mathscr{P}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{m}\right)^{\prime} \in R_{+}^{m}, \sum_{i=1}^{m} p_{i}=1\right\}
$$

is called the space of price vectors.
For $p \in \mathscr{P}, K \in \mathscr{K}$ we denote $\boldsymbol{B}_{p}^{\Omega}=\boldsymbol{m}(\Omega)$ and

$$
B_{p}^{K}=\left\{\left(x^{i}\right)_{i \in \Omega}: x^{i} \in R_{+}^{m}, i \in \Omega, \sum_{K} p x^{i} \leqq \sum_{K} p a^{i}\right\},
$$

and we call it the budget-set of coalition $K$ according to price vector $p$.
Definition 6.3. A pair $(x, p)$, where $x \in \boldsymbol{m}(\Omega), p \in \mathscr{P}$, is called market state.

## 7. Core, Solution, Optimum and Equilibrium

Definition 7.1. Let $\boldsymbol{m}$ be a cooperative market, let $x, y \in \times R_{+}^{m}$. Then we say that $x$ dominates $y$ via $K \in \mathscr{K}$ and write $x \succ_{\boldsymbol{m}(K)} y$, if $x \in \boldsymbol{m}(K), x^{\Omega} \geqq y^{K}$; it means $x^{i} \geqq_{i} y^{i}$ for all $i \in K$, and

$$
\frac{|K(x \succ y)|}{\mid K} \geqq h(K),
$$

where $K(x\rangle y)=\left\{i \in K: x^{i} \succ_{i} y^{i}\right\}$. Further, we say that $x$ dominates $y$ and write $x \succ_{\boldsymbol{m}} y$ if there exists $K \in \mathscr{K}$ such that $x \succ_{\boldsymbol{m}(K)} y$.

Definition 7.2. Let $P \in \boldsymbol{m}(\Omega)$. We define

$$
\begin{gathered}
\operatorname{dom}_{m(K)} P=\left\{x \in \times R_{+}^{m}: \exists y \in 0: y \succ_{m(K)} x\right\} \\
\operatorname{dom}_{m} P=\bigcup_{K} \operatorname{dom}_{m(K)} P
\end{gathered}
$$

The set $\mathbb{C}^{m}(P)=P-\operatorname{dom}_{\boldsymbol{m}} P$ is called $P$-core; the $\boldsymbol{m}(\Omega)$-core is called the core of market and we denote it by $\mathbb{C}(m)$. A set $Q \subset P$ is called $P$-solution and denoted by $\mathbb{S}^{m}(P)$ if $Q=P-\operatorname{dom}_{m} Q . m(\Omega)$-solution is called a solution of market.

Definition 7.3. Let $(\bar{x}, \bar{p})$ be a state of market $\boldsymbol{m}$. Then $(\bar{x}, \bar{p})$ is called optimum of $\boldsymbol{m}$ if there exists no $K \in \mathscr{K}$ with $y \in \boldsymbol{B}_{\bar{p}}^{K}, y^{K} \geqq x^{K}$ and $|K(y \succ x)|||K| \geqq h(K)$. In addition, if $\bar{x} \in B_{\bar{p}}^{K}$ for all $K \in \mathscr{K}$ then ( $\bar{x}, \bar{p}$ ) is called an equilibrium of $\boldsymbol{m}$. An optimum resp. equilibrium $(\bar{x}, \bar{p})$ is strong if

$$
\sum_{\Omega} x^{i}=\sum_{\Omega} a^{i}
$$

Theorem 7.1. Let $(\bar{x}, \bar{p})$ be an optimum of $\boldsymbol{m}$, then $\bar{x} \in \mathbb{C}(\boldsymbol{m})$.
Proof. If $\bar{x} \notin \mathbb{C}(\boldsymbol{m})$ then $\exists K \in \mathscr{K} \exists y \in \boldsymbol{m}(K), y^{K} \geqq x^{K}$ and $|K(y \succ x)|||K| \geqq h(K)$. $\boldsymbol{m}(K) \subset \boldsymbol{B}_{p}^{K}$ for all $p \in \mathscr{P} \Rightarrow y \in \boldsymbol{B}_{\bar{p}}^{K}$. It contradicts the property of optimum ( $(\bar{x}, \bar{p})$. So $\bar{x} \in \mathbb{C}(\boldsymbol{m})$.

Theorem 7.2. Let $\boldsymbol{m}$ be a market and let $(\bar{x}, \vec{p})$ be an optimum of $\boldsymbol{m}$. If there exists at least one player from $\Omega$ with monotonous preference then there exists $\hat{x} \in \boldsymbol{m}(\Omega)$ such that $(\hat{x}, \bar{p})$ is a strong optimum of $\boldsymbol{m}$.
Proof. Let $k \in \Omega, \geqq_{k}$ is monotonous. We set

$$
\hat{x}^{i}=\bar{x}^{i}, \quad i \neq k, \quad \hat{x}^{k}=\bar{x}^{k}+\sum_{\Omega} a^{i}-\sum_{\Omega} \bar{x}^{i} .
$$

Then we can easily verify that $(\hat{x}, \bar{p})$ is a strong optimum of $\boldsymbol{m}$.
Definition 7.4. Let $\mathscr{S} \subset \exp \Omega$. Then we set

$$
[\mathscr{L}]=\left\{K: \exists K_{1}, \ldots, K_{r} \in \mathscr{S}, K=\bigcup_{i=1}^{r} K_{i}\right\}
$$

$\mathscr{S}$ is a coalition structure if all coalitions from $\mathscr{S}$ are disjoint and $\bigcup_{K \in \mathscr{S}} K=\Omega$.
Theorem 7.3. Let $\boldsymbol{m}$ be a market. Let $\mathscr{S} \subset \mathscr{K} \subset[\mathscr{S}]$ where $\mathscr{S}$ is a coalition structure in which each coalition has at least one player with monotonous preference. Let $(\bar{x}, \vec{p})$ be an equilibrium of $\boldsymbol{m}$. Then there exists $\hat{x}$ such that $(\hat{x}, \vec{p})$ is a strong equilibrium of $\boldsymbol{m}$.

