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The Number of Automata, 
Boundedly Determined Functions 
and Hereditary Properties of Automata* 

A. D. KORSHUNOV 

Asymptotic formulas for the number of strongly connected, sourced and initially connected 
automata with labelled states are given. Further, the concept of hereditary properties of automata 
is introduced and theorems concerning these properties are established. Finally, these theorems 
are used to obtain asymptotic formulas for the number of boundedly determined functions and 
some other assertions. 

1. INTRODUCTION 

In the present report an automaton will be understood to be a completely defined 
noninitial Mealy automaton (all pertinent definitions may be found in [1]). The set 
of all automata with input alphabet X = {xu ..., x,„}, output alphabet Y = {yt, ... 
..., y,,} and set of internal states S = {st,..., sk} will be denoted by A(m, n, k). 

The problem of finding the number of automata A e A(m, n, k) having a particular 
property is a natural problem of the theory of automata. These quantities may also 
be exploited when solving certain noncounting problems of the theory of automata 
(for example estimating some important parameters of automata). 

This problem was considered first by E. Moore in the classical paper [2]. Later 
E. Livshic, M. Harrison and other authors established the exact formulas for the num
ber of classes of isomorphic automata and for the cardinality of other particular 
subclasses in A(m, n, k). A survey of these results is contained in [3]. 

In the present report we pursue a few purposes. First we obtain asymptotic formulas 
for the number of strongly connected, sourced and initially connected automata with 

* This paper is a version of the author's communication presented at the Symposium on 
Mathematical Foundations of Computer Science — MFCS '75, Marianske Lazne, Czechoslovakia, 
September 1 — 5, 1975. 



32 labelled states. Further we introduce the concept of hereditary properties of automata 
and establish theorems concerning these properties. Finally, these theorems are 
used in obtaining asymptotic formulas for the number of boundedly determined 
functions and some other assertions. 

2. STRONGLY CONNECTED AUTOMATA 

The set of all strongly connected automata A e A(m, n, k) will be denoted by 
At(m, n, fc). Depending on the relations between the values m and fc the asymptotic 
formulas for cardinality of the set At(m, n, fc) have different form. These formulas 
are simple at m = m(fc) ^ In fc and the most complex at m = const = 2. 

Theorem 1. For any m = m(k) ^ 2 In fc, n ^ 1 and fc -> oo 

|A1(m, n, fc)| ~ |A(m, n, fc)| . 

Theorem 2. For any m 6 [f In fc, 2 In fc], n 2; 1 and fc -* oo 

|At(m, n, k)\ ~ |A(m, n, k)\ exp (-fce~m). 

Theorem 3. For any m e [2, f In fc], n 2: 1 and fc ->• oo 

/ ma \ - ! / 2 

\A,(m, n, k)\ ~ |A(m, n, fc)| . c0 .11 - ^ ) (v(m))* 

where am e [0, 1] is fhe solution of the equation 1 + x = Xem/^1+X\ 

^o=(i+|i(
m

r
ryvH)-yi 

and 

v(m) = a^".(l + am)m~1-a"'. 

3. SOURCED AUTOMATA 

An automaton A e A(m, n, fc) is called sourced if A £ At(m, n, fc) and there exists 
at least one state se A such that any state s' e A is accessible from s in A. By A2(m, n, 
k) will be denoted the set of all sourced automata in A(m, n, fc). 

We study the sourced automata from the motive that all initial connected automata 
are obtained from automata of the classes At(m, n, fc) and A2(m, n, fc) by a suitable 
choice of initial state. 



Theorem 4. For any m ^ 2 In k, n 2; 1 and k -> oo 

|A2(m, n, fc)| ~ |A(m, n, fc)| . fc . (1 - l/k)m("-1) . 

Theorem 5. For any m e [f In fc, 2 In fc], n Si 1 ana1 fc -» oo 

|A2(m, n, fc)| ~ |A(m, n, k| . k . exp (— m — fce_m) . 

Theorem 6. Eor any m e [2, f In fc], n ^ l and k -» oo 

|A2(m, n, k)| ~ |A(m, n, k)| k(v(m))" x 

1 - — J S - X - J (emv(m) 
x V 1 + flj r = i r V r - l j  

l+ r | (7)(emv(m)r 

where am and v(m) are defined in Theorem 3. 

