KYBERNETIKA-VOLUME 12 (1976), NUMBER 4

The Spectrum of the Discrete Cesàro operator

Ludvík Prouza

Some properties of the discrete Cesàro operator in l_{∞} , especially the properties of the spectrum, are investigated.

1. INTRODUCTION

Let $\{x_1, x_2, \ldots\}, \{y_1, y_2, \ldots\}$ be complex sequences. The discrete Cesàro operator $C_0\{x_n\} = \{y_n\}$ is defined by

(1)
$$y_n = \frac{x_1 + \ldots + x_n}{n}, \quad n = 1, 2, \ldots$$

It is well known that C_0 is stable in the sense of bounded input-bounded output definition of stability.

In what follows the space of all bounded sequences with the usual metric will be denoted l_{∞} .

Attempting to realize C_0 by feedback, the properties of the inverse (denoted A_{λ} in what follows) to the more general operator C_{λ} , defined by

(2)
$$y_n = \frac{x_1 + \ldots + x_n}{n} - \lambda x_n$$

 $(\lambda \text{ complex})$, are substantial [6]. It is well known that the stability region of C_{λ} (realized by feedback) in the complex plane λ (λ being the generalized gain) is the same what is named in the theory of operators the resolvent set of C_0 . Its complement is called the spectrum of C_0 .

In [1], the spectrum of the operator C_1 acting in the space $L_{\infty}(0,1)$ of functions bounded and Lebesgue integrable in the interval (0,1) and defined by

(3)
$$y(t) = \frac{1}{t} \int_0^t x(t) dt$$

has been found. In [2], there has been shown with the aid of C_1 that the spectrum of C_0 in l_{∞} is the same as that of C_1 in $L_{\infty}(0,1)$ and is given by the closed disk with the centre 1/2 and the radius 1/2.

Given a λ in the spectrum and a sequence $\{y_n\} \in I_{\infty}$, one may ask what is the behaviour of $\{x_n\}$ computed from (2). The point spectrum of C_0 is defined as those λ for which the inverse A_{λ} is not existing, and the residual spectrum of C_0 is defined as those λ for which the mapping of I_{∞} by C_{λ} into I_{∞} is not dense in I_{∞} ([3], p. 182).

Among the points of the point spectrum, λ fulfilling

$$C_{\lambda}\{x_n\} = \emptyset$$

called eigenvalues, are of special interest, with $\{x_n\}$ called eigenvectors of C_0 in l_{∞} .

2. THE LINEAR EQUATIONS CONNECTED WITH C_0

The equation in (4) is identical with the infinite system of linear equations

(5) $(1 - \lambda) x_1 = 0,$ $\frac{1}{2}x_1 + (\frac{1}{2} - \lambda) x_2 = 0,$ $\frac{1}{3}x_1 + \frac{1}{3}x_2 + (\frac{1}{3} - \lambda) x_3 = 0,$ \vdots

Solving this system with the assumption $x_1 = 1$ gives

(6) $\lambda = 1,$ $x_1 = x_2 = \dots = 1.$

Similarly, putting for l > 1 $x_1 = \ldots = x_{l-1} = 0$, $x_l = 1$, one gets

(7)
$$\lambda = 1/l$$
,
 $x_{l+j} = {l+j-1 \choose l-1}, \quad j = 1, 2, ...$

The values of (7) have been found in [2]. It is clear that all solutions in (6), (7) are linearly independent. For λ from (6), (7), A_{λ} is not existing, as it is clearly seen from (5), since for a nonzero $\{y_n\}$, no $\{x_n\}$ exists fulfilling (5). Thus these λ are contained in the point spectrum of C_0 . Only the sequence $\{1, 1, ...\}$ from (6) is in l_{∞} and this is the only eigenvector of C_0 in l_{∞} , $\lambda = 1$ is the corresponding eigenvalue.