Proof. Set

$$
z=\sum_{\Omega} a^{i}-\sum_{\Omega} \bar{x}^{i}
$$

Suppose that $z \nless 0$ as otherwise there is nothing to prove. Let

$$
\mathscr{S}=\left\{K_{j}, j=1,2, \ldots, r\right\}
$$

If $\bar{p}^{\prime} z>0$, we set

$$
\varepsilon_{j}=\sup \left\{\varepsilon: \bar{p}^{\prime}\left(\sum_{K_{j}} \bar{x}^{i}+\varepsilon z\right) \leqq \bar{p}^{\prime} \sum_{K_{j}} a^{i}\right\}, \quad j=1, \ldots, r .
$$

If $\bar{p}^{\prime} z=0$, we set

$$
\varepsilon_{j}=\frac{1}{r}, \quad j=1, \ldots, r
$$

Let $k_{j} \in K_{j}$ be the mentioned player whose preference is monotonous; we set

$$
\begin{array}{ll}
\hat{x}^{i}=\bar{x}^{i} \text { for } i \neq k_{j}, & j=1, \ldots, r \\
\hat{x}^{k_{j}}=\bar{x}^{k_{j}}+\varepsilon_{j} z, & j=1, \ldots, r
\end{array}
$$

Then

$$
\begin{gathered}
\sum_{\Omega} \hat{x}^{i}=\sum_{\Omega} \bar{x}^{i}+z \sum_{j=1}^{r} \varepsilon_{j}=\sum_{\Omega} a^{i} \Rightarrow \hat{x} \in \boldsymbol{m}(\Omega), \\
\sum_{K} \bar{p}^{\prime} \hat{x}^{i}=\sum_{K} \bar{p}^{\prime} a^{i} \text { for } K \in \mathscr{S} \Rightarrow \hat{x} \in \boldsymbol{B}_{\bar{p}}^{K} \quad \text { for } \quad K \in \mathscr{K}
\end{gathered}
$$

and $\hat{x} \geqq \bar{x}$ for the monotonity of $\geqq_{k_{j}}, j=1, \ldots, r$. So $(\hat{x}, \bar{p})$ is a strong equilibrium of $m$.

Remark 7.1. Suppose, in addition, that for every $j=1,2, \ldots, r$ there exists $K_{j}^{*} \subset K_{j}$ such that $\left|K_{j}^{*}\right| /\left|K_{j}\right| \geqq h\left(K_{j}\right)$ and $\geqq_{i}, i \in K_{j}$, are strictly monotonous. Then every equilibrium is already a strong equilibrium.

Theorem 7.4. Let $\boldsymbol{m}$ be a market. Let $\mathscr{K}$ fulfil condition
(7.4) $\forall S \in \mathscr{K} \exists S_{1}, \ldots, S_{r} \in \mathscr{K}, S, S_{1}, \ldots, S_{r}$ are mutually disjoint, $S \cup S_{1} \cup S_{2} \cup \ldots$ $\ldots \cup S_{r}=\Omega$ and $\exists S^{*} \subset S,\left|S^{*}\right| /|S| \geqq h(S)$ such that $\geqq_{i}, i \in S^{*}$, are positively monotonous.
Then every optimum of $\boldsymbol{m}$ is also an equilibrium of $\boldsymbol{m}$.
Proof. If $(\bar{x}, \bar{p})$ is an optimum and it is not equilibrium then there exists $S \in \mathscr{K}$ such that $\bar{x} \notin \boldsymbol{B}_{\bar{p}}^{S}$, it means

$$
\begin{equation*}
\sum_{S} \bar{p}^{\prime} \bar{x}^{i}>\sum_{S} \bar{p}^{\prime} a^{i} \tag{7.4.1}
\end{equation*}
$$

Let $S_{1}, S_{2}, \ldots, S_{r} \in \mathscr{K}$ fulfil (7.4). Since

$$
\bar{x} \in \boldsymbol{m}(\Omega) \Rightarrow \sum_{\Omega} \bar{x}^{i} \leqq \sum_{\Omega} a^{i} \Rightarrow \bar{p}^{\prime} \sum_{\Omega} \bar{x}^{i} \leqq \bar{p}^{\prime} \sum_{\Omega} a^{i}
$$

then also
(7.4.2) $\sum_{S} \bar{p}^{\prime} \bar{x}^{i}+\sum_{S_{1}} \bar{p}^{\prime} \bar{x}^{i}+\ldots+\sum_{S_{r}} \bar{p}^{\prime} \bar{x}^{i} \leqq \sum_{S} \bar{p}^{\prime} a^{i}+\sum_{S_{1}} \bar{p}^{\prime} a^{i}+\ldots+\sum_{S_{r}} \bar{p}^{\prime} a^{i}$.

