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On G-machines Generating Intersection
and Union of Generable Languages

IvAN MEzZNIiK

The article deals with the construction of G-machine generating to given two G-machines the
union (if they satisfy certain necessary and sufficient conditions) and the intersection of their lan-
guages.

1. INTRODUCTION

The notion of a G-machine was introduced in [2] as a certain generalization of
machines studied in [1] and [4]. A generable language is the set of all “words*
generated by a G-machine (in the mentioned references ““‘generable set™ instead of
“generable language” is used). The class of generable languages is closed under
intersection, but not generally under union (see [3]). We shall deal with the construc-
tion of G-machines generating to given two G-machines the intersection and the
union of their languages.

2. PRELIMINARIES

2.1. Denotation. T'={1,2,..}, T={0,1,2, ..}, T, = {1, 2, .., n}, T\, =
=1{0,1,2,...,n}.

2.2. Let I be a finite set (including the empty set). Denote I the set of all nonvoid
sequences of elements of I. These sequences are called words. ForwelI®, me T,w =
= (Sg» 515 -+ +» Sm—1) PUt I{w) = m. For welI”, w = (so, 5, ...) put I(w) = co. The
symbol I(w) is called the length of w. Instead of w = (¢, Sy, ... Sp—y) and w =

m—1
= (8o, Sy5...) We Write W = 548, ... 5,y and w = so8;...ot w= [[s; and w =
Ll i=0
= [ s;respectively. Considering a word of finite or infinite length we use the denotation
i=0
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| Is« For k & T by the symbol (sos; ... 5,,—, ) we understand the word s¢5; ... SpSp g -

e SomSamat +ee Skm—1, Where Sp,.; = s; for all ie T,_; and all jeT,_,. Further,
by the symbol (sos; ... Sp—;)™ We understand the WOrd so5; +.- SpSmt1 -« SumSam+1 +--»
where s,,,; = s;forallje T,,_, and all n € T. For m = 1 we omit the brackets and

write sk, s5.

2.3. Convention. In the relation C < I® we suppose that every element from [ is
included in at least one sequence from C.

2.4. A G-machine is a triple M = (S, 1, 8), where S is a nonvoid finite set, [ =
< S(I # S), & is a mapping of ] into the set of all nonvoid subsets of S. In the follow-

m—1

ing, M is to be understood as G-machine M = (S,1,5). Let meT. A word [[s;
o0 i=0

or [] s; is called an output word of the length m or oo respectively, if s, €1, 5;4; €
i=0

ed(s)ynIforalieT,_,orforallieT An output word w = [[s; is called a word

generated by M if either I(w) = co or I(w) = m and there exists v € §(s,,.;) 0 (S — I).
To distinguish that [s; is an output word of G-machine M we use the denotation

TTs{5). The set of all words generated by M is denoted L(M) and called the language
i

of M. A set C, C < I is called a generable-language if there exists M such that
C = L(M).

2.5. A pair (s, v) is called productive if sl and ve 5(s) NI and unproductive if
seland ved(s) N (S — I). Denote P, the set of all productive pairs and N, the set
of all unproductive pairs. Then § = P; U Nj. For every sel put N* = {(s, v) | (s, v) &
€ N;}. Choose from every N, = @ an arbitrary (s, v") (a representative) and put
Nf= U (5¢°) and 6® = P; U N5. G-machine M® = (S, 1, 8%) is said to be

sel, Ns#g
result of reduction of M.

2.6. G-machines M, = (S,, I, 8,) and M, = (S, 1,, §,) are said to be equivalent
if L(M,) = L(M,). Then we write M, ~ M,. .

2.7. Let ] be a finite set, C < I® and [ = S(I + S), where S is a nonvoid finite set.
Suppose I #+ @ (then according to Convention 2.3 C # ). Denote ¢ an element
(sequence) from C and by s, the (i + 1)-th element of ¢, ¢ = []s; for all ie T, _,

m—1 '
if (c)=meTand forallie Tif ¢) = wo. Force C, ¢ = []s(meT) put P(c) =
i=0
= U(s, S+ y) for alt ke T, and N(c) = (s,,—1, v), where v is an arbitrary element
k



of (S —1I). For ce C, ¢ = [[s; put P(c) = U(sp 5i4+1) for all ke T. Denote P =
i=0 k
= UP(c), N =UN(c), [C] =P UN.If I =0 put §[C] = 0. Define G-machine
ceC ceC
M[C] = (S, I, §[C]).

