On G-machines Generating Intersection and Union of Generable Languages

Ivan Mezník

The article deals with the construction of G-machine generating to given two G-machines the union (if they satisfy certain necessary and sufficient conditions) and the intersection of their languages.

1. INTRODUCTION

The notion of a G-machine was introduced in [2] as a certain generalization of machines studied in [1] and [4]. A generable language is the set of all "words" generated by a G-machine (in the mentioned references "generable set" instead of "generable language" is used). The class of generable languages is closed under intersection, but not generally under union (see [3]). We shall deal with the construction of G-machines generating to given two G-machines the intersection and the union of their languages.

2. PRELIMINARIES

2.1. Denotation. $T=\{1,2, \ldots\}, \bar{T}=\{0,1,2, \ldots\}, T_{n}=\{1,2, \ldots, n\}, \bar{T}_{n}=$ $=\{0,1,2, \ldots, n\}$.
2.2. Let I be a finite set (including the empty set). Denote I^{∞} the set of all nonvoid sequences of elements of I. These sequences are called words. For $w \in I^{\infty}, m \in T, w=$ $=\left(s_{0}, s_{1}, \ldots, s_{m-1}\right)$ put $l(w)=m$. For $w \in I^{\infty}, w=\left(s_{0}, s_{1}, \ldots\right)$ put $l(w)=\infty$. The symbol $l(w)$ is called the length of w. Instead of $w=\left(s_{0}, s_{1}, \ldots, s_{m-1}\right)$ and $w=$ $=\left(s_{0}, s_{1}, \ldots\right)$ we write $w=s_{0} s_{1} \ldots s_{m-1}$ and $w=s_{0} s_{1} \ldots$ or $w=\prod_{i=0}^{m-1} s_{i}$ and $w=$ $=\prod_{i=0}^{\infty} s_{i}$ respectively. Considering a word of finite or infinite length we use the denotation
$\prod_{i} s_{i}$. For $k \in T$ by the symbol $\left(s_{0} s_{1} \ldots s_{m-1}\right)^{k}$ we understand the word $s_{0} s_{1} \ldots s_{m} s_{m+1} \ldots$ $\ldots s_{2 m} s_{2 m+1} \ldots s_{k m-1}$, where $s_{i m+j}=s_{j}$ for all $i \in \bar{T}_{k-1}$ and all $j \in \bar{T}_{m-1}$. Further, by the symbol $\left(s_{0} s_{1} \ldots s_{m-1}\right)^{\infty}$ we understand the word $s_{0} s_{1} \ldots s_{m} s_{m+1} \ldots s_{n m} s_{n+1} \ldots$, where $s_{n m+j}=s_{j}$ for all $j \in \bar{T}_{m-1}$ and all $n \in \bar{T}$. For $m=1$ we omit the brackets and write $s_{0}^{k}, s_{0}^{\infty}$.
2.3. Convention. In the relation $C \subseteq I^{\infty}$ we suppose that every element from I is included in at least one sequence from C.
2.4. A G-machine is a triple $M=(S, I, \delta)$, where S is a nonvoid finite set, $I \subset$ $\subset S(I \neq S), \delta$ is a mapping of I into the set of all nonvoid subsets of S. In the following, M is to be understood as G-machine $M=(S, I, \delta)$. Let $m \in T$. A word $\prod_{i=0}^{m-1} s_{i}$ or $\prod_{i=0}^{\infty} s_{i}$ is called an output word of the length m or ∞ respectively, if $s_{0} \in I, s_{i+1} \in$ $\in \delta\left(s_{i}\right) \cap I$ for all $i \in \bar{T}_{m-2}$ or for all $i \in \bar{T}$. An output word $w=\prod_{i} s_{i}$ is called a word generated by M if either $l(w)=\infty$ or $l(w)=m$ and there exists $v \in \delta\left(s_{m-1}\right) \cap(S-I)$. To distinguish that $\prod_{i} s_{i}$ is an output word of G-machine M we use the denotation $\prod_{i} s_{i}(\delta)$. The set of all words generated by M is denoted $L(M)$ and called the language of M. A set $C, C \subseteq I^{\infty}$ is called a generable language if there exists M such that $C=L(M)$.