It follows from (7.4.1) and (7.4.2) that there exists $S_{j}=K$ among $S_{1}, \ldots, S_{r}$ such that

$$
\begin{equation*}
\sum_{K} \bar{p}^{\prime} \bar{x}^{i}<\sum_{K} \bar{p}^{\prime} a^{i} . \tag{7.4.3}
\end{equation*}
$$

Let $K^{*}=\left\{i \in K: \geqq_{i}\right.$ positively monotonous $\}$ then, according to (7.4), $\left|K^{*}\right|||K| \geqq$ $\geqq h(K)$. We choose $z>0$ such that

$$
\bar{p}^{\prime} z=\sum_{K} \bar{p}^{\prime} a^{i}-\sum_{K} \bar{p}^{\prime} \bar{x}^{i}>0 .
$$

Set

$$
\begin{aligned}
& \hat{x}^{i}=\bar{x}^{i} \text { for } i \notin K^{*}, \\
& \hat{x}^{i}=\bar{x}^{i}+\frac{1}{\left|K^{*}\right|} z \text { for } i \in K^{*} .
\end{aligned}
$$

Then obviously $\hat{x} \in B_{\bar{p}}^{K}, \hat{x}^{i} \succ_{i} \bar{x}^{i}$ for $i \in K^{*}$, and it contradicts to the property of optimum $(\bar{x}, \bar{p})$. Hence $(\bar{x}, \bar{p})$ is an equilibrium.

Theorem 7.5. Let $\boldsymbol{m}_{1}$ and $\boldsymbol{m}_{2}$ be markets,

$$
\begin{aligned}
& \boldsymbol{m}_{1}=\left(\Omega, \mathscr{H}, R_{+}^{m},\left(\geqq_{i}\right)_{i \in \Omega},\left(a^{i}\right)_{i \in \Omega}, h_{1}\right), \\
& \boldsymbol{m}_{2}=\left(\Omega, \mathscr{K}, R_{+}^{m},\left(\geqq_{i}\right)_{i \in \Omega},\left(a^{i}\right)_{i \in \Omega}, h_{2}\right) .
\end{aligned}
$$

Let $\mathscr{H}-\{\Omega\}$ include only mutually disjoint coalitions, $\mathscr{K} \subset[\mathscr{H}], h_{2}(S) \geqq h_{1}(S)$ for $S \in \mathscr{K} \cap \mathscr{H}$ and $h_{2}(S) \geqq \max \left\{h_{1}\left(S_{1}\right), \ldots, h_{1}\left(S_{r}\right)\right\}$ for $S \in K, S=S_{1} \cup \ldots \cup S_{r}$, $S_{i} \in \mathscr{H}, i=1, \ldots, r$. Further, we suppose that for all $S \in \mathscr{H}$ is $\left|S^{*}\right|\left||S| \geqq h_{1}(S)\right.$ where

$$
S^{*}=\left\{i \in S: \geqq_{i} \text { is positively monotonous }\right\} .
$$

Then every optimum, resp. equilibrium, of $\boldsymbol{m}_{1}$ is the one of $\boldsymbol{m}_{2}$.
Proof. Let $(\bar{x}, \bar{p})$ be an optimum of $\boldsymbol{m}_{1}$. If $(\bar{x}, \bar{p})$ is no optimum of $\boldsymbol{m}_{2}$ then there exists $K \in \mathscr{K}$ and $y \in \boldsymbol{B}_{\bar{p}}^{K}$ so that $y^{K} \geqq x^{K}$ and $|K(y \succ \bar{x})|\left||K| \geqq h_{2}(K)\right.$, where $K(y>\bar{x})=\left\{i \in K: y^{i}>_{i} x^{i}\right\}$. Let $K_{1}, \ldots, K_{r} \in \mathscr{H}$ such that $K=K_{1} \cup \ldots \cup K_{r}$, $K_{i} \neq \Omega$. Then:
(i) Either $y \in \boldsymbol{B}_{\bar{p}}^{K_{1}}, i=1, \ldots, r$. Then there exists $K_{j}$ among $K_{1}, \ldots, K_{r}$ such that $\left|K_{j}(y \succ \bar{x})\right|\left|\left|K_{j}\right| \geqq h_{1}\left(K_{j}\right)\right.$ for $h_{2}(K) \geqq \max \left\{h_{1}\left(K_{1}\right), \ldots, h_{2}\left(K_{r}\right)\right\}$ and it contradicts to the assumption that $(\bar{x}, \bar{p})$ is optimum of $\boldsymbol{m}_{1}$.
(ii) Or there exists $K_{i} \in\left\{K_{1}, \ldots, K_{r}\right\}$ such that $y \notin \boldsymbol{B}_{\bar{p}}^{K_{i}} ; y \in \boldsymbol{B}_{\bar{p}}^{K} \Rightarrow \exists K_{j} \in$ $\in\left\{K_{1}, \ldots, K_{r}\right\}$ such that

$$
\sum_{K_{j}} \bar{p}^{\prime} y^{i}<\sum_{K_{j}} \bar{p}^{\prime} a^{i} .
$$

Let us choose $z>0, z \in R_{+}^{m}$ such that

$$
\bar{p}^{\prime} z=\sum_{K_{j}} \bar{p}^{\prime} a^{i}-\sum_{K_{j}} \bar{p}^{\prime} y^{i}
$$

and set

$$
\begin{aligned}
& \bar{y}^{i}=y^{i} \text { for } i \notin K_{j}^{*}=\left\{i \in K_{j}: \geqq_{i} \text { positively monotonous }\right\}, \\
& \bar{y}^{i}=y^{i}+\frac{1}{\left|K_{j}^{*}\right|} z \text { for } i \in K_{j}^{*}
\end{aligned}
$$

Obviously $\bar{y} \in B_{\bar{p}}^{K_{j}}, \bar{y}^{K} \geqq \bar{x}^{K}$ and $\left(K_{j}(\bar{y} \succ \bar{x})| |\left|K_{j}\right| \geqq h_{1}\left(K_{j}\right)\right.$ and it is a contradiction with properties of the optimum ( $\bar{x}, \bar{p}$ ). Hence, $(\bar{x}, \bar{p})$ is an optimum of $\boldsymbol{m}_{2}$. In the same way we may prove the statement for equilibrium.

