KYBERNETIKA - VOLUME 11 (1975), NUMBER 6

On G-machines Generating Intersection and Union of Generable Languages

Ivan Mezník

The article deals with the construction of G-machine generating to given two G-machines the union (if they satisfy certain necessary and sufficient conditions) and the intersection of their languages.

1. INTRODUCTION

The notion of a G-machine was introduced in [2] as a certain generalization of machines studied in [1] and [4]. A generable language is the set of all "words" generated by a G-machine (in the mentioned references "generable set" instead of "generable language" is used). The class of generable languages is closed under intersection, but not generally under union (see [3]). We shall deal with the construction of G-machines generating to given two G-machines the intersection and the union of their languages.

2. PRELIMINARIES

2.1. Denotation. $T = \{1, 2, ...\}, \overline{T} = \{0, 1, 2, ...\}, T_n = \{1, 2, ..., n\}, \overline{T}_n = \{0, 1, 2, ..., n\}.$

2.2. Let *I* be a finite set (including the empty set). Denote I^{∞} the set of all nonvoid sequences of elements of *I*. These sequences are called *words*. For $w \in I^{\infty}$, $m \in T$, $w = (s_0, s_1, ..., s_{m-1})$ put l(w) = m. For $w \in I^{\infty}$, $w = (s_0, s_1, ...)$ put $l(w) = \infty$. The symbol l(w) is called *the length of w*. Instead of $w = (s_0, s_1, ..., s_{m-1})$ and $w = (s_0, s_1, ...)$ we write $w = s_0 s_1 \dots s_{m-1}$ and $w = s_0 s_1 \dots$ or $w = \prod_{i=0}^{m-1} s_i$ and $w = \prod_{i=0}^{\infty} s_i$ respectively. Considering a word of finite or infinite length we use the denotation

 $\prod s_i$. For $k \in T$ by the symbol $(s_0 s_1 \dots s_{m-1})^k$ we understand the word $s_0 s_1 \dots s_m s_{m+1} \dots$

... $s_{2m}s_{2m+1} \dots s_{km-1}$, where $s_{im+j} = s_j$ for all $i \in \overline{T}_{k-1}$ and all $j \in \overline{T}_{m-1}$. Further, by the symbol $(s_0s_1 \dots s_{m-1})^{\infty}$ we understand the word $s_0s_1 \dots s_ms_{m+1} \dots s_{nm}s_{nm+1} \dots$, where $s_{nm+j} = s_j$ for all $j \in \overline{T}_{m-1}$ and all $n \in \overline{T}$. For m = 1 we omit the brackets and write s_0^k, s_0^{∞} .

2.3. Convention. In the relation $C \subseteq I^{\infty}$ we suppose that every element from I is included in at least one sequence from C.

2.4. A G-machine is a triple $M = (S, I, \delta)$, where S is a nonvoid finite set, $I \subset C S(I \neq S)$, δ is a mapping of I into the set of all nonvoid subsets of S. In the following, M is to be understood as G-machine $M = (S, I, \delta)$. Let $m \in T$. A word $\prod_{i=0}^{m-1} s_i$ or $\prod_{i=0}^{\infty} s_i$ is called an output word of the length m or ∞ respectively, if $s_0 \in I$, $s_{i+1} \in \delta(s_i) \cap I$ for all $i \in \overline{T}_{m-2}$ or for all $i \in \overline{T}$. An output word $w = \prod_i s_i$ is called a word generated by M if either $l(w) = \infty$ or l(w) = m and there exists $v \in \delta(s_{m-1}) \cap (S - I)$. To distinguish that $\prod_i s_i$ is an output word of G-machine M we use the denotation $\prod_i s_i(\delta)$. The set of all words generated by M is denoted L(M) and called the language of M. A set $C, C \subseteq I^{\infty}$ is called a generable language if there exists M such that C = L(M).