3. THE DIFFERENCE EQUATION CONNECTED WITH C_0

Subtracting from the equation in (2) the analogous one with n replaced by n - 1, one gets

 $= \xi_n$,

(8)
$$x_n - n(\lambda x_n + y_n) = -(n-1)(\lambda x_{n-1} + y_{n-1})$$

and substituting with the assumption $\lambda \neq 0$

$$\lambda x_n + y_n$$

one has

(9)

262

(10)
$$(1-n\lambda)\,\xi n+(n-1)\,\lambda\xi_{n-1}=y_n$$

or, with the assumption $\lambda \neq 1, 1/2, 1/3, \ldots$

(11)
$$\xi_n + \frac{(n-1)\lambda}{1-n\lambda} \xi_{n-1} = \frac{y_n}{1-n\lambda}.$$

The difference equations (10) or (11) represent the inverse A_{λ} to C_{λ} , the transformation

(12)
$$x_n = \frac{1}{\lambda} (\xi_n - y_n)$$

being very simple. Especially, for $\{y_n\} \in I_{\infty}$ and λ in the spectrum, but $\lambda \neq 1, 1/2, ..., \{x_n\}$ and $\{\xi_n\}$ possess the same order of growth.

Now, solving (11) recurrently with the restriction

(13)
$$\lambda \neq 0, 1, 1/2, 1/3, \dots$$

one gets an explicit formula representing the solution there of:

(14)
$$\xi_n = \frac{1}{n\lambda \left(1 - \frac{1}{\lambda}\right) \dots \left(1 - \frac{1}{n\lambda}\right)} \cdot \left(1 - \frac{1}{n\lambda}\right) \cdot \left(-y_1 + y_2 \frac{1}{\lambda} - 1 + \dots + (-1)^n y_n \frac{\left(\frac{1}{\lambda} - 1\right) \dots \left(\frac{1}{\lambda} - (n-1)\right)}{(n-1)!}\right).$$

Remembering the definition of A_{λ} in [6] as a lower triangular matrix, one gets from (14) for its elements (in [6], the subscripts begin with n = 0)

(15)
$$a_{nk} = \frac{1}{\lambda(1 - (n+1)\lambda)} \frac{1}{\left(1 - \frac{1}{(k+1)\lambda}\right) \dots \left(1 - \frac{1}{n\lambda}\right)}$$

For $\lambda = 0$, one finds separately

$$A_0 = \begin{pmatrix} 1, & 0, & \dots \\ -1, & 2, & 0, & \dots \\ 0, & -2, & 3, & 0, & \dots \\ \vdots & & \vdots \end{pmatrix}.$$

This is the matrix in (18), [6]. It was found already by Toeplitz.

4. The spectrum of $c_{\rm 0}$ on l_{∞}

From (15) and the known formula for the function Γ ([5], p. 439–440), one gets asymptotically for $n \to \infty$

(17)

$$a_{n0} \cong -\frac{1}{\lambda^{2}} \Gamma\left(1 - \frac{1}{\lambda}\right) n^{(1/\lambda) - 1}.$$
Since
(18)

$$n^{(1/\lambda) - 1} = n^{\mathscr{R} \cdot \left((1/\lambda) - 1\right)} e^{i\mathscr{I}_{\mathscr{M}} \left((1/\lambda) - 1\right) \log n}$$
one gets
(19)

$$\lim_{n \to \infty} \left|a_{n0}\right| = \infty$$
for
(20)

$$\mathscr{R} \cdot \frac{1}{\lambda} > 1$$
and
(21)

$$\lim_{n \to \infty} \left|a_{n0}\right| = 0$$
for
(22)

$$\mathscr{R} \cdot \frac{1}{\lambda} < 1.$$

The points λ fulfilling (22) lie in the outside of the disk with the centre $\frac{1}{2}$ and the radius $\frac{1}{2}$.

Comparing (15) for k = 0 and for an arbitrary k with (17), one sees that (19) and (21) hold also for k > 0.

Further, we will estimate the sums $\sum_{k=0}^{n} |a_{nk}|$ supposing (22) to hold. Using the inequality

(23) $|1-\mu| \ge |1-\Re \epsilon \mu|$

264 and putting $\Re e 1/\lambda = v$, one gets recurrently

(24)
$$\sum_{k=0}^{n} |a_{nk}| \leq \frac{n|\lambda|}{|\lambda| |n\lambda - 1|} + \frac{1}{|\lambda| |n\lambda - 1|} \frac{n-1}{1-\nu}.$$

But

(25)
$$\lim_{n \to \infty} \left(\frac{n|\lambda|}{|\lambda| |n\lambda - 1|} + \frac{n - 1}{|\lambda| |n\lambda - 1|} \frac{1}{1 - \nu} \right) = \frac{1}{|\lambda|} + \frac{1}{|\lambda|^2} \frac{1}{1 - \nu}.$$

Considering (6), (7), (19), (20), (21), (22), (25) and the known Toeplitz-Schur conditions for the matrix A_{λ} one sees that the following theorem holds.