2.5. A pair (s, v) is called productive if $s \in I$ and $v \in \delta(s) \cap I$ and unproductive if $s \in I$ and $v \in \delta(s) \cap(S-I)$. Denote P_{δ} the set of all productive pairs and N_{δ} the set of all unproductive pairs. Then $\delta=P_{\delta} \cup N_{\delta}$. For every $s \in I$ put $N^{s}=\{(s, v) \mid(s, v) \in$ $\left.\in N_{\delta}\right\}$. Choose from every $N_{\delta} \neq \emptyset$ an arbitrary (s, v^{s}) (a representative) and put $N_{\delta}^{R}=\underset{s \in I, N^{s} \neq \emptyset}{ }\left(s, v^{s}\right)$ and $\delta^{R}=P_{\delta} \cup N_{\delta}^{R}$. G-machine $M^{R}=\left(S, I, \delta^{R}\right)$ is said to be result of reduction of M.
2.6. G-machines $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right)$ and $M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ are said to be equivalent if $L\left(M_{1}\right)=L\left(M_{2}\right)$. Then we write $M_{1} \sim M_{2}$.
2.7. Let I be a finite set, $C \subseteq I^{\infty}$ and $I \subset S(I \neq S)$, where S is a nonvoid finite set. Suppose $I \neq \emptyset$ (then according to Convention $2.3 C \neq \emptyset$). Denote c an element (sequence) from C and by s_{i} the $(i+1)$-th element of $c, c=\prod_{i} s_{i}$ for all $i \in \bar{T}_{m-1}$ if $l(c)=m \in T$ and for all $i \in \bar{T}$ if $l(c)=\infty$. For $c \in C, c=\prod_{i=0}^{m-1} s_{i}(m \in T)$ put $P(c)=$ $=\bigcup_{k}\left(s_{k}, s_{k+1}\right)$ for all $k \in \bar{T}_{m-2}$ and $N(c)=\left(s_{m-1}, v\right)$, where v is an arbitrary element
of $(S-I)$. For $c \in C, c=\prod_{i=0}^{\infty} s_{i}$ put $P(c)=\bigcup_{k}\left(s_{k}, s_{k+1}\right)$ for all $k \in \bar{T}$. Denote $P=$ $=\bigcup_{c \in \mathrm{C}} P(c), N=\bigcup_{c \in \mathrm{C}} N(c), \delta[C]=P \cup N$. If $I=\emptyset$ put $\delta[C]=\emptyset$. Define G-machine $M[C]=(S, I, \delta[C])$.
3. G-MACHINES M_{P} AND M_{U}
3.1. Proposition. $M \sim M^{R}$.
(See [2], Corollary 2.)
3.2. Proposition. Let I be a finite set, $C \subseteq I^{\infty}$. C is a generable language iff $C=$ $=L(M[C])$.
(See [2], Theorem 6 and Corollary 3.)
3.3. Proposition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Then the following statements $(\mathrm{A}),(\mathrm{B})$ are equivalent:
(A) $P_{\delta_{1}}=P_{\delta_{2}}$ and there exists $\left(s, v^{1}\right) \in N_{\delta_{1}}$ iff there exists $\left(s, v^{2}\right) \in N_{\delta_{2}}$.
(B) $M_{1} \sim M_{2}$.
(See [2], Corollary 5.).
3.4. Definition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Put
(1) $P_{1}=\left\{(s, v) \mid\right.$ there exist $\prod_{j=0}^{\infty} s_{j}$ and $i \in \bar{T}$ such that

