The Spectrum of the Discrete Cesàro operator

Ludvík Prouza

Some properties of the discrete Cesàro operator in l_{∞}, especially the properties of the spectrum, are investigated.

1. INTRODUCTION

Let $\left\{x_{1}, x_{2}, \ldots\right\},\left\{y_{1}, y_{2}, \ldots\right\}$ be complex sequences. The discrete Cesàro operator $C_{0}\left\{x_{n}\right\}=\left\{y_{n}\right\}$ is defined by

$$
\begin{equation*}
y_{n}=\frac{x_{1}+\ldots+x_{n}}{n}, \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

It is well known that C_{0} is stable in the sense of bounded input-bounded output definition of stability.
In what follows the space of all bounded sequences with the usual metric will be denoted l_{∞}.

Attempting to realize C_{0} by feedback, the properties of the inverse (denoted A_{λ} in what follows) to the more general operator C_{λ}, defined by

$$
\begin{equation*}
y_{n}=\frac{x_{1}+\ldots+x_{n}}{n}-\lambda x_{n} \tag{2}
\end{equation*}
$$

(λ complex), are substantial [6]. It is well known that the stability region of C_{λ} (realized by feedback) in the complex plane λ (λ being the generalized gain) is the same what is named in the theory of operators the resolvent set of C_{0}. Its complement is called the spectrum of C_{0}.

In [1], the spectrum of the operator C_{1} acting in the space $L_{\infty}(0,1)$ of functions bounded and Lebesgue integrable in the interval $(0,1)$ and defined by

$$
\begin{equation*}
y(t)=\frac{1}{t} \int_{0}^{t} x(t) \mathrm{d} t \tag{3}
\end{equation*}
$$

has been found. In [2], there has been shown with the aid of \dot{C}_{1} that the spectrum of C_{0} in l_{∞} is the same as that of C_{1} in $L_{\infty}(0,1)$ and is given by the closed disk with the centre $1 / 2$ and the radius $1 / 2$.

Given a λ in the spectrum and a sequence $\left\{y_{n}\right\} \in l_{\infty}$, one may ask what is the behaviour of $\left\{x_{n}\right\}$ computed from (2). The point spectrum of C_{0} is defined as those λ for which the inverse A_{λ} is not existing, and the residual spectrum of C_{0} is defined as those λ for which the mapping of l_{∞} by C_{λ} into l_{∞} is not dense in l_{∞} ([3], p. 182).

Among the points of the point spectrum, λ fulfilling

$$
\begin{equation*}
C_{\lambda}\left\{x_{n}\right\}=\emptyset \tag{4}
\end{equation*}
$$

called eigenvalues, are of special interest, with $\left\{x_{n}\right\}$ called eigenvectors of C_{0} in l_{∞}.

2. THE LINEAR EQUATIONS CONNECTED WITH C_{0}

The equation in (4) is identical with the infinite system of linear equations

$$
\begin{align*}
&(1-\lambda) x_{1}=0, \tag{5}\\
& \frac{1}{2} x_{1}+\left(\frac{1}{2}-\lambda\right) x_{2}=0, \\
& \frac{1}{3} x_{1}+\frac{1}{3} x_{2}+\left(\frac{1}{3}-\lambda\right) x_{3}=0, \\
& \vdots
\end{align*}
$$

Solving this system with the assumption $x_{1}=1$ gives

$$
\begin{align*}
\lambda & =1 \tag{6}\\
x_{1} & =x_{2}=\ldots=1 .
\end{align*}
$$

Similarly, putting for $l>1 x_{1}=\ldots=x_{t-1}=0, x_{l}=1$, one gets

$$
\begin{equation*}
\lambda=1 / l, \tag{7}
\end{equation*}
$$

$$
x_{l+j}=\binom{l+j-1}{l-1}, \quad j=1,2, \ldots
$$

The values of (7) have been found in [2]. It is clear that all solutions in (6), (7) are linearly independent. For λ from (6), (7), A_{λ} is not existing, as it is clearly seen from (5), since for a nonzero $\left\{y_{n}\right\}$, no $\left\{x_{n}\right\}$ exists fulfilling (5). Thus these λ are contained in the point spectrum of C_{0}. Only the sequence $\{1,1, \ldots\}$ from (6) is in l_{∞} and this is the only eigenvector of C_{0} in $l_{\infty} . \lambda=1$ is the corresponding eigenvalue.