Theorem 1. On l_{∞} , C_0 is a bounded linear operator. Its spectrum is the closed disk with the centre $\frac{1}{2}$ and the radius $\frac{1}{2}$. The points 1, $\frac{1}{2}$, $\frac{1}{3}$, ... lie in the point spectrum, $\lambda = 1$ is the only eigenvalue, its multiplicity is 1, and the sequence $\{1, 1, ...\}$ is the only corresponding eigenvector.

The first part of this theorem is merely a special case of a theorem from [2], but our proof is direct and not depending on the results for the continuous operator C_1 from (4). Moreover, we will be able using (14) to prove the following theorem.

Theorem 2. Then open disk with the centre $\frac{1}{2}$ and the radius $\frac{1}{2}$ is, with exception of the points $\frac{1}{2}, \frac{1}{3}, \ldots$ contained in the residual spectrum of C_0 on l_{∞} . The exception points are the only points of the point spectrum in the open disk.

In [1], [2], there has been shown that this open disk represents the point spectrum of C_1 on $L^{\infty}(0, 1)$, each point λ there of being an eigenvalue, the function $t^{1/\lambda-1}$ being the corresponding eigenfunction. Thus, although the spectrum of C_0 and of C_1 is the same disk, their finer properties are quite different.

For the first term on the right side of (14), there is ([5], p. 439-440) for $n \to \infty$

(26)
$$\frac{1}{n\lambda\left(1-\frac{1}{\lambda}\right)\dots\left(1-\frac{1}{n\lambda}\right)} \cong \frac{1}{\lambda}\Gamma\left(1-\frac{1}{\lambda}\right)n^{(1/\lambda)-1}$$

supposing that (13) holds. Moreover, in the open disk, there holds (20). The second term on the right side of (14) is a partial sum of a Newton series in the variable $1/\lambda$ ([4], p. 141 – 163).

Let $\{y_n\} \in I_{\infty}$ and is such that

(27)
$$\sum_{k=1}^{n} |y_k| \to \infty \quad \text{for} \quad n \to \infty \; .$$

Then, since there exists a M such that

(28)
$$|y_k| < M$$
 (*M* independent on *k*)

one has

(29)
$$\frac{\log \sum_{k} |y_k|}{\log n} < 1 + \frac{\log M}{\log n}$$

thus the abscissa of absolute convergence of the Newton series with coefficients $\{y_n\}$ is ([4], p. 153)

(30)
$$\frac{1}{\lambda_0} = \lim_{n \to \infty} \frac{\log \sum_{1}^{n} |y_k|}{\log n} \le 1$$

Thus for $\{y_n\} \in l_{\infty}$ and fulfilling (27) and for λ fulfilling (20), the Newton series on the right side of (14) converges absolutely. Suppose λ to be given and consider the sequences

(31)
$$\{y_1, y_2, \ldots\} = \left\langle \begin{cases} 2, 1, 1, \ldots \\ 3, 1, 1, \ldots \end{cases} \right\rangle.$$

At least for one there from the Newton series has for the given λ the sum different from zero ([4], p. 163). Choose that sequence and denote the sum of the Newton series $K(\lambda)$. But then, from (14) and (26), for $n \to \infty$

$$(32) \qquad \qquad \xi_n \sim n^{(1/\lambda)-1}$$

(~ means that ξ_n grows asymptotically as $n^{(1/\lambda)-1}$ for $n \to \infty$).

