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Some Theorems on Geometric Measure
of Distortion

Y. D. MATHUR, J. MITTER*

In this paper the relationship between the rate of transmission of information and the geometric
measure of distortion is established both in discrete and continuous cases. The geometric rate-
distortion function is defined as the infimum of the average mutual information between the sets
of input and output symbols under the constraint that geometric distortion measure does not
exceed a distortion limit. The slope of the geometric rate-distortion curve is evaluated and a fower
bound is obtained. Finally geometric rate-distortion function is constructed for symmetric
distortion measure.

I. INTRODUCTION

Consider an M-letter independent source with input symbols {0, L,..,M~-1}
which are used to communicate over channel whose set of output symbols is {0, 1.,
... N — 1}. Let the channel matrix be {q;,;} where q;;; is the probability of receiving
j when i is sent. If the input distribution is {p;}!L3" then the output distribution
{g;}7=¢ is determined by

(1) a; = Ypy forall j.

Further let g;; denote the distortion when symbol i is received as}' such that g;; >
> o> 0,i%Fj; 0 =.o If we denote the geometric mean of single letter distor-
tions g;; by ,Dg, then

(1'2) Dg = H QQJP‘-%‘/') .
i,
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Also, the average mutual information 1(X; Y) (or R({g,;;})) between the input and 399
output, is given by

(1.3) 1X;Y) = R({a:}) = 2 Xpidyy: log i ,
[ lelqj/l

where logarithms are considered to the base 2.

On the lines of Shannon’s rate-distortion function [4] Sharma, Mitter and Mathur
have defined the geometric rate-distortion function R(,D§) as

(1.4) R(,DE) = min R({q;,}),

where the minimization is done with respect to all those {g;;;} for which ,D; < ,Dg,
D¢ being a fixed quantity.

The measure defined in (1.2) has some advantages over the Shannon’s measure
of distortion given by

(1.5) D= Zzpi'qf/"'@"f'
. g

Some relations that it bears with entropies of the system and the rate of transmission,
have been given in [5]. Bounds on R(,D¥) when measure of distortion is symmetric
ie., 0;; = f > a Vi, j; i + j were obtained by Sharma and the authors in [6]-

In the present communication, we obtain some expressions for R(,,Df’;) and study
the nature of the geometric rate-distortion curve. A lower bound on R{,Dg) when the
measure g;; = g(x; ») (continuous case) depends on the difference of x and y and
its value when the measure is symmetric, are obtained berein.

II. THEOREMS ON ,Dg

Theorem 2.1. Let R(,Dg) be the geometric rate-distortion function of a discrete
memoryless source with source probability {pi} and single letter distortion measure
0> then R(,Dg) can be expressed as

1) R(,Dg) = v. D log D + Ypilog ;.
where '

(22 Tupi?*e =1 forall j,
and l

23) - pit = Ya;ei*e, forall .
J
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Proof. Proceeding as in Gallager [2], it can be shown that by constructing
a function ¢ as

¢ =IX;Y) = v.. DG+ ¥Si Yy
i J
where

qu/i =1,
i

and differentiating it with respect to g, after setting S; = — p; log u;, the condition
for g;,; to yield a stationary point for ¢ is that

24y - 4y = wiqei°*e, forall i and j
satisfying

Zu,»p,-g?_;-’”*c =1 forall j.
Further setting (2.4) in (1.3), we get

R(.DZ) = X3 paua 01577* log (ieis™™<) =
iJ
= v..D§ Y pamir” e log iy + LY pidmiel”*e log u; =
i g
=v.,Dglog,D§ + ZP.‘ log p;,

using (2.3). ]
The result can be analogously extended to continuous case. With similar notations,
we have

(2.6) R(,D§) — v . ,D§ log ,D§ = [ p(x) In p(x) dx
such that

Jux) p(x) 0" =P*e(x; y)dx = 1 forall y,
and
(2.62) 1) = [a(y) e"="*(x; y) dy,

where In denotes logarithms to the base e.

The parameter v admits of a geometrical interpretation which we now state below:

Theorem 2.2. The slope R'(,D§) of the geometric rate-distortion curve at D is
given by

(2.7) R'(,DE) =v.log(2.,D%).