Remark 7.2. Let us denote

$$
\begin{aligned}
& \mathfrak{R}(\boldsymbol{m})=\{x: \exists p \in \mathscr{P},(x, p) \text { is an equilibrium of } \boldsymbol{m}\}, \\
& \mathfrak{O}(\boldsymbol{m})=\{x: \exists p \in \mathscr{P},(x, p) \text { is an optimum of } \boldsymbol{m}\} .
\end{aligned}
$$

We know that $\mathfrak{R}(\boldsymbol{m}) \subset \mathfrak{D}(\boldsymbol{m}) \subset \mathfrak{C}(m)$ and $\mathfrak{R}(m)=\mathfrak{D}(m)$ under relatively weak assumptions. But, if the set of players is finite then $\mathfrak{D}(\boldsymbol{m}) \neq \mathfrak{C}(\boldsymbol{m})$ even if $\boldsymbol{m}$ fulfills much stronger assumptions. We testify it by the following example.

$$
\Omega=\{1,2\}, \quad \mathscr{K}=\exp \Omega, \quad a^{1}=\binom{1}{2}, \quad a^{2}=\binom{2}{1},
$$

$u_{1}, u_{2}$ are utility functions corresponding to $\geqq_{1}, \geqq_{2}$,

$$
u_{1}(x)=u_{2}(x)=x_{1} \cdot x_{2} .
$$

We can easily verify that $\geqq_{i} ; i=1,2$, are positively monotonous and convex. Let $h \in \mathscr{F}(\mathscr{K})$ be an arbitrary decision function. Let

$$
\bar{x}^{1}=\binom{\sqrt{ } 2}{\sqrt{2}}, \quad \bar{x}^{2}=\binom{3-\sqrt{ } 2}{3-\sqrt{ } 2}, \quad \bar{x}=\left(x^{i}\right)_{i=1,2}
$$

We show that $\bar{x} \in \mathbb{C}(\mathbf{m})$; let, on the contrary, $\bar{x} \notin \mathbb{C}(\mathbf{m})$. Then there exists $y$ such that $y>_{m} \bar{x}$.

$$
\begin{aligned}
& u_{1}\left(\bar{x}^{1}\right)=\sqrt{ } 2 \cdot \sqrt{ } 2=2=u_{1}\left(a^{1}\right) \\
& u_{2}\left(\bar{x}^{2}\right)=(3-\sqrt{ })^{2}>2=u_{2}\left(a^{2}\right) .
\end{aligned}
$$

Consequently, $y$ dominates $\bar{x}$ only via $\{1,2\}$. Without loss of generality we suppose that

$$
y^{1} \succ_{1} \bar{x}^{1} \Rightarrow y_{1}^{1} \cdot y_{2}^{1}>2 \Rightarrow y_{1}^{1}+y_{2}^{1}>2 \sqrt{ } 2
$$

and

$$
y^{2} \geqq \geqq_{2} \bar{x}^{2} \Rightarrow y_{1}^{2} y_{2}^{2} \geqq(3-\sqrt{ } 2)^{2} \Rightarrow y_{1}^{2}+y_{2}^{2} \geqq 2(3-\sqrt{ } 2)
$$

Hence, $y_{1}^{1}+y_{2}^{1}+y_{1}^{2}+y_{2}^{2}>2 \sqrt{ } 2+2(3-\sqrt{ } 2)=6$. It is not possible, as $y \in$ $\in \boldsymbol{m}(\Omega) \Rightarrow y_{1}^{1}+y_{1}^{2} \leqq 3$ and $y_{2}^{2}+y_{2}^{1} \leqq 3$. It means that $\bar{x} \in \mathbb{C}(\boldsymbol{m})$. Now, we show that $\bar{x} \notin \mathfrak{O}(m)$, it means that there exists no $p \in \mathscr{P}$ such that $(\bar{x}, p)$ is an optimum of $\boldsymbol{m}$. We divide the proof into three cases:
(i) $p=\left(p_{1}, p_{2}\right)^{\prime} \in \mathscr{P}, p_{1}=0$ or $p_{2}=0$.