3. THE DIFFERENCE EQUATION CONNECTED WITH C_{0}

Subtracting from the equation in (2) the analogous one with n replaced by $n-1$, one gets
(8)

$$
x_{n}-n\left(\lambda x_{n}+y_{n}\right)=-(n-1)\left(\lambda x_{n-1}+y_{n-1}\right)
$$

and substituting with the assumption $\lambda \neq 0$

$$
\begin{equation*}
\lambda x_{n}+y_{n}=\xi_{n}, \tag{9}
\end{equation*}
$$

one has
(10)

$$
(1-n \lambda) \xi n+(n-1) \lambda \xi_{n-1}=y_{n}
$$

or, with the assumption $\lambda \neq 1,1 / 2,1 / 3, \ldots$:

$$
\begin{equation*}
\xi_{n}+\frac{(n-1) \lambda}{1-n \lambda} \xi_{n-1}=\frac{y_{n}}{1-n \lambda} \tag{11}
\end{equation*}
$$

The difference equations (10) or (11) represent the inverse A_{λ} to C_{λ}, the transformation

$$
\begin{equation*}
x_{n}=\frac{1}{\lambda}\left(\xi_{n}-y_{n}\right) \tag{12}
\end{equation*}
$$

being very simple. Especially, for $\left\{y_{n}\right\} \in l_{\infty}$ and λ in the spectrum, but $\lambda \neq 1,1 / 2, \ldots$, $\left\{x_{n}\right\}$ and $\left\{\xi_{n}\right\}$ possess the same order of growth.

Now, solving (11) recurrently with the restriction

$$
\begin{equation*}
\lambda \neq 0,1,1 / 2,1 / 3, \ldots \tag{13}
\end{equation*}
$$

one gets an explicit formula representing the solution there of:

$$
\begin{gather*}
\xi_{n}=\frac{1}{n \lambda\left(1-\frac{1}{\lambda}\right) \ldots\left(1-\frac{1}{n \lambda}\right)} \tag{14}\\
\left(-y_{1}+y_{2} \frac{\frac{1}{\lambda}-1}{1!}+\ldots+(-1)^{n} y_{n} \frac{\left(\frac{1}{\lambda}-1\right) \cdots\left(\frac{1}{\lambda}-(n-1)\right)}{(n-1)!}\right)
\end{gather*}
$$

Remembering the definition of A_{λ} in [6] as a lower triangular matrix, one gets from (14) for its elements (in [6], the subscripts begin with $n=0$)
(15)

$$
a_{n k}=\frac{1}{\lambda(1-(n+1) \lambda)} \frac{1}{\left(1-\frac{1}{(k+1) \lambda}\right) \ldots\left(1-\frac{1}{n \lambda}\right)}
$$

(16)

$$
A_{0}=\left(\begin{array}{rcc}
1, & 0, & \ldots \\
-1, & 2, & 0, \\
0, & -2, & 3, \\
& \vdots & \cdots
\end{array}\right)
$$

This is the matrix in (18), [6]. It was found already by Toeplitz.

4. THE SPECTRUM OF C_{0} ON l_{∞}

From (15) and the known formula for the function Γ ([5], p. 439-440), one gets asymptotically for $n \rightarrow \infty$

$$
\begin{equation*}
a_{n 0} \cong-\frac{1}{\lambda^{2}} \Gamma\left(1-\frac{1}{\lambda}\right) n^{(1 / \lambda)-1} \tag{17}
\end{equation*}
$$

Since
(18)

$$
n^{(1 / \lambda)-1}=n^{\zeta \pi[(1 / \lambda)-1]} \mathrm{e}^{i \xi_{m}[(1 / \lambda)-1] \log n}
$$

one gets

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|a_{n 0}\right|=\infty \tag{19}
\end{equation*}
$$

for
(20)

$$
\mathscr{R} e \frac{1}{\lambda}>1
$$

and
(21)

$$
\lim _{n \rightarrow \infty}\left|a_{n o}\right|=0
$$

for
(22)

$$
\mathscr{R}_{e} \frac{1}{\lambda}<1
$$

The points λ fulfilling (22) lie in the outside of the disk with the centre $\frac{1}{2}$ and the radius $\frac{1}{2}$.
Comparing (15) for $k=0$ and for an arbitrary k with (17), one sees that (19) and (21) hold also for $k>0$.

Further, we will estimate the sums $\sum_{k=0}^{n}\left|a_{n k}\right|$ supposing (22) to hold. Using the inequality

$$
\begin{equation*}
|1-\mu| \geqq|1-\mathscr{R} e \mu| \tag{23}
\end{equation*}
$$

and putting $\mathscr{R} e 1 / \lambda=v$, one gets recurrently

$$
\begin{equation*}
\sum_{k=0}^{n}\left|a_{n k}\right| \leqq \frac{n|\lambda|}{|\lambda||n \lambda-1|}+\frac{1}{|\lambda||n \lambda-1|} \frac{n-1}{1-v} . \tag{24}
\end{equation*}
$$

But

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{n|\lambda|}{|\lambda||n \lambda-1|}+\frac{n-1}{|\lambda||n \lambda-1|} \frac{1}{1-v}\right)=\frac{1}{|\lambda|}+\frac{1}{|\lambda|^{2}} \frac{1}{1-v} . \tag{25}
\end{equation*}
$$

Considering (6), (7), (19), (20), (21), (22), (25) and the known Toeplitz-Schur conditions for the matrix A_{λ} one sees that the following theorem holds.