Proof. From (2.1), it follows that R(,D{) is a function of v, ,D§ and 1, (i = 0, 1, ...
..o M — 1). Thus, we have

* A A , A .
R'(lDf;):l}—R(‘—DG—): 2R +£'R( dv )+Z(R(du,>=

) 4,05 o,0% v \d,D} ap: \d, D
pi (dui dv
=v +v.log,D§ + | D log ,DE + ¥ Z -
¢ ¢ ¢ Zi:‘u,. dv/|d,Df

As the transverse the R(,Dg) curve, the solution always satisfics (2.2), so that

dy; v
> I:ﬂ.-aDE log o;; + ﬁ:l Pial* e = 0.

i

Multiplying this by q; and summing over j, we obtain

th]ogqu;—!—Z& du; =0.
T op; \ dv

This, in turn gives

R'(,D§) = v + v.log . Dg . O

Theorem 2.3. For a reproducing probability distribution ¢ = (gq, gy ..., gy-1)
let B,={j:q;=0} and V, ={j:q; > 0} be the boundary and interior sets
respectively. Then a conditional probability assignment {q;,,} such that

v.oD¥g

i = Miq;0;; forall i and j,

yields a point on the R(,Dg) curve if and only if
(28) Yupoire £ 1, for jeB,,

where p; and v satisfy (2.3).

Proof. Let a change of transition probabilities Agj;; be such that

(2.9 Ag;;; 20, for jeB,,
(2.10) Zqu/i =0

J
and

(2.11) ADg = exp [¥, 2pi Mgy log )] = exp (0) = 1.
i

401
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For V,, the change in I(X; Y} is given by

Al = Z Z pi g log #i@?}“D*G

1 jevg
(from 2.4} and for B,, the change is 4

Ag;,
Aly =3 % piAgyylog A
i jeB, A

i

j

Thus the total change is then given by

Tjev, i jeBg 4a;

Ag;;
Al =33 pi. Aydlog ol + log i} + Y. 3 pi. Agjy log %

By adding and substracting the quantity

Z Z pi. qu/i{l()g Q‘i’j‘w*s + log lli} s

T jeBg
we obtain
Al = Z ZPi . qu,/i{l()g Q‘z]jﬂn*c + log l‘i} +
7
(2.12) +3 3 pi.Agylog Ay
7 jeB Ag; . ol

Invoking the constraints (2.10), (2.11), the first expression on the right hand side
of (2.12) vanishes. Again by applying the inequality

2.13 log x 21— L with equality iff x = 1
g q
X

to the second expression of right hand side of (2.12), we get
Al Z0

if (2.8) holds.

This shows that any change of transition probabilities can only increase I(X;Y)
if ,Dg is kept fixed when (2.8) holds, which implies that the above solution achieves
the minimum of I(X; Y). The second part of the theorem can be readily established
by showing that the set of transition probabilities which does not satisfy (2.8), will
decrease I(X; Y), keeping , D¢ fixed. [m]



Theorem 2.4 (Another form of R(,D%)). Let 2 be the set {u} where u = (o, pry, ... 403
woo Mp-q)and y; > Oforeach i = 0, 1,..., M — 1 satisfying

(2.14) Suiopi.oip™e 1 foral j,

then

(2.15) R(,D?) = max (v..DZ log . D§ + Zp; . log p;)
v.uel i

and a necessary and sufficient condition for g to achieve maximum in (2.15) is that
its components be given by

(2.16) uit =Yg, i=0,1,.., M~ 1.
J

Proof. From the assumption ,D; £ ,D¢ and making use of the inequality (2.14)
and (2.13), we get

R(,D3) — v.,D§ log ,D§ — ¥.p; . log y; =

> { — &M*G =1 viaD¥e > | _ -
= Zzpiqj/i =1- Zq, Z#ipigu = qu =0.
iJ 4/ J i i
Hence, for every set of conditional probabilities {q;;;} for which ,D; < D,
R(,Dg) approaches the maximum on the right hand side of (2.15). Thus

(2.17) R(,D§) = max (v.,D§ log . D& + Y.pilog i) s

v,uefi
we can casily see from Theorem 2.1, that

(2.18) R(,D§) < max (v.,D§ log D& + 3 p;log u;) .