2.5. A pair (s, v) is called *productive* if $s \in I$ and $v \in \delta(s) \cap I$ and *unproductive* if $s \in I$ and $v \in \delta(s) \cap (S - I)$. Denote P_{δ} the set of all productive pairs and N_{δ} the set of all unproductive pairs. Then $\delta = P_{\delta} \cup N_{\delta}$. For every $s \in I$ put $N^s = \{(s, v) \mid (s, v) \in N_{\delta}\}$. Choose from every $N_{\delta} \neq \emptyset$ an arbitrary (s, v^s) (a representative) and put $N_{\delta}^{R} = \bigcup_{s \in I, N \neq \emptyset} (s, v^s)$ and $\delta^{R} = P_{\delta} \cup N_{\delta}^{R}$. G-machine $M^{R} = (S, I, \delta^{R})$ is said to be result of reduction of M.

2.6. G-machines $M_1 = (S_1, I_1, \delta_1)$ and $M_2 = (S_2, I_2, \delta_2)$ are said to be *equivalent* if $L(M_1) = L(M_2)$. Then we write $M_1 \sim M_2$.

2.7. Let *I* be a finite set, $C \subseteq I^{\infty}$ and $I \subset S(I \neq S)$, where *S* is a nonvoid finite set. Suppose $I \neq \emptyset$ (then according to Convention 2.3 $C \neq \emptyset$). Denote *c* an element (sequence) from *C* and by s_i the (i + 1)-th element of *c*, $c = \prod_{i=1}^{i} s_i$ for all $i \in \overline{T}_{m-1}$ if $l(c) = m \in T$ and for all $i \in \overline{T}$ if $l(c) = \infty$. For $c \in C$, $c = \prod_{i=0}^{m-1} s_i(m \in T)$ put $P(c) = \bigcup_k (s_k, s_{k+1})$ for all $k \in \overline{T}_{m-2}$ and $N(c) = (s_{m-1}, v)$, where *v* is an arbitrary element

of (S - I). For $c \in C$, $c = \prod_{i=0}^{\infty} s_i$ put $P(c) = \bigcup_k (s_k, s_{k+1})$ for all $k \in \overline{T}$. Denote $P = \bigcup_{c \in C} P(c)$, $N = \bigcup_{c \in C} N(c)$, $\delta[C] = P \cup N$. If $I = \emptyset$ put $\delta[C] = \emptyset$. Define G-machine $M[C] = (S, I, \delta[C])$.

3. G-MACHINES M_P AND M_U

3.1. Proposition. $M \sim M^R$. (See [2], Corollary 2.)

3.2. Proposition. Let I be a finite set, $C \subseteq J^{\infty}$. C is a generable language iff C = L(M[C]).

(See [2], Theorem 6 and Corollary 3.)

3.3. Proposition. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines. Then the following statements (A), (B) are equivalent: (A) $P_{\delta_1} = P_{\delta_2}$ and there exists $(s, v^1) \in N_{\delta_1}$ iff there exists $(s, v^2) \in N_{\delta_2}$. (B) $M_1 \sim M_2$. (See [2], Corollary 5.).

3.4. Definition. Let $M_1 = (S_1, I_1, \delta_1), M_2 = (S_2, I_2, \delta_2)$ be G-machines. Put (1) $P_1 = \{(s, v) \mid \text{there exist } \prod_{i=1}^{\infty} s_i \text{ and } i \in \overline{T} \text{ such that}$

$$\prod_{j=0}^{\infty} s_j(\delta_1) = \prod_{j=0}^{\infty} s_j(\delta_2) \text{ and } s_i = s, \quad s_{i+1} = v \}.$$

(2) $P_2 = \{(s, v) | \text{ there exist indices } i, n \in \overline{T}, n > i + 1, \text{ states } v^1 \in S_1, v^2 \in S_2 \text{ and}$ an output word $\prod_{j=0}^{n-1} s_j$ with $s_0s_1 \dots s_ls_{l+1} \dots s_{n-1}(\delta_1), s_0s_1 \dots s_ls_{l+1} \dots s_{n-1}(\delta_2)$ where $s_i = s, s_{l+1} = v$ and $(s_{n-1}, v^1) \in N_{\delta_1}, (s_{n-1}, v^2) \in N_{\delta_2}\}$;

(3)
$$N' = \{(s, v^i) \mid (s, v^i) \in N_{\delta_i} \text{ and there exists } (s, v^j) \in N_{\delta_i} \text{ for all } i, j \in \{1, 2\}, i \neq j\};$$