Theorem 1. On l_{∞}, C_{0} is a bounded linear operator. Its spectrum is the closed disk with the centre $\frac{1}{2}$ and the radius $\frac{1}{2}$. The points $1, \frac{1}{2}, \frac{1}{3}, \ldots$ lie in the point spectrum, $\lambda=1$ is the only eigenvalue, its multiplicity is 1 , and the sequence $\{1,1, \ldots\}$ is the only corresponding eigenvector.

The first part of this theorem is merely a special case of a theorem from [2], but our proof is direct and not depending on the results for the continuous operator C_{1} from (4). Moreover, we will be able using (14) to prove the following theorem.

Theorem 2. Then open disk with the centre $\frac{1}{2}$ and the radius $\frac{1}{2}$ is, with exception of the points $\frac{1}{2}, \frac{1}{3}, \ldots$ contained in the residual spectrum of C_{0} on l_{∞}. The exception points are the only points of the point spectrum in the open disk.

In [1], [2], there has been shown that this open disk represents the point spectrum of C_{1} on $L^{\infty}(0,1)$, each point λ there of being an eigenvalue, the function $t^{1 / \lambda-1}$ being the corresponding eigenfunction. Thus, although the spectrum of C_{0} and of C_{1} is the same disk, their finer properties are quite different.

For the first term on the right side of (14), there is ([5], p. 439-440) for $n \rightarrow \infty$

$$
\begin{equation*}
\frac{1}{n \lambda\left(1-\frac{1}{\lambda}\right) \ldots\left(1-\frac{1}{n \lambda}\right)} \cong \frac{1}{\lambda} \Gamma\left(1-\frac{1}{\lambda}\right) n^{(1 / \lambda)-1} \tag{26}
\end{equation*}
$$

supposing that (13) holds. Moreover, in the open disk, there holds (20). The second term on the right side of (14) is a partial sum of a Newton series in the variable $1 / \lambda([4]$, p. $141-163)$.

Let $\left\{y_{n}\right\} \in l_{\infty}$ and is such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left|y_{k}\right| \rightarrow \infty \text { for } n \rightarrow \infty \tag{27}
\end{equation*}
$$

Then, since there exists a M such that

$$
\begin{equation*}
\left|y_{k}\right|<M \quad(M \text { independent on } k) \tag{28}
\end{equation*}
$$

one has

$$
\begin{equation*}
\frac{\log \sum_{1}^{n}\left|y_{k}\right|}{\log n}<1+\frac{\log M}{\log n} \tag{29}
\end{equation*}
$$

thus the abscissa of absolute convergence of the Newton series with coefficients $\left\{y_{n}\right\}$ is ([4], p. 153)

$$
\begin{equation*}
\frac{1}{\lambda_{0}}=\varlimsup_{n \rightarrow \infty} \frac{\log \sum_{1}^{n}\left|y_{k}\right|}{\log n} \leqq 1 . \tag{30}
\end{equation*}
$$

Thus for $\left\{y_{n}\right\} \in l_{\infty}$ and fulfiling (27) and for λ fulfilling (20), the Newton series on the right side of (14) converges absolutely. Suppose λ to be given and consider the sequences

$$
\left\{y_{1}, y_{2}, \ldots\right\}=\left\langle\begin{array}{c}
\{2,1,1, \ldots\} \tag{31}\\
\{3,1,1, \ldots\}
\end{array} .\right.
$$

At least for one there from the Newton series has for the given λ the sum different from zero ([4], p. 163). Choose that sequence and denote the sum of the Newton series $K(\lambda)$. But then, from (14) and (26), for $n \rightarrow \infty$

$$
\begin{equation*}
\xi_{n} \sim n^{(1 / 2)-1} \tag{32}
\end{equation*}
$$

(\sim means that ξ_{n} grows asymptotically as $n^{(1 / \lambda)-1}$ for $n \rightarrow \infty$).
Suppose now a sequence of sequences $\left\{y_{n m}\right\}, m=1,2, \ldots$ converging in l_{∞} to the chosen sequence from (31). Since the convergence in l_{∞} is uniform with respect to the subscript n, we may suppose that a m_{2} exists so that $\left|y_{n m}\right|<2$ independently on n for every $m>m_{2}$. Thus to every $\varepsilon>0$ there exists a n_{ε} so that for every $n>n_{\varepsilon}$ and every $m>m_{2}$

$$
\begin{equation*}
\left|y_{n m}\right| \frac{\left|\frac{1}{\lambda}-1\right| \ldots\left|\frac{1}{\lambda}-(n-1)\right|}{(n-1)!}+\left|y_{n+1, m}\right| \frac{\left|\frac{1}{\lambda}-1\right| \ldots\left|\frac{1}{\lambda}-n\right|}{n!}+\ldots<\varepsilon \tag{33}
\end{equation*}
$$