v,ueit

Thus combining (2.17) and (2.18), we obtain (2.15). The necessary and sufficuent
condition for achieving the maximum in the statement of the theorem follows im-
mediately from Theorem 2.3. 0

In the next section, we shall come to a variational problem to find a lower bound
of R(,Dg). For that we shall need the continuous analog of Theorem 2.4 which may
be stated as follows:

If £ is the set of all non-negative functions u(x) satisfying

(219) fu(x) p(x) @"=P*%(x; y)dx £ 1 forall y
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then

(2.20) R(,DE) = Sup [v.,D§log D¢ + [p(x)In p(x) dx]

vou(x)ep

and a necessary and sufficient condition for y(x) to achieve supremum in (2.20)
is that there exists an output probability density function q(y) satisfying (2.6a) for
almost all y for which q(y) < 0. O

1II. A LOWER BOUND WHEN g(x; y) = o(x — y)

When the distortion o(x; y) depends upon the difference of x and y, we call it as
difference distortion measure.

Theorem 3.1. If R denotes the lower bound of R{,D¥) for difference distortion,
then

(1) Ry = H() ~ HOH(),

where H(X) is input entropy, that is — [ p(x) log p(x),

5 e Q““‘D**"(x)
(3'~) '/’( ) J-Qv.,b**c(z) dz 4

and ,Dg* is the value of ,DF for z = x — y.
Proof. Let us suppose that

_s
(33) o) =5

where S is a constant,
If ,D* denotes the value of ,Df when z = x — y, then (2.19) gives

(3.4) S.[g"P*e(z)dz £ 1.

Choosing S such that (3.4) holds with equality, it follows from (2.20) that
(35)  RGDEY) 2 v..DE" InDE* + H(x) - In [o"~"*o(z) dz = Ry (say).
Therefore,

(3.6) R = D& In ,DE* — ,DE* [(In o(x))y(x) dx
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(3.7 Ry = — [{.DE* In o(x)}? . y(x) dx + ([, D& In o(x) y(x) dx)*.

From (3.7) it can be readily seen that R{ < 0, therefore R, is convex n function of v.
Hence, there exists the unique maximum at some v satisfying Ry = 0, that is

(3.8) DEF In ,DE* = DE* [In o(x) (x) dx .

Suppose that the value of ,D§* In ,DE* for v obtained from (3.8) be denoted by D,,
then from (3.5) it follows that

Ry =D, + H(x) — In [o"*"**°(z) dz = H(x) + [y(x)In y(x)dx. 0

IV. CONSTRUCTION OF R(,D{) FOR A SYMMETRIC MEASURE
OF DISTORTION

If the number of input and output symbols are the same and if the cost of every

correct transmission is o and that of any incorrect transmission is f§ (obviously a < p)
so that

(4.1) Qij = {oc it i=J.

f otherwise ,

then we may refer to this as symmetric measure of distortion. We shall give a theorem
on the construction of R(,Dg) for the symmetric measure of distortion. We first prove
two lemmas.

Lemma 1. Let R(,Df) be defined for some source X with probability P =
= {Po» 1> ...» Pu~,} and distortion matrix {¢;;} and suppose the new distortions
are formed by multiplying each row of the distortion matrix by a constant i.e.,

then
(42) R(,D¥) = R(,DE[C),
where C = 2"7:'8% and R is defined for the source X and distortion ;.
Proof. We know that
R(,DE) = min I(X;Y)
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subject to the constraint
(4‘3) DEiEjpudjsilogai; < aD(*;
or

IiZ;piqjsilog pij *
QEiTipidisi JéuDG/C

which by definition is R(,D§/C). ' m]

Lemma 2. Let p, be the probability of the source letter corresponding to a row
with all entries 1 in the distortion matrix. Then

(44) RGDE) = (1 = po) R(.DE) ),

where R is defined for the distortion matrix with row of 1’s deleted, the source being
(1,2, ..., M — 1) with input probability distribution

(4_5) p* = ( P P2 . Pm-1 )

1—-po 1=po A,I*Po

Proof. The geometric distortion ,D; is not affected by omitting the distortion
corresponding to the reproduction of source letter O. Thus to minimize I(X; Y)
we must choose g;,; so that I(x,, ¥) = 0. With this choice