4. INITIALLY CONNECTED AUTOMATA 

Let A3(m, n, k) denote the set of all initially connected automata which can be 
obtained from automata A e A(m, n, k) by a suitable choice of initial state. 

Theorem 7. For any m St f In fc, n S; 1 ana* k -» oo 

|A3(m, n, k) | ~ |A(m, n, k)| fc . exp ( - k e ~ m ) . 

Theorem 8. For any m e [2, f In k] , n jg 1 and k -» oo 

|A3(m, n, k)| ~ |A(m, n, fc)| fc(v(m))fc x 

i+rž(7)(emvн)-r 

5. FIEREDITARY PROPERTIES O F AUTOMATA 

Some problems of the theory of automata are connected with the study of several 
' characteristics of not all (or not almost all) the automata in A(m, n, fc) but only 
of automata in some special classes. For example, among these subclasses the set 



of initially connected automata presents a significant interest. At the same time when 
considering these problems it is convenient to deal with automata in A(m, n, k) 
rather than with automata in A,(m, n, k) (i = 1, 2, 3). In this connection we have 
the following question: What can one say about the value of certain parameters for 
automata in A,(m, n, k) (i = 1, 2, 3) if one has information on the value of these 
parameters for automata in A(m, n, k)l More formally this question is formulated 
in terms of hereditary properties of automata. 

Let E be a property of automata. The property E is called hereditary if the follow
ing requirements are satisfied: 

1. If an automaton A has the property E then every automaton isomorphic to A 
has the property E. 

2. An automaton A has the property E if and only if every initial automaton 
corresponding to the automaton A has the property E. 

3. If an automaton A has the property E then every subautomaton of the automa
ton A has the property E. 

The concept of a hereditary property is highly natural since all substantial pro
perties are hereditary. For example, the following properties are hereditary: 

a) an automaton is reduced; 

b) an automaton is strongly connected; 

c) the diameter of an automaton is not larger than r. 

The above question consists in the following. Let E be a particular hereditary property 
of automata and let the fraction of these automata in A(m, n, k) which have the pro
perty E be known. We then have the following question: What can one say about 
the fraction of automata in At(m, n, k) (i = 1, 2, 3) having the property £? The 
following theorems give answer to this question. 

Theorem 9. Let m 'St 2, n «£ 1, k -* co and let the number of automata in 
A(m, n, k) having a particular hereditary property E be not less than |A(m, n, k)\ . 
. (1 - o(min {1, (em//c)1/2})). Then almost all* automata in A{m, n, k) (i = 1, 2, 3) 
have the property E. 

Theorem 10. Let m e [2, f In fc], n ^ 1, k -* oo and let the number of automata 
in A(m, n, k) having a particular hereditary property E be not less than |A(m, n, k)\. 
. (1 - o((em/fc)1/2)). Then almost all automata in A2(m, n, k) have the property E. 

* Let R(m, n, k) be an arbitrary class of automata and E some property of automata in R(m, n, 
k). We say that almost all automata in R(m, n, k) have the property E if the fraction of the auto
mata in R(m, n, k) having the property E approaches to 1 for k~> co. 



6. REDUCED AUTOMATA AND B.-D. FUNCTIONS 

Now we formulate statements which follow from Theorems 9, 10 and some 
previous assertions. 

Corollary 1. For any m ^ 2 , n §: 2, fc—>co and i = 1, 2, 3 

|AJed(m, n, k)\ ~ a(m) |A ;(m, n, k)\ 

where a(2) = exp ( — \n2), a(m) = 1 for m 2: 3 and A"d(m, n, k) denotes the set 
of all reduced automata in A,(m, n, k). 

For m ^ -3 this assertion immediately follows from [4] and Theorems 9, 10. 
In the case m = 2 it is necessary to make supplementary investigations. 

A mapping j of the set of all words over X in a set of words over Yis a boundedly 
determined function (b. - d. function) if jean be realized in an automaton. We say that 
the b.-d. function/has the weight k i f / can be realized in an initial automaton with k 
states and cannot be realized in any initial automaton with the number of states less 
than k. 