- (4) $\delta_P = P_1 \cup P_2 \cup N', P_{\delta_P} = P_1 \cup P_2, N_{\delta_P} = N';$
- (5) $S_P \supseteq S$, where $S = \{s \mid \text{there exists } (s, t) \in \delta_P\} \cup \{t \mid \text{there exists } (s, t) \in \delta_P\}$, S_P is a nonvoid finite set;
- (6) $I_P = \{s \mid \text{there exists } (s, t) \in \delta_P\} \cup \{t \mid (s, t) \in P_{\delta_P}\}.$ Define G-machine $M_P = (S_P, I_P, \delta_P).$

3.5. Theorem. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines, $C = L(M_2) \cap L(M_2)$. Then $L(M_P) = L(M[C])$.

Proof. Suppose $P_{\delta_P} \neq \emptyset$, $(s, v) \in P_{\delta_P}$. By Definition 3.4 $(s, v) \in P_m$ for some $m \in \{1, 2\}$. First assume $(s, v) \in P_1$. From 2.4 and (1) of Definition 3.4 it follows there exists a word $w = \prod_{j=0}^{\infty} s_j$ which belongs to $L(M_1)$ and $L(M_2)$, thus $w \in C$. By 2.7 $(s, v) \in P(w)$ and $(s, v) \in P_{\delta_{[C]}}$. Second let $(s, v) \in P_2$. By Definition 3.4 there exist $v^1 \in S_1, v^2 \in S_2$ and an output word w of the form given by (2). Using 2.4 $w = s_0 s_1 \dots \dots s_{n-1} \in L(M_m)$ for all $m \in \{1, 2\}$, thus $w \in C$. By 2.7 $(s, v) \in P(w)$, $(s, v) \in P_{\delta_{[C]}}$. Hence the inclusion

holds true. Now suppose $(s, v) \in P_{\delta(C_1)}$. By 2.7 there exist $c \in C$ and $i \in \overline{T}$ such that $(s_i, s_{i+1}) \in P(c)$, $s_i = s, s_{i+1} = v$. Since $c \in L(M_1) \cap L(M_2)$ then there holds $(s_i, s_{i+1}) \in P_{\delta_m}$ for all $m \in \{1, 2\}$. First consider $c = \prod_{j=0}^{\infty} s_j$. Then from (2) and (4) of Definition 3.4 it follows immediately $(s_i, s_{i+1}) \in P_1$, $(s_i, s_{i+1}) \in P_{\delta_P}$. Second let $v = \prod_{j=0}^{n-1} s_j (n \in T)$. Since $c \in L(M_1) \cap L(M_2)$ from 2.4 it follows $s_0s_1 \dots s_is_{i+1} \dots \dots s_{n-1}(\delta_1) = s_0s_1 \dots s_is_{i+1} \dots s_{n-1}(\delta_2)$ and there exist $(s_{n-1}, v^1) \in N_{\delta_1}$, $(s_{n-1}, v^2) \in N_{\delta_2}$. By Definition 3.4 $(s_i, s_{i+1}) \in P_2$, $(s_i, s_{i+1}) \in P_{\delta_P}$ and therefore $P_{\delta[C_1]} \subseteq P_{\delta_P}$. Using (7) we obtain

$$(8) P_{\delta_P} = P_{\delta[C]}.$$

Further, suppose $N_{\delta_F} \neq \emptyset$, $(s, v) \in N_{\delta_F}$. By 2.4 and (3) there exists a word $w = s_0 \in \mathcal{L}(M_j)$, where $s_0 = s$ for all $m \in \{1, 2\}$. From here $c = s_0 \in \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$ and by 2.7 there exists $v' \in N_{\delta\{C_1\}}$ such that for $s = s_0$ $(s, v') \in N(c)$ holds, thus $(s, v') \in N_{\delta\{C_1\}}$. Hence the implication