I

R(,D§) = min I(X;Y) =

M-1
= min [po I(x0; Y) + .thi I(x;Y)] =

M-1 pi
min [(1 = pg} Y. ———1I(x;;Y)].
i=1 1 — pg
The constraint is
M-1
L Ypailoge; = log.Dj -
=017
But

240108 00y = 0.
7

Therefore,

M-1
Pi

] -
4 log 0;; = -log ,Df = log (aD:;)ll(I ro) |
=17 1 = py 1 - po

So by the definition of R(,Dg), we obtain the desired result. 0



Theorem 4.1. Under symmetric measure of distortion 407

(46)  R(DE) = (1 = og—y) [Hy—gx+1(X) = H(dx-,) — 4¢_, log (M — K)]
for
DEETY < D < DFF, for 22 K<M+ 1,

where
K-1
ok =2 p;, for K21; 6,=0,
i=0

1-6r-1
(4.7) DE® — pox- [a log o + (ﬁ log p — xlog o() (M _ K)l PK‘;1 ]
—Og-1

and

#\1/(1 -0k

<’sz) —aloga
(4.8) 4, =N o
plogf — aloga

A(4y) = —Aglog Ay — (1 — A log (1 — 4Ag);

also Hy_x(X) is the entropy of the source (pg/(1 — o), ..., py1/(1 — %), prov-
ided that py £ py S ... € Pyt

Proof. We have indicated in Theorem 2.1 that the set {q;,} giving R(,D§) is
given by

dyi = qey*"*¢ forall i and j,
where ¢;’s satisfy the constraint
(4.9) pi Y g0 =1 forall i.
J

For symmetric measure of distortion, it has been shown in [6] that
(4.10) R(DE) = H(X) — A(4) — Alog (M — 1),
where H(X) is the source entropy,

D¢ — aloga

a

=/3’logﬂ~cxloga
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and

H(d) = —dlogd ~ (1 — A)log (1 — 4)
with equality in (4.10) if
(4.11) D& S aloga + (Blog f — aloga) (M — 1) py,

Do is the minimum input probability and g; in (4.9) under this measure is given by

Tp*e M — 1) a™] — o™
(4.12) qj:P]LB!(ﬂTﬂ—-a);'f] o

All g;’s will be non-negative if

1
413 > o
(413) b= P~ + (M = 1)
Denote
(4.14) D =aloga + (Blog p — aloga)(M — 1) py = D).

Then for ,Df > D" [3], output zero will never be used and we can therefore
remove it from the output alphabet and delete the corresponding column from the
distortion matrix without affecting R(,D§). Thus for ,Df > ,D5" we have M x
x (M — 1) distortion matrix {g;;} with all §’s in the first row. Dividing the first row
by B and using Lemma 1, we have

(4.15) R(DE) = R(,DE[B™),

where R corresponds to the matrix

11...1
af ... B
(4.16) _ {efp} =
85«

Using Lemma 2, we get

(@1) RO(DE = (1~ po) RO(LDE! ).



From (4.15) and (4.17), we have

@19) RGDE) = (1 = po) R(DE[P) )

for ,D§ > ,Dg'? and R® corresponds to the (M — 1) x (M — 1) matrix and the
source

p**=< Py P2 - thL)
l—po 1—po 1 — po

A lower bound of R*(,Df) can be obtained similarly which is valid for

«D§ £ logo + (Blog B — aloga) (M _Z)Tpl;’
- 0

where p, is the second lowest probability. Thus the second break point occurs at
DED where

(DED[pro) /171 = g log o + (B log B — o log o) (M — 2) l—pl—
- P
Hence

* *
R(DY) = H(X) — A1 oDg —aloge \ [ DG — aloga
Blog B — aloga Blog p — aloga)

)log ™ - 1)

for
D¢ S aloga + (Blog f — aloga)(M — 1) py
and
% ppo1/(1~po) __
RGDE) = (1 = po) | Hy,(x) — 1 {GBEB™) 70— loga]
plogf — aloga
D*|groyt/(1=po) _
_ [lDalp) IO — alogal o0y g
plogff — aloga
for
DEY < ,D§ < ,DE
where

M-1
Hy_((X) = —'Zl P g _Pi_

Continuing this way, we get the desired result. m}

409
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