We choose $y_{1}=1, y_{2}>2$ resp. $y_{1}>2, y_{2}=1$ for $p_{2}=0$ resp. $p_{1}=0$. We may easily verify that

$$
\left\{\begin{array}{l}
p_{1} y_{1}+p_{2} y_{2}=p_{1} a_{1}^{1}+p_{2} a_{2}^{1}=p_{1}+2 p_{2},  \tag{*}\\
y_{1} y_{2}>2=u_{1}\left(\bar{x}^{1}\right),
\end{array}\right.
$$

what means that $(\bar{x}, p)$ is not optimum of $\boldsymbol{m}$.
(ii) $p_{i} \neq 0, i=1,2, \quad p_{2} \neq \frac{1}{3}$. We set $y_{1}=\left(1+p_{2}\right) / 2 p_{1}, \quad y_{2}=\left(1+p_{2}\right) / 2 p_{2}$. Obviously

$$
\begin{gathered}
p_{1} y_{1}+p_{2} y_{2}=1+p_{2}=p_{1} a_{1}^{1}+p_{2} a_{2}^{1} \\
y_{1} y_{2}=\left(1+p_{2}\right)^{2} / 4 p_{1} p_{2}=\left(p_{1}+2 p_{2}\right)^{2} / 4 p_{1} p_{2}>2
\end{gathered}
$$

So the pair $\left(y_{1}, y_{2}\right)^{\prime}$ fulfills $(*)$, hence $(\bar{x}, p)$ is not optimum of $\boldsymbol{m}$.
(iii) $p_{1}=\frac{2}{3}, p_{2}=\frac{1}{3}$ :

Let us choose

$$
y_{2}=\frac{5}{2}, \quad y_{1}=\frac{5}{4} .
$$

Then

$$
\begin{gathered}
p_{1} y_{1}+p_{2} y_{2}=\frac{2}{3} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{5}{2}=1+\frac{2}{3}=a_{1}^{2} p_{1}+a_{2}^{2} p_{2}, \\
y_{1} y_{2}=\frac{5}{2} \cdot \frac{1}{4}=\frac{25}{8}>11-6 \sqrt{ } 2=u_{2}\left(\bar{x}^{2}\right)
\end{gathered}
$$

and it means $(\bar{x}, p)$ is not optimum of $m$.

## 8. Competitive Equilibrium, Existence of Equilibrium

Definition 8.1. Let $\boldsymbol{m}$ be a market. Market state $(\bar{x}, \bar{p})$ is called a competitive equilibrium if
1)

$$
\begin{gathered}
\bar{x} \in \boldsymbol{B}_{\bar{p}}^{i} \text { for all } i=1, \ldots, n, \\
y \in \times R_{+}^{m}, \quad y^{i} \succ_{i} \bar{x}^{i} \Rightarrow y \notin \boldsymbol{B}_{\bar{p}}^{i}
\end{gathered}
$$

A competitive equilibrium ( $\bar{x}, \bar{p}$ ) is called strong if

$$
\sum_{\Omega} \bar{x}^{i}=\sum_{\Omega} a^{i} .
$$

Theorem 8.1. Let $\boldsymbol{m}$ be a market, let $\succ_{i}, i \in \Omega$, be monotonous and let $(\bar{x}, \bar{p})$ be a competitive equilibrium of $\boldsymbol{m}$. Then there exists $\hat{x}$ such that $(\hat{x}, p)$ is a strong competitive equilibrium of $\boldsymbol{m}$.

Proof. The proof is analogous to the proof of Theorem 7.3.
Theorem 8.2. (Existence of competitive equilibrium.) Let $\succeq_{i}, i \in \Omega$, be continuous and convex. Then there exists a competitive equilibrium of $\boldsymbol{m}$. Moreover, if $\geqq_{i}, i \in \Omega$, are monotonous, then there exists a strong competitive equilibrium of $\boldsymbol{m}$.

Proof. See [1], page 54, Theorem 4.8.
Theorem 8.3. Let $\boldsymbol{m}$ be a market. Let $\geqq_{i}$ be positively monotonous for all $i \in \Omega$. Then every (strong) competitive equilibrium of $\boldsymbol{m}$ is a (strong) equilibrium of $\boldsymbol{m}$.

Proof. Let $(\bar{x}, \bar{p})$ be a (strong) competitive equilibrium. Suppose that $(\bar{x}, \bar{p})$ is not (strong) equilibrium. Then there exists $K \in \mathscr{K}, y \in \boldsymbol{B}_{\bar{p}}^{K}$ such that

$$
y^{K} \geqq \bar{x}^{K} \quad \text { and } \quad|K(y \succ x)|||K| \geqq h(K) .
$$

According to Definition of competitive equilibrium we have

$$
\begin{equation*}
\bar{p}^{\prime} y^{i}>\bar{p}^{\prime} a^{i}, \quad i \in K(y \succ \bar{x}) . \tag{8.3.1}
\end{equation*}
$$

Then there exists $j \in K$ such that $\bar{p}^{\prime} y^{j}<\bar{p}^{\prime} a^{j}$ for $y \in \boldsymbol{B}_{\bar{p}}^{K}$ and (8.3.1). Let us choose $z>0$ such that $\bar{p}^{\prime} z=\bar{p}^{\prime} a^{j}-\bar{p}^{\prime} y^{j}>0$ and set $\bar{y}^{j}=y^{j}+z$. Obviously, $\bar{p}^{\prime} \bar{y}^{j}=\bar{p}^{\prime} a^{j}$ and $\bar{y}^{j} \succ_{j} \bar{x}^{j}$ what contradicts to the assumption that $(\bar{x}, \bar{p})$ is competitive equilibrium.

Previous Theorems 8.2 and 8.3 imply the following one.
Theorem 8.4. (Existence of equilibrium) Let $\boldsymbol{m}$ be a market. Let $\geqq_{i}, i \in \Omega$, be continuous, convex and positively monotonous. Then there exists an equilibrium
of $\boldsymbol{m}$. In addition, if $\geqq_{i}, i \in \Omega$, are monotonous then there exists a strong equilibrium of $\boldsymbol{m}$.