Suppose now a sequence of sequences $\{y_{nm}\}, m = 1, 2, ...$ converging in l_{∞} to the chosen sequence from (31). Since the convergence in l_{∞} is uniform with respect to the subscript *n*, we may suppose that a m_2 exists so that $|y_{nm}| < 2$ independently on *n* for every $m > m_2$. Thus to every $\varepsilon > 0$ there exists a n_{ε} so that for every $n > n_{\varepsilon}$ and every $m > m_2$

(33)
$$|y_{nm}| \frac{\left|\frac{1}{\lambda} - 1\right| \dots \left|\frac{1}{\lambda} - (n-1)\right|}{(n-1)!} + |y_{n+1,m}| \frac{\left|\frac{1}{\lambda} - 1\right| \dots \left|\frac{1}{\lambda} - n\right|}{n!} + \dots < \varepsilon$$

 λ being given and the convergence of the Newton series being absolute. Considering the terms y_k , y_{km} , k = 1, ..., n - 1 one sees that to the given ε an m_ε exists such that for $m > \max(m_2, m_\varepsilon)$ the difference of both Newton series for $\{y_n\}$ and $\{y_{nm}\}$ is absolutely smaller than 3ε . Thus for m sufficiently large the sum of the Newton series with coefficients y_{nm} is different from zero, moreover, denoting this sum with $K(m, \lambda)$, there is for $m \to \infty K(m, \lambda) \to K(\lambda)$, and for $n \to \infty$

$$\xi_{nm} \sim n^{(1/\lambda)-1} \,.$$

265

Thus with exception of the points from (13), for every λ fulfilling (20) we have found a sequence $\{y_n\}$ in l_{∞} such that the sequence $\{x_n\}$ formed therefrom by A_{λ} is divergent and the same is true for the sequences $\{y_{nm}\}$ in a sufficiently small neighbourhood of $\{y_n\}$ in l_{∞} . Thus the mapping of l_{∞} by C_{λ} into l_{∞} is not dense in l_{∞} and the theorem 2 is proved.

For the circle enclosing the open disk, the problem of the characterization of the spectrum seems to be difficult. As one has seen, $\lambda = 1$ is an eigenvalue. Now, we will show that $\lambda = 0$ lies in the residual spectrum. From (8), one obtains for $\lambda = 0$

(35)
$$\frac{x_n - y_{n-1}}{n} = y_n - y_{n-1}$$

thus for $\{x_n\} \in l_{\infty}$ not only $\{y_n\} \in l_{\infty}$, but also

(36)
$$\lim_{n \to \infty} (y_n - y_{n-1}) = 0.$$

For $\{y_n\} \in I_{\infty}$ but not fulfilling (36), $\{x_n\}$ cannot be bounded. The same is true for $\{y_{nm}\}$ in some small neighbourhood of $\{y_n\}$, the convergence in I_{∞} being uniform with respect to the subscript *n*. Thus $\lambda = 0$ lies in the residual spectrum of C_0 on I_{∞} .

5. CONCLUDING REMARKS

Expressing the difference equation (11) as the respective system of linear equations for n = 1, 2, ... and supposing that for sufficiently small |z| the series

(37)
$$\xi_1 z + \xi_2 z^2 + \ldots = X$$
,

(38)
$$y_1 z + y_2 z^2 + \ldots = Y$$

are convergent and that (37) may be differentiated term by term (these suppositions are true for the sequences from l_{∞} or fulfilling (32)), one obtains

(39)
$$\lambda z(z-1)\frac{\mathrm{d}X}{\mathrm{d}z}+X=Y.$$

For the problem of the spectrum, this replacement seems to be of little advantage, perhaps with exception of the eigenvalues and eigenvectors. Substituting in (39) Y = 0 in accordance with (4), one finds the solution

(40)
$$X = \left(\frac{z}{1-z}\right)^{1/\lambda}$$

and this function may be expanded in power series precisely for λ fulfilling (6), (7), the series with coefficients from (6), (7) resulting.

(Received February 20, 1976.)

[1] G. M. Leibowitz: Spectra of finite range Cesàro operators. Acta Sci. Math., 35 (1973), 27-29.

[2] G. M. Leibowitz: The Cesàro operators and their generalizations: examples in infinitedimensional linear analysis. Am. Math. Monthly, 80 (1973), 654-661.

[3] R. G. Cooke: Linear operators. Macmillan, London 1953.

[4] А. О. Гельфонд: Исчисление конечных разностей. Физматгиз, Москва 1959.

[5] K. Knopp: Theory and application of infinite series. Blackie and son, London 1951.

[6] L. Prouza: On the weight matrices of linear difference equations. Kybernetika 12 (1976), 1, 1-6.

Dr. Ludvík Prouza, CSc., Tesla – Ústav pro výzkum radiotechniky (Research Institute for Radio Engineering), Opočínek, 533 31 p. Lány na Důlku. Czechoslovakia.

REFERENCES