(9) if
$$(s, v) \in N_{\delta_P}$$
 then there exists $(s, v') \in N_{\delta_{\Gamma} C_1}$

holds true. Now suppose $(s, v') \in N_{\delta(C_1)}$. By 2.4 and 2.7 there exist a word $c = s_0 \in C = L(M_1) \cap L(M_2)$, where $s_0 = s$ and $v^1 \in (S_1 - I_1)$, $v^2 \in (S_2 - I_2)$ such that $(s, v^1) \in N_{\delta_1}$, $(s, v^2) \in N_{\delta_2}$. From (3) it follows $(s, v^1) \in N'$, $(s, v^1) \in N_{\delta_P}$ and therefore the implication

(10) if
$$(s, v') \in N_{\delta IC1}$$
 then there exists $(s, v) \in N_{\delta P}$,

where $v = v^1$ holds. By (8), (9), (10) and (A) of Proposition 3.3 we obtain $L(M_P) = L(M[C])$.

3.6. Corollary. Let $M_1 = (S_1, I_1, \delta_1), M_2 = (S_2, I_2, \delta_2)$ be G-machines, $C = L(M_1) \cap L(M_2)$. Then $M_P \sim M[C] \sim M_P^P$.

3.7. Theorem. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines, $C = 3S = L(M_1) \cap L(M_2)$. Then $C = L(M[C]) = L(M_P) = L(M_P^R)$.

Proof. Since $C = L(M_1) \cap L(M_2)$ is a generable language (see [3]) then by Proposition 3.2 C = L(M[C]) and the proof is completed.

3.8. Example. Using Definition 3.4 we shall construct to given G-machines M_1, M_2 the G-machine M_P , for which $L(M_P) = L(M_1) \cap L(M_2)$. G-machines $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ are given as follows: $S_1 = \{a, b, c, x\}$, $I_1 = \{a, b, c\}$, $\delta_1 : [a \to \{a, x\}, b \to \{a, b\}, c \to \{c, x\}]$, $S_2 = \{a, b, y\}, I_2 = \{a, b\}, \delta_2 : [a \to \{y\}, b \to \{a, b\}, c \to \{b\}]$. Since $s_0s_1 \dots s_{n-1}(\delta_1) = s_0s_1 \dots s_{n-1}(\delta_2)$, where $s_j = b$ for every $n \in (T - \{1\})$ and $j \in \overline{T}_{n-1}$ then by (1) $(b, b) \in P_1$. Further, $ba(\delta_1) = ba(\delta_2)$, $(a, x) \in N_{\delta_1}$, $(a, y) \in N_{\delta_2}$, thus by (2) $(b, a) \in P_2$. The pairs (a, a), (c, c), (c, b) obviously do not belong to P_j for any $j \in \{1, 2\}$. Further, $(a, x) \in N_{\delta_1}$, $(a, y) \in N'$, Hence $\delta_P : [a \to \{x, y\}, b \to \{a, b\}]$, $S_P = \{a, b, x, y\}$, $I_P = \{a, b\}$, $M_P = (S_P, I_P, \delta_P)$. By 2.5 $M_P^R = (S_P, I_P, \delta_P^R)$, where $\delta_P^R : [a \to \{x\}, b \to \{a, b\}]$. Apparently $L(M_P^R) = \{b^\infty, b^k a, a|k \in T\} = L(M_1) \cap O L(M_2)$.

3.9. Definition. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines. Define G-machine $M_U = (S_U, I_U, \delta_U)$, where $S_U = S_1 \cup S_2, I_U = I_1 \cup I_2, \delta_U = \delta_1 \cup \delta_2$.

3.10. Theorem. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines, $C = L(M_1) \cup L(M_2)$. Then $L(M_U) = L(M[C])$.