3. G-MACHINES M, AND M,

3.1. Proposition. M ~ M*~.
(See [2], Corollary 2.)

3.2. Proposition. Let I be a finite set, C = I®. C is a generable language iff C =
= LM[C)).
(See [2], Theorem 6 and Corollary 3.)

3.3. Proposition. Let M, =(S,,1,,6,), M, =(S,,1,,8,) be G-machines. Then
the following statements (A), (B) are equivalent:
(A) P,, = P;, and there exists (s, v') € N,, iff there exists (s, v?) € N,,.
(B) M, ~ M,.

(See [2], Corollary 5.).

3.4. Definition. Let M, = (S|, I, §,), M, = (S,,1,, 8,) be G-machines. Put

-
(1) P, = {(s, v) | there exist []s; and i € T such that
ji=0

Hosj(él) =[]5,0,) and s, =35, s;0y=0}.
7= J

<o
(2) P = {(s, v)| there exist indices 7, ne T, n > i + 1, states v' €S,, p* € S, and
n—1

an output word H S5 With 5653 oo SiSihg oo Sp—1(81)s SoSy oow SSiwy -oe Sy 4(82)
where 5; = s, s,-.HJ—:O vand (s,-;, ') e Ny, (5,-1, v7) €Ny} s

(3) N" = {(s, v) | (5, v") e N5, and there exists (s, /) e N,, forall i, je {1,2}, i # j} ;

(4) 6p=P,UP,UN',P;, = Py UP, N, =N;

(5) Sp 2 S, where S = {s| there exists (s, 1) & 8p} U {t] there exists (s, {) € 5,}, Sp
is a nonvoid finite set;

(6) Ip = {s] there exists (s, ) € 5p} U {tl(s, 1) € Py, }.
Define G-machine Mp = (Sp, Ip, 3p).

3.5. Theorem. Let M, =(S,,1,,8,), M, =(S,,1,,8,) be G-machines, C =
= L(M,) n L(M,). Then L(Mp) = L(M[C]).
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Proof. Suppose Ps, + 0, (s,v)€P;,. By Definition 3.4 (s,v)e P, for some
me {1,2}. First assume (s. v)e P,. From 2.4 and (1) of Definition 3.4 it follows

there exists a word w = H s; which belongs to L(M,) and L(M,), thus we C. By

2.7 (s, v) € P(w) and (s, v) € Pa[q Second let (s, v) € P,. By Definition 3.4 there exist
v' €Sy, v €S, and an output word w of the form given by (2). Using 2.4 w = 545, .

. S,-1 € L(M,,) for all me{1,2}, thus we C. By 2.7 (s,v) e P(w), (s,v) e Pa[q-
Hence the inclusion

™ Psp S Py

holds true. Now suppose (s, v) € Pscy. By 2.7 there exist ce C and i€ T such that
(si»5i01) € P(c), 5; = 5,541 = 0. Since ce L(Ml) A L(M,) then there holds (s,
Si+1) € Py, for all me{1,2}. First consider ¢ = Hs Then from (2) and (4) of

Definition 3.4 it follows immediately (s;, s,H)e Pl, (50 5i41) € P, Second let
n—1
= H {(neT). Since ceL(M,)n L(M,) from 2.4 it follows soS; .. 5Sisy -
i=
.5, 1(5 ) =S50Sy ... SiSix1 ... S,—1(0,) and there exist (s,-,, v') € Ny, (5,-1,0%) €
€N,,. By Definition 3.4 (s;, 5,.) € Ps, (5, 5;41) € P,, and thercfore Pyc; S P,
Using (7) we obtain

(® Psp = Pycy-

Further, suppose N;, + 0, (s, v) € N,,. By 2.4 and (3) there exists a word w = sg €
€ L(M,), where s, = s for all me {1,2}. From here ¢ = s, € L(M,) n L(M,) and
by 2.7 there exists v’ € Ny, such that for s = s, (5, ') € N(c) holds, thus (s, v') e
€ Nycy. Hence the implication