## CHAPTER III: APPLICATION OF GAME THEORY IN MARKET THEORY

Let $\boldsymbol{m}=\left(\Omega, \mathscr{K}, R_{+}^{m},\left(\geqq_{i}\right)_{i \in \Omega},\left(a^{i}\right)_{i \in \Omega}, h\right)$ be a cooperative market defined in Chapter II. In this chapter we shall suppose that $\geqq_{i}$ are continuous for all $i \in \Omega$. Let $u^{i}, i \in \Omega$, be continuous utility functions corresponding to $\geqq_{i}, i \in \Omega$. Without loss of generality we assume that

$$
u^{i}(0)=0 \text { for all } i \in \Omega .
$$

Let $u($.$) be the mapping from \times R_{+}^{m}$ to $R^{n}$,

$$
u:\left(x^{i}\right)_{i \in \Omega} \rightarrow\left[u^{1}\left(x^{1}\right), u^{2}\left(x^{2}\right), \ldots, u^{n}\left(x^{n}\right)\right] .
$$

We denote

$$
\begin{gathered}
u(M)=\left\{x \in R^{n}: \exists \tilde{x} \in M, u(\tilde{x})=x\right\} \text { for } M \subset \underset{\Omega}{\times} R_{+}^{m} \\
u^{-1}(L)=\left\{\tilde{x} \in \underset{\Omega}{\times} R_{+}^{m}: u(\tilde{x}) \in L\right\} \text { for } L \subset R^{n}
\end{gathered}
$$

and $u(m(\emptyset))=R^{n}$.
Further, $u^{i}$ is called nonnegative if $u^{i}(x) \geqq 0$ for $x \in R_{+}^{m}$.

## 9. Cooperative Game Corresponding to the Market

Lemma 9.1. Let $u^{i}$ be concave and nonnegative for all $i \in \Omega$. Then $u(m(K))$ are closed and convex for all $K \in \mathscr{K}$.

Proof. Closeness: Let $x_{v} \in u(m(K)), v=1,2, \ldots, x_{v}$, converge to $x \in R^{n}$. Let $\tilde{x}_{v} \in \boldsymbol{m}(K), u\left(\tilde{x}_{v}\right)=x_{v} . \boldsymbol{m}(K)$ is compact and, hence, we can choose a subsequence from $\left\{\tilde{x}_{v}\right\}_{v=1}^{\infty}$ which converges to a certain $\tilde{x} \in \boldsymbol{m}(K)$. Obviously $u(\tilde{x})=x$, so $x \in$ $\in u(\boldsymbol{m}(K))$.

Convexity: Let $x, y \in u(\boldsymbol{m}(K)), 0 \leqq \alpha, \beta \leqq 1, \alpha+\beta=1$. Let $\tilde{x}, \tilde{y} \in \boldsymbol{m}(K), u(\tilde{x})=$ $=x, u(\tilde{y})=y \cdot \alpha \tilde{x}+\beta \tilde{y} \in \boldsymbol{m}(K)$ and $u(\alpha \tilde{x}+\beta \tilde{y}) \geqq \alpha u(\tilde{x})+\beta u(\tilde{y})=\alpha x+\beta y$ for concavity of $u^{i}, i \in \Omega$. It follows from continuity of $u^{i}, i \in \Omega$ that there exists such $\tilde{z}$ that $0 \leqq \tilde{z}^{i} \leqq(\alpha \tilde{x}+\beta \tilde{y})^{i}$ and $u^{i}\left(\tilde{z}^{i}\right)=(\alpha x+\beta y)^{i}, i \in \Omega$. Obviously $\tilde{z} \in \boldsymbol{m}(K)$, $u(\tilde{z})=\alpha x+\beta y$. Hence, $\alpha x+\beta y \in u(m(K))$.

Definition 9.1. Let $K \in \mathscr{K}$. Then we denote

$$
v(K)=\left\{x \in R^{n}: \exists y \in u(m(K)) \text { such that } x^{K} \leqq y^{K}\right\} \text {. }
$$

The next statements follow from Lemma 9.1.

Theorem 9.1. Let $u^{i}, i \in \Omega$, be concave and non-negative. Then the triple $(\Omega, \mathscr{K}, v)$, where $v$ is defined above, is a characteristic function and $v^{i}=u^{i}\left(a^{i}\right)$ for all

$$
i \in I(m)=\{i \in \Omega:\{i\} \in \mathscr{K}\}
$$

Lemma 9.2. Let $u^{i}$ be concave and non-negative for all $i \in \Omega$. Then $H=u(m(\Omega))$ is convex and compact.

Definition 9.2. Cooperative game $\boldsymbol{G}_{\boldsymbol{m}}=(\Omega, \mathscr{K}, \boldsymbol{v}, H, h)$, where $\boldsymbol{v}$ and $H$ are defined by Definition 9.1 and Lemma 9.2, is called the game corresponding to the market $\boldsymbol{m}$. It is easy to verify the following theorem.

Theorem 9.2. Let $u^{i}, i \in \Omega$, be concave and non-negative. Then $\boldsymbol{G}_{\boldsymbol{m}}$ is guaranted and ordinary. If $u^{i}, i \in \Omega$, are monotonous, in addition, then $H$ fulfills condition (7) from Chapter I.