Proof. Suppose $(s, t) \in P_{\delta_U}$. Obviously $(s, t) \in (P_{\delta_1} \cup P_{\delta_2})$. There exists a word $w \in L(M_U)$ beginning with the output word $s_0s_1(\delta_U)$, where $s_0 = s$, $s_1 = t$ (see [2], Corollary 1). By 2.7 $(s_0, s_1) \in P(w)$, thus $(s_0, s_1) \in P_{\delta[C]}$, $(s, t) \in P_{\delta[C]}$. Herefrom it follows

$$(11) P_{\delta_U} \subseteq P_{\delta[C]}$$

Now assume $(s, t) \in P_{\delta[C]}$. By 2.7 there exists a word $c \in C$ such that $(s, t) \in P(c)$. Since $C = L(M_1) \cup L(M_2)$ it must hold $(s, t) \in P_{\delta_j}$ at least for one $j \in \{1, 2\}$, therefore $(s, t) \in P_{\delta_U}$ and $P_{\delta[C]} \subseteq P_{\delta_U}$. Using (11) we obtain

$$(12) P_{\delta_U} = P_{\delta[C]}$$

Let $(s, t) \in N_{\delta_U}$. By 2.4 $w = s_0 = s \in L(M_U)$. Apparently $(s, t) \in N_{\delta_j}$ at least for one $j \in \{1, 2\}$. From 2.7 it follows there exists $(s, t') \in N(w)$, thus $(s, t') \in N_{\delta_j[C]}$ and the implication

(13) if $(s, t) \in N_{\delta U}$ then there exists $(s, t') \in N_{\delta [C_1]}$

holds true. Now suppose $(s, z) \in N_{\delta[C_1]}$. Then there exists $c \in L(M[C])$ such that $(s, z) \in N(c)$. Since $c \in L(M_1) \cup L(M_2)$, then $c \in L(M_j)$ and there exists (s, z^j) at least for one $j \in \{1, 2\}$. Hence the implication

(14) if $(s, t') \in N_{\delta[C]}$ then there exists $(s, t) \in N_{\delta_U}$,

where t' = z, $t = z^j$ is satisfied. From (12), (13), (14) it follows the condition (A) of Proposition 3.3 is fulfilled, hence $M_U \sim M[C]$ and $L(M_U) = L(M[C])$.

3.11. Theorem. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines and let $C = L(M_1) \cup L(M_2)$ be a generable language. Then $C = L(M_U^c) = L(M_U^c)$.

Proof. The statement is the consequence of Propositions 3.1, 3.2 and Theorem 3.10.

3.12. Proposition. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines. Then the following statements (A), (B) are equivalent:

- (A) For every $i, j \in \{1, 2\}$, $i \neq j$ and for every $n \in T$
 - (A') if $s_0s_1 \dots s_{n-1}(\delta_i)$ and $(s_{n-1}, v) \in P_{\delta_i}$ then $s_0s_1 \dots s_{n-1}(\delta_i)$ or $(s_{n-1}, v) \in P_{\delta_i}$ and
 - $\begin{array}{l} (\mathsf{A}'') \ if \ s_0s_1 \ldots s_{n-1}(\delta_j) \ and \ (s_{n-1}, v^i) \in N_{\delta_i} \ then \ s_0s_1 \ldots s_{n-1}(\delta_i) \\ or \ there \ exists \ (s_{n-1}, v^j) \in N_{\delta_j}. \end{array}$
- (B) $L(M_1) \cup L(M_2)$ is a generable language. (See [3]).

3.13. Corollary. Let $M_1 = (S_1, I_1, \delta_1)$, $M_2 = (S_2, I_2, \delta_2)$ be G-machines. Then the following statements (A), (B), (C) are equivalent:

- (A) For every $i, j \in \{1, 2\}$, $i \neq j$ and for every $n \in T$
 - (A') if $s_0s_1 \dots s_{n-1}(\delta_j)$ and $(s_{n-1}, v) \in P_{\delta_i}$ then $s_0s_1 \dots s_{n-1}(\delta_i)$ or $(s_{n-1}, v) \in P_{\delta_j}$ and
 - $(A'') if s_0 s_1 \dots s_{n-1}(\delta_j) and (s_{n-1}, v^i) \in N_{\delta_i} then s_0 s_1 \dots s_{n-1}(\delta_i)$ $or there exists (s_{n-1}, v^j) \in N_{\delta_j}.$
- (B) $L(M_1) \cup L(M_2)$ is a generable language.
- (C) $L(M_1) \cup L(M_2) = L(M_U) = L(M_U^R) = L(M[L(M_1) \cup L(M_2)]).$