λ being given and the convergence of the Newton series being absolute. Considering the terms $y_{k}, y_{k m}, k=1, \ldots, n-1$ one sees that to the given ε an m_{ε} exists such that for $m>\max \left(m_{2}, m_{\varepsilon}\right)$ the difference of both Newton series for $\left\{y_{n}\right\}$ and $\left\{y_{n m}\right\}$ is absolutely smaller than 3ε. Thus for m sufficiently large the sum of the Newton series with coefficients $y_{n m}$ is different from zero, moreover, denoting this sum with $K(m, \lambda)$, there is for $m \rightarrow \infty K(m, \lambda) \rightarrow K(\lambda)$, and for $n \rightarrow \infty$

$$
\begin{equation*}
\xi_{n m} \sim n^{(1 / \lambda)-1} . \tag{34}
\end{equation*}
$$

Thus with exception of the points from (13), for every λ fulfilling (20) we have found a sequence $\left\{y_{n}\right\}$ in l_{∞} such that the sequence $\left\{x_{n}\right\}$ formed therefrom by A_{λ} is divergent and the same is true for the sequences $\left\{y_{n m}\right\}$ in a sufficiently small neighbourhood of $\left\{y_{n}\right\}$ in l_{∞}. Thus the mapping of l_{∞} by C_{λ} into l_{∞} is not dense in l_{∞} and the theorem 2 is proved.

For the circle enclosing the open disk, the problem of the characterization of the spectrum seems to be difficult. As one has seen, $\lambda=1$ is an eigenvalue. Now, we will show that $\lambda=0$ lies in the residual spectrum. From (8), one obtains for $\lambda=0$

$$
\begin{equation*}
\frac{x_{n}-y_{n-1}}{n}=y_{n}-y_{n-1}, \tag{35}
\end{equation*}
$$

thus for $\left\{x_{n}\right\} \in l_{\infty}$ not only $\left\{y_{n}\right\} \in l_{\infty}$, but also

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(y_{n}-\dot{y}_{n-1}\right)=0 \tag{36}
\end{equation*}
$$

For $\left\{y_{n}\right\} \subseteq l_{\infty}$ but not fulfilling (36), $\left\{x_{n}\right\}$ cannot be bounded. The same is true for $\left\{y_{n m}\right\}$ in some small neighbourhood of $\left\{y_{n}\right\}$, the convergence in l_{∞} being uniform with respect to the subscript n. Thus $\lambda=0$ lies in the residual spectrum of C_{0} on l_{∞}.

5. CONCLUDING REMARKS

Expressing the difference equation (11) as the respective system of linear equations for $n=1,2, \ldots$ and supposing that for sufficiently small $|z|$ the series

$$
\begin{align*}
& \xi_{1} z+\xi_{2} z^{2}+\ldots=X, \tag{37}\\
& y_{1} z+y_{2} z^{2}+\ldots=Y \tag{38}
\end{align*}
$$

are convergent and that (37) may be differentiated term by term (these suppositions are true for the sequences from l_{∞} or fulfilling (32)), one obtains

$$
\begin{equation*}
\lambda z(z-1) \frac{\mathrm{d} X}{\mathrm{~d} z}+X=Y \tag{39}
\end{equation*}
$$

For the problem of the spectrum, this replacement seems to be of little advantage, perhaps with exception of the eigenvalues and eigenvectors. Substituting in (39) $Y=0$ in accordance with (4), one finds the solution

$$
\begin{equation*}
X=\left(\frac{z}{1-z}\right)^{1 / 2} \tag{40}
\end{equation*}
$$

and this function may be expanded in power series precisely for λ fulfilling (6), (7), the series with coefficients from (6), (7) resulting.
[1] G. M. Leibowitz: Spectra of finite range Cesàro operators. Acta Sci. Math., 35 (1973), 27-29. [2] G. M. Leibowitz: The Cesàro operators and their generalizations: examples in infinitedimensional linear analysis. Am. Math. Monthly, 80 (1973), 654-661.
[3] R. G. Cooke: Linear operators. Macmillan, London 1953.
[4] A. О. Гельфонд: Исчисление конечных разностей. Физматгиз, Москва 1959
[5] K. Knopp: Theory and application of infinite series. Blackie and son, London 1951.
[6] L. Prouza: On the weight matrices of linear difference equations. Kybernetika 12 (1976), $1,1-6$.

Dr. Ludvik Prouza, CSc., Tesla - Ústav pro výzkum radiotechniky (Research Institute for Radio Engineering), Opočinek, 53331 p. Lány na Dủlku. Czechoslovakia.