## 10. Connection between Games and Markets

Definition 10.1. Let $\boldsymbol{m}$ be a cooperative market. Then we denote

$$
\begin{aligned}
& \bar{A}_{\boldsymbol{m}}=\left\{x \in \boldsymbol{m}(\Omega): x^{i} \geqq_{i} a^{i} \text { for all } i \in I(\boldsymbol{m})\right\}, \\
& E_{\boldsymbol{m}}=\{x \in \boldsymbol{m}(\Omega): \neg(\exists y: y \geqq x,|\Omega(y \succ x)||\Omega| \geqq h(\Omega)\}, \\
& A_{\boldsymbol{m}}=\bar{A}_{\boldsymbol{m}} \cap E_{\boldsymbol{m}}, \quad \bar{E}_{\boldsymbol{m}}=\boldsymbol{m}(\Omega)
\end{aligned}
$$

$\bar{A}_{m}$, resp. $E_{m}$, are called the sets of individually, resp. group, rational distributions of goods.

Next theorem follows from Definition 10.1 immediately.
Theorem 10.1. Let $u^{i}$ be concave and non-negative for all $i \in \Omega$. Let $\bar{A}, E$ be the sets of individually and group rational payments distributions of the game $\boldsymbol{G}_{\boldsymbol{m}}$, $\bar{E}=H, A=E \cap \bar{A}$. Then

$$
\begin{aligned}
& u\left(\bar{E}_{m}\right)=\bar{E}, \quad u\left(E_{m}\right)=E, \quad u\left(\bar{A}_{m}\right)=\bar{A}, \quad u\left(A_{m}\right)=A \\
& u^{-1}(\bar{E}) \cap \bar{E}_{m}=\bar{E}_{m}, \quad u^{-1}(E) \cap \bar{E}_{m}=E_{m} \\
& u^{-1}(\bar{A}) \cap \bar{E}_{m}=\bar{A}_{m}, \quad u^{-1}(A) \cap \bar{E}_{m}=A_{m}
\end{aligned}
$$

Theorem 10.2. Let $u^{i}, i \in \Omega$, be concave and non-negative, let $P \subset \boldsymbol{m}(\Omega)$. Then

$$
u\left(\mathbb{C}^{m}(P)\right)=\mathbb{C}^{G_{m}}(u(P))
$$

Proof. We prove, first, that

$$
u\left(\mathbb{C}^{m}(P)\right) \subset \mathbb{C}^{\boldsymbol{G}_{m}}(u(P))
$$

Let $x \subset u\left(\mathbb{C}^{\boldsymbol{m}}(P)\right)$ and let $x \notin \mathbb{C}^{\boldsymbol{G}_{\boldsymbol{m}}}(u(P))$. Then there exists $y \in u(P)$ such that $y \succ_{\boldsymbol{G}_{\boldsymbol{m}}} x$. Let $\tilde{x} \in \mathbb{C}^{m}(P), \tilde{y} \in P$ be such that $u(\tilde{x})=x$ and $u(\tilde{y})=y$. Obviously $\tilde{y}>_{m} \tilde{x}$, and

$$
\mathfrak{C}^{\boldsymbol{G} \boldsymbol{m}}(u(P)) \subset u\left(\mathbb{C}^{\boldsymbol{m}}(P)\right)
$$

Let $x \in \mathbb{C}^{\boldsymbol{G m}}(u(P))$, and $\tilde{x} \in P, u(\tilde{x})=x$. Then $\tilde{x} \in \mathbb{C}^{m}(P)$, otherwise it leads to contradiction with $x \in \mathbb{C}^{\boldsymbol{G}_{\mathrm{m}}}(u(P))$. Hence $x \in u\left(\mathbb{C}^{m}(P)\right)$.

Theorem 10.3. Let $u^{i}, i \in \Omega$, be concave and non-negative, let $P \subset \boldsymbol{m}(\Omega)$. Then

$$
\mathfrak{C}^{m}(P)=P \cap u^{-1}\left(\mathbb{C}^{G_{m}}(u(P))\right)
$$

Proof. The inclusion

$$
\mathbb{C}^{\mathrm{m}}(P) \subset P \cap u^{-1}\left(\mathbb{C}^{\boldsymbol{G}_{\mathrm{m}}}(u(P))\right)
$$

follows from Theorem 10.2. It remains, therefore, to prove only the inclusion

$$
P \cap u^{-1}\left(\mathbb{C}^{\boldsymbol{G}} \boldsymbol{m}(u(P))\right) \subset \mathbb{C}^{\boldsymbol{m}}(P)
$$

Let $\tilde{x} \in P \cap u^{-1}\left(\mathbb{C}^{\boldsymbol{G}_{m}}(u(P))\right)$ and let $\tilde{x} \notin \mathbb{C}_{m}(P)$. Then there exists $\tilde{y} \in P$, such that $\tilde{y} \succ_{\boldsymbol{m}} \tilde{x}$. Let $u(\tilde{x})=x, u(\tilde{y})=y$. Then $y \succ_{G_{m}} x$, but it is a contradiction with $x \in \mathbb{C}^{\boldsymbol{G}_{\boldsymbol{m}}^{m}}(u(P))$. Hence, $x \in \mathbb{C}^{\boldsymbol{m}}(P)$.