3.14. Example. Let G-machines $M_1 = (S_1, I_1, \delta_1), M_2 = (S_2, I_2, \delta_2)$ be given as follows: $S_1 = \{a, b, c, x\}, I_1 = \{a, b, c\}, \delta_1 : [a \to \{a, x\}, b \to \{b, c, x\}, c \to \{a\}],$

 $S_2 = \{a, c, d, y\}, I_2 = \{a, c, d\}, \delta_2 : [a \to \{a, y\}, c \to \{a\}, d \to \{c, d\}]$. First, we shall examine the condition (A) of Corollary 3.13. Let $k, m \in T$. Then the following holds:

$$\begin{split} & a^{k}(\delta_{1}), (a, a) \in P_{\delta_{2}}, a^{k}(\delta_{2}); \ a^{k}(\delta_{1}), (a, y) \in N_{\delta_{2}}, (a, x) \in N_{\beta_{1}}; \\ & b^{k}c(\delta_{1}), (c, a) \in P_{\delta_{2}}, (c, a) \in P_{\delta_{1}}; \ b^{k}ca^{m}(\delta_{1}), (a, a) \in P_{\delta_{2}}, (a, a) \in P_{\delta_{1}}; \\ & b^{k}ca^{m}(\delta_{1}), (a, y) \in N_{\delta_{2}}, (a, x) \in N_{\delta_{1}}; \ a^{k}(\delta_{2}), (a, a) \in P_{\delta_{1}}, a^{k}(\delta_{1}); \\ & a^{k}(\delta_{2}), (a, x) \in N_{\delta_{1}}, (a, y) \in N_{\delta_{2}}; \ ca^{k}(\delta_{2}), (a, a) \in P_{\delta_{1}}, (a, a) \in P_{\delta_{2}}; \\ & dca^{k}(\delta_{2}), (a, x) \in N_{\delta_{1}}, (a, y) \in N_{\delta_{2}}; \ dca^{k}(\delta_{2}), (a, a) \in P_{\delta_{1}}, (a, a) \in P_{\delta_{2}}; \\ & dca^{k}(\delta_{2}), (a, x) \in N_{\delta_{1}}, (a, y) \in N_{\delta_{1}}, (a, y) \in N_{\delta_{2}}. \end{split}$$

From the above G-machines M_1 , M_2 satisfy the condition (A) of Corollary 3.13, therefore $L(M_1) \cup L(M_2)$ is a generable language and $L(M_1) \cup L(M_2) = L(M_U) = L(M_U)^2$ and $L(M_1) \cup L(M_2) = L(M_U) = L(M_U)^2$. By Definition 3.9 $S_v = S_1 \cup S_2 = \{a, b, c, d, x, y\}$, $I_v = I_1 \cup I_2 = \{a, b, c, d\}$, $\delta_U = (\delta_1 \cup \delta_2) : [a \to \{a, x, y\}, b \to \{b, c, x\}, c \to \{a\}, d \to \{c, d\}]$, $M_U = (S_U, I_U, \delta_U)$. By 2.5 $\delta_U^U : [a \to \{a, x\}, b \to \{b, c, x\}, c \to \{a\}, d \to \{c, d\}]$, $M_U = (S_U, I_U, \delta_U)$. It is easy to verify that $L(M_U) = L(M_U)^2 = \{a^\infty, a^k, b^\infty, b^k, ca^k, b^kca^m, ca^\infty, dca^\infty, dca^k, d^\infty\} = L(M_1) \cup L(M_2)$.

(Received January 3, 1973.)

RNDr. Ivan Meznik, CSc.; katedra matematiky FE VUT v Brně (Department of Mathematics, Technical University of Brno), Hilleho 6, 602 00 Brno. Czechoslovakia.

REFERENCES

^[1] W. Kwasowiec: Generable Sets. Information and Control 17 (1970), 257-264.

^[2] I. Mezník: G.-Machines and Generable Sets. Information and Control 5 (1972), 499-509.

^[3] I. Mezník: On Some Closure Properties of Generable Languages. CMUC 14 (1973), 3, 541-552.

^[4] Z. Pawlak: Stored Program Computers. Algorytmy 10 (1969), 7-22.