) if (s, 1) € N;, then there exists (s, v') € Ny

holds true. Now suppose (s, v') € Ny¢c;. By 2.4 and 2.7 there exista word ¢ = sy € C =
= L(M,) 0 L(M,), where 5, = s and v' €(S, — 1,), v* €(S, — I,) such that (s, v') €
€Ny, (s, v*) € N;,. From (3) it follows (s, ') e N’, (s, v') € N,, and therefore the
implication '

(10) if (s,v) €Ny, then there exists (s,v)€N,,,

where v = v! holds. By (8), (9), (10) and (A) of Proposition 3.3 we obtain L(M,) =
= L(M[C]).

3.6. Corollary. Let M, =(Sy, I}, 8,), M, =(S, 1, 8,) be G-machines,
C = L(M,) n L(M,). Then My ~ M[C] ~ MF.



3.7. Theorem. Let M, =(S;,1,,6,), M, =(S,,1,,8,) be G-machines, C =
= L(M,) n L(M,). Then C = L(M[C]) = L(M,) = L(M}).

Proof. Since C = L{M,) n L(M,) is a generable language (see [3]) then by
Proposition 3.2 C = L(M[C]) and the proof is completed.

3.8. Example. Using Definition 3.4 we shall construct to given G-machines M, M,
the G-machine M,, for which L(Mp) = L(M,) n L(M,). G--machines M, =
=(S,,1,,8,), M, =(S,,1,,4,) are given as follows: S, = {a,b,c,x}, I, =
={a,b,c}, 6;:[a > {a,x}, b—{a, b}, c > {c,x}], S, = {a, b, y}, I, = {a, b},
8,:[a—{y}, b-{a, b}, c— {b}] Since so5...5,-1(01) =051 ... 5,-1(52),
where s; = b for every ne(T — {1}) and j e T,.., then by (1) (b, b) € P,. Further,
ba(s,) = ba(s,), (a, x) € N;,, (a, y) € N;,, thus by (2) (b, a) e P,. The pairs (a, a),
(c. ), (c, b) obviously do not belong to P; for any j e {1, 2}. Further, (a, x)e N,
(a, y) e N;, and by (3) (a, x) e N’, (a, y) e N". Hence 8y : [a > {x, y}, b - {a, b}],
Sp={a,b,x,y}, I, = {a, b}, Mp = (Sp, Ip, 8p). By 2.5 M§ = (S, Ip, 6}), where
0p:[a—{x}, b {a,b}]. Apparently L(M})= {b™, b*a,alkeT} = L(M;)n
A L(M,).

3.9. Definition. Let M, =(S,,1,,8,), M, = (S;,1,,9,) be G-machines. Define
G-machine My = (Sy, Iy, 8y), where Sy =S, US,, Iy =1, Ul;, 5y =&, US,.

3.10. Theorem. Let M, = (S, I,,5,), M, =(Ss,1,,0,) be G-machines, C =
= L(M,) L L(M,). Then L(My) = L(M[C]).

Proof. Suppose (s, t) € P;,. Obviously (s, t)e (P;, U P,,). There exists a word
w e L(My) beginning with the output word sos,(3,), where s = s, s, =t (see [2],
Corollary 1). By 2.7 (s, 51) € P(w), thus (so, 1) € Py (5, t) € Pype;. Herefrom it
follows

(1 Psy S Poey -
Now assume (s, #) € Pycp. By 2.7 there exists a word c e C such that (5, t) e P(c).
Since C = L(M) u L(M,) it must hold (s, f) € P,, at least for one j {1, 2}, there-
fore (s, 1) € P,, and Pycy © Py, Using (11) we obtain
(12) Ps, = Psey -

" Let (s,f)eNy,. By 24 w =35, = seL(My). Apparently (s,1)eN;, at least for
one j e {1,2}. From 2.7 it follows there exists (s, ) € N(w), thus (s, t') € Ncy and

the implication

(13) if (s,1)eN,, then there exists (s, ') € Ny,
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holds true. Now suppose (s, z) € Nyc;. Then there exists ¢ € L{(M[C]) such that
(s, z) e N(c). Since ce L(M,) U L(M,), then ce L(M,) and there exists (s, z/) at
least for one j € {1, 2}. Hence the implication

(14) if (s, )€ Ny, then there exists (s,1)eN,,,

where ' = z, t = 2/ is satisfied. From (12), (13), (14) it follows the condition (A)
of Proposition 3.3 is fulfilled, hence My, ~ M[C] and L(M}) = L(M[C]).