From Theorems 10.1 and 10.3 the next statement follows.
Corollary 10.1. Let $u^{i}$ be concave and non-negative for all $i \in \Omega$. Then we have

$$
\begin{aligned}
& \mathbb{C}^{m}\left(\bar{E}_{\mathrm{m}}\right)=\bar{E}_{\mathrm{m}} \cap u^{-1}\left(\mathbb{C}^{\boldsymbol{G}_{\boldsymbol{m}}}(\bar{E})\right), \quad \mathbb{C}^{\mathrm{m}}\left(E_{\mathrm{m}}\right)=\bar{E}_{\mathrm{m}} \cap u^{-1}\left(\mathbb{C}^{\boldsymbol{G}_{\mathrm{m}}}(E)\right), \\
& \mathbb{C}^{m}\left(\bar{A}_{\boldsymbol{m}}\right)=\bar{E}_{\boldsymbol{m}} \cap u^{-1}\left(\mathbb{C}^{\boldsymbol{G}_{\boldsymbol{m}}}(\bar{A})\right), \quad \mathbb{C}^{m}\left(A_{\boldsymbol{m}}\right)=\bar{E}_{\boldsymbol{m}} \cap u^{-1}\left(\mathbb{C}^{\boldsymbol{G}_{\boldsymbol{m}}}(A)\right) .
\end{aligned}
$$

Theorem 10.4. Let $u^{i}$ be concave and non-negative for all $i \in \Omega$. Then $\bar{A}_{\boldsymbol{m}} \neq \emptyset$ and $\mathbb{C}^{m}\left(\bar{E}_{m}\right)=\mathbb{C}^{m}\left(\bar{A}_{m}\right)$.

Proof. The assertion follows from the foregoing corollary and from Theorem 3.3.
Definition 10.2. Let $M \subset \underset{\Omega}{\times} R_{+}^{m}$. We denote

$$
J(M)=\{x \in M: \neg(\exists y \in M \text { such that } y \succ x)\}
$$

Theorem 10.5. Let $u^{i}$ be concave and monotonous. Let $H$ be a polyhedron. Then

$$
\mathfrak{C}^{m}\left(\bar{E}_{\mathrm{m}}\right)=\mathfrak{C}^{\mathrm{m}}\left(J\left(E_{\mathrm{m}}\right)\right)=\mathbb{C}^{\mathrm{m}}\left(\bar{A}^{m}\right)=\mathbb{C}^{m}\left(J\left(\bar{A}_{\mathrm{m}}\right)\right)
$$

Proof. The assertion follows from Corollary 10.1 and from Theorem 3.9.
Theorem 10.6. Let $u^{i}$ be concave and monotonous for all $i \in \Omega$. Let $m$ fulfil the condition

$$
|\Omega| h(\Omega)>\max _{\mathscr{K}-\{\Omega\}}|S|
$$

Then

$$
\mathbb{C}^{\boldsymbol{m}}\left(J\left(\bar{E}_{\boldsymbol{m}}\right)\right)=\mathbb{C}^{\mathbf{m}}\left(E_{\boldsymbol{m}}\right) \quad \text { and } \quad \mathbb{C}^{m}\left(J\left(\bar{A}_{\boldsymbol{m}}\right)\right)=\mathfrak{C}_{\boldsymbol{m}}\left(A_{\boldsymbol{m}}\right)
$$

Proof. The statement follows from Corollary 10.1 and from Theorem 3.11.
Remark 10.1. Without the assumption of concavity of utility functions, $v(K)$ may be nonconvex. Let us consider the following example.

$$
\begin{gathered}
\Omega=\{1,2\}, \quad \mathscr{K}=\exp \Omega, u^{1}(x)=u^{2}(x)=\left(x_{1}\right)^{2} . \\
a^{1}=a^{2}=\binom{1 / 2}{1 / 2} .
\end{gathered}
$$

Let

$$
\begin{gathered}
x=\left\{\binom{1}{0},\binom{0}{1}\right\} ; \quad y=\left\{\binom{0}{1},\binom{1}{0}\right\} \text { then } \\
u(x)=\binom{1}{0}, \quad u(y)=\binom{0}{1} . \\
\frac{1}{2} u(x)+\frac{1}{2} u(y)=\binom{1 / 2}{1 / 2} .
\end{gathered}
$$

But, it is easy to verify that there exists no $z \in \boldsymbol{m}(\Omega)$ such that

$$
u(z)=\binom{1 / 2}{1 / 2}
$$

Hence, $v(\Omega)$ is not convex.
(Received April 1, 1976)

## REFERENCES

[1] J. Rosenmüller: Kooperative Spiele und Märkte. Springer, Heidelberg, 1971.
[2] R. D. Luce - H. Raiffa: Games and Decisions. Russian translation, Moscow, 1961.
[3] R. J. Aumann: The Core of a Cooperative Game without Side-Payments. Trans. Amer. Math. Soc. 98 (1961), 539-552.
[4] B. Peleg: Solutions to Cooperative Games without Side-Payments. Trans. Amer. Math. Soc. 106 (1963), 280-292.
[5] R. J. Aumann - B. Peleg: Von Neumann Morgenstern Solutions to Cooperative Game without Side-Payments. Bull. Amer. Math. Soc. 66 (1960), pp. 173-179.
[6] K. Winkelbauer: Strategické hry. Kybernetika 1967-68, Supplement.
[7] M. Mareš: On Weak Cooperative Equilibria, Analogous to Game-Theoretical Bargaining Solutions. Contribution on C.E.-Conference, Toruň 1974, reproduced manuscript.
[8] K. Vind: Institutions in Exchange Economies. Contribution on C.E.-Conference, Toruň 1974, reproduced manuscript.

Tran Quoc Chien, matematicko-fyzikálni fakulta Karlovy university (Faculty of Mathematics and Physics - Charles University), Sokolovská 83, 18000 Praha 8. Czechoslovakia. 216 PHUÖNG LIET, HA-NOI. Socialist Republic of Vietnam.


[^0]:    * Symbol $\geqq$ is used instead of more usual $\succsim$ which was not typographically acceptable.