The set of all b.-d. functions of weight k which can be realized by automata in 
A3(m, n, k) will be denoted by F(m, n, k). It is easy to see that an arbitrary reduced 
automaton in A3(m, n, k) realizes a b.-d. function of weight k and distinct functions 
in F(m, n, k) are realized by nonisomorphic automata. 

Using this fact, Theorems 7, 8 and Corollary 1 the following corollary is easily 
established. 

Corollary 2. For any m ^ 2, n g: 2 and k -* GO 

|F(m, n, k)\ ~a (m). [A3(m, n, k)\jk\. 

7. DEGREE OF DISTINGUISHABILITY AND DIAMETER 
OF AUTOMATA AND B.-D. FUNCTIONS 

The degree of distinguishability and the diameter are the most important para
meters of automata and of the boundedly determined functions realized by them. 
An estimate of their magnitude is of great importance for the formulation and solu
tion of many problems in the abstract theory of automata, e.g. synthesis, minimiza
tion, experiments and so forth. For distinct net automata with the same number 
of states the values of each of the above parameters are, in general, distinct. At the 
very beginning of the theory of automata it was established [2] that the maximum 
of the degree of distinguishability and of the diameter of an automaton is greater 
by one than the number of its states. But the question as to the most probable values 
of these parameters remained open for a long time. It was proved only in [5] and [6] 



36 that the diameter and the degree of distinguishability of almost all automata in 
A(m, n, k) are essentially smaller than the maximum possible. Namely, Ya. Barzdin' 
and A. Korshunov [5] found that for any m >: 2, n ^ 1 and k -* co not less than 
|A(m, n, k)\ (1 — l/fc) automata A e A(m, n, k) have the diameter d(A) < c logm k + 
+ 1 where c -» 1 for m -*• oo. 

From this fact and from Theorems 9 and 10 we have the following corollary. 

Corollary 3. If m S; 2, n 2: 1 and k -> oo i/ien almost all automata A e A,(m, n, fc) 
(i = 1, 2, 3) hafe fhe diameter d(A) < c logm k + 1. 

If in proving Lemmas in [6] we use the more exact bounds on the being investi
gated values then we obtain the following result. 

Corollary 4. If m >t 2, n ^ l and k -> oo fhen jor almost all automata A e 

e A,(m, n, k) (i = 1, 2, 3) f/ie degree of distinguishability h(A) satisfies the inequali

ties 

[logm log„ fc] <, h(A) ^ logm log„ k + 4 . 

By the degree of distinguishability and the diameter of a boundedly determined 
function we mean the degree of distinguishability and the diameter of the reduced 
initially connected automaton realizing the given boundedly determined function. 

From Corollaries 2 —4 we have the following assertion. 

Corollary 5. If m ^ 2, n ^ 2 and k -» oo then for almost all boundedly deter
mined functions f e F(m, n, k) the degree of distinguishability h(f) and the dia
meter d(f) satisfy the relations: 

[logm log„ fc] g h(f) S logm log„ k + 4, 

d(f) < c logm k . 

8. DECIPHERING OF AUTOMATA AND B.-D. FUNCTIONS 

The problem of reconstructing boundedly determined functions occurs in the theo
ry of synthesis or in the theory of experiments in the following way. Let us assume 
that the "client" has thought of a certain automaton A in A3(m, n, k). Then the 
"performer" who knows the parameters m, n and k must discover the boundedly 
determined function / realized by the automaton A where he has the right to ask his 
questioner for answers to questions of the type "what does A transform such and 
such an input word into?". 

It is easy to see that if a given automaton A has the degree of distinguishability h 
and the diameter d t h e n / can be recovered if we know how A transforms input words 



of length h + d + 1 in to ou tpu t words of the same length, i.e. the funct ion / is 37 

recovered b y m e a n s of a mul t ip le exper iments of length h + d + 1. F r o m this a n d 

from Corollar ies 3 —5 we have the following assert ion. 

Corollary 6. For m ^ 2, n 5: 2 and k -> oo almost all automata in A3{m, n, k) and 

almost all boundedly determined functions in F(m, n, k) can be recovered by means 

of multiple experiments of length not more than c t log,„ k + 1, where ct -> 1 

for m -> oo. 

(Received September 30, 1975.) 
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