3.11. Theorem. Let M, = (S,,1,8,), M, = (S;,1,,8,) be G-machines and let
C = L(M,) U L(M,) be a generable language. Then C = L(M[C]) = L{M) =
= L(Mp).

Proof. The statement is the consequence of Propositions 3.1, 3.2 and Theorem 3.10.

3.12. Proposition. Let M, = (S,,1;,6,), M, = (S, I,, 8,) be G-machines. Then
the following statements (A), (B) are equivalent:

(A)  For every i,je{1,2}, i % j and for every neT
(A) if 5051 ... a—1(8;) and (s,_y, v) € Ps, then sy ... 5,.1(5;)
or (s,-;,v) € Ps, and
(A" if 5651 .. Su=1(8;) and (s,—y, v') € Ny, then sosy ... 5,-1(8;)
or there exists (s,_y, v') € Nj,.
(B) L(M,) v L(M,) is a generable language.
(See [3]).
3.13. Corollary. Let M, = (S;,1;, 8,), M, = (S;,1,, &,) be G-machines. Then the
Sollowing statements (A). (B), (C) are equivalent:
(A)  Foreveryi,je{l,2}, i+ j and for every neT

(A) if 5651 .. Sa=1(8;) and (s,_y, v) € Py, then sosq ... 5,-1(8;)
or (s,~1, v)€ P, and

(A") if sosy ... $,-1(8;) and (s,-1, v') € Ny, then sosq ... 5,-(5;)
or there exists (s,_q, ') €N,

(B)  L(M,) v L(M,) is a generable language.
(©) LMy v LM,) = L(My) = M) = LM[L(M,) © L(M)]).

3.14. Example. Let G-machines M, = (S, 1y, §;), M, = (S,,1,, 5,) be given as
follows: S; = {a, b, ¢, x}, 1, = {a, b, c}, &; : [a > {a,x}, b {b,c,x},c— {a}],



S,={a,c,d,y}, I, ={a,c,d}, 6,:[a~ {a, ¥}, ¢ > {a}, d > {c, d}]. First, we
shall examine the condition (A) of Corollary 3.13. Let k, m € T. Then the following
holds:

a%(s,), (a, a) € Py,, a(5,); a*(3,), (a, ¥) € Ny, (a, x) € Ny, ;
b*c(5,), (¢, a) € Ps,, (c, a) € P,,; b ca™(8,), (a, a) € Py, (a, a)e P, ;
bkca™(s,), (a, y) € N;,, (a, x) € Ny 3 d"(8,), (a, a) € Py, a*(8,) ;
a"(3,), (a, x) € N;, (a, y) € Ny,; ¢a'(s,), (a, a) € Py, (a, a) € Py, ;
dea"(5,), (a, x) e Ny, (a, y) € Ny,; ded(s,), (a, a)e P,,, (a, a)e Py, ;
dea*(5,), (a, x) e Ny, (a, y) € N, .

From the above G-machines M;, M, satisfy the condition (A) of Corollary 3.13,
therefore L{M,) U L(M,) is a generable language and L(M,) u L(M,) = L(My) =
= L(M{) holds true. By 2.4 L(M,)u L(M,) = {a®, a* b, b, ca¥, b*ca®, bFca™,
ca®, dca®, dca*, d*}. By Definition 3.9 S, =5, US, ={a,b,c,d,x,y}, I, =
=1, ul,={a,b,c,d}, 3y =0,V8):[a—{axy}, b>{bcx}, c—{a},
d - {c,d}), My =(Sy, 1y 8y) By 2.5 6§:[a—{a,x}, b {b,c,x}, ¢ {a},
d - {c,d}], M{ = (Sy. Iy, 8%). Tt is easy to verify that L(My) = L(M§) = {a*, d*,
b>, b, ca*, b*ca®, b¥ca™, ca®, dca®, dea*, d} = L(M,) U L(M,).

(Received January 3, 1973.)
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