$$
\left.\prod_{j=0}^{\infty} s_{j}\left(\delta_{1}\right)=\prod_{j=0}^{\infty} s_{j}\left(\delta_{2}\right) \quad \text { and } \quad s_{i}=s, \quad s_{i+1}=v\right\}
$$

(2) $P_{2}=\left\{(s, v) \mid\right.$ there exist indices $i, n \in \bar{T}, n>i+1$, states $v^{1} \in S_{1}, v^{2} \in S_{2}$ and an output word $\prod_{j=0}^{n-1} s_{j}$ with $s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots s_{n-1}\left(\delta_{1}\right), s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots s_{n-1}\left(\delta_{2}\right)$ where $s_{i}=s, s_{i+1}=v$ and $\left.\left(s_{n-1}, v^{1}\right) \in N_{\delta_{1}},\left(s_{n-1}, v^{2}\right) \in N_{\delta_{2}}\right\} ;$
(3) $N^{\prime}=\left\{\left(s, v^{i}\right) \mid\left(s, v^{i}\right) \in N_{\delta_{i}}\right.$ and there exists $\left(s, v^{j}\right) \in N_{\delta_{j}}$ for all $\left.i, j \in\{1,2\}, i \neq j\right\}$;
(4) $\delta_{P}=P_{1} \cup P_{2} \cup N^{\prime}, P_{\delta_{P}}=P_{1} \cup P_{2}, N_{\delta_{P}}=N^{\prime}$;
(5) $S_{P} \supseteq S$, where $S=\left\{s \mid\right.$ there exists $\left.(s, t) \in \delta_{P}\right\} \cup\left\{t \mid\right.$ there exists $\left.(s, t) \in \delta_{P}\right\}, S_{P}$ is a nonvoid finite set;
(6) $I_{P}=\left\{s \mid\right.$ there exists $\left.(s, t) \in \delta_{P}\right\} \cup\left\{t \mid(s, t) \in P_{\delta_{P}}\right\}$.

Define G-machine $M_{P}=\left(S_{P}, I_{P}, \delta_{P}\right)$.
3.5. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=$ $=L\left(M_{2}\right) \cap L\left(M_{2}\right)$. Then $L\left(M_{P}\right)=L(M[C])$.

Proof. Suppose $P_{\delta_{P}} \neq \emptyset,(s, v) \in P_{\delta_{P}}$. By Definition $3.4(s, v) \in P_{m}$ for some $m \in\{1,2\}$. First assume $(s, v) \in P_{1}$. From 2.4 and (1) of Definition 3.4 it follows there exists a word $w=\prod_{j=0}^{\infty} s_{j}$ which belongs to $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$, thus $w \in C$. By $2.7(s, v) \in P(w)$ and $(s, v) \in P_{\delta[c]}$. Second let $(s, v) \in P_{2}$. By Definition 3.4 there exist $v^{1} \in S_{1}, v^{2} \in S_{2}$ and an output word w of the form given by (2). Using $2.4 w=s_{0} s_{1} \ldots$ $\ldots s_{n-1} \in L\left(M_{m}\right)$ for all $m \in\{1,2\}$, thus $w \in C$. By $2.7(s, v) \in P(w),(s, v) \in P_{\delta[C]}$. Hence the inclusion

$$
\begin{equation*}
P_{\delta_{P}} \subseteq P_{\left.\delta_{[} C\right]} \tag{7}
\end{equation*}
$$

holds true. Now suppose (s, v) $\in P_{\delta\left[C_{j}\right.}$. By 2.7 there exist $c \in C$ and $i \in \bar{T}$ such that $\left(s_{i}, s_{i+1}\right) \in P(c), s_{i}=s, s_{i+1}=v$. Since $c \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$ then there holds $\left(s_{i}\right.$, $\left.s_{i+1}\right) \in P_{\delta_{m}}$ for all $m \in\{1,2\}$. First consider $c=\prod_{j=0}^{\infty} s_{j}$. Then from (2) and (4) of Definition 3.4 it follows immediately $\left(s_{i}, s_{i+1}\right) \in P_{1},\left(s_{i}, s_{i+1}\right) \in P_{\delta_{P}}$. Second let $c=\prod_{j=0}^{n-1} s_{j}(n \in T)$. Since $c \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$ from 2.4 it follows $s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots$ $\ldots s_{n-1}\left(\delta_{1}\right)=s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots s_{n-1}\left(\delta_{2}\right)$ and there exist $\left(s_{n-1}, v^{1}\right) \in N_{\delta_{1}},\left(s_{n-1}, v^{2}\right) \in$ $\in N_{\delta_{2}}$. By Definition $3.4\left(s_{i}, s_{i+1}\right) \in P_{2},\left(s_{i}, s_{i+1}\right) \in P_{\delta_{P}}$ and therefore $P_{\delta_{[C]}} \subseteq P_{\delta_{P}}$. Using (7) we obtain

$$
\begin{equation*}
P_{\delta_{P}}=P_{\delta_{[\mathrm{C}]}} \tag{8}
\end{equation*}
$$

Further, suppose $N_{\delta_{P}} \neq \emptyset,(s, v) \in N_{\delta_{P}}$. By 2.4 and (3) there exists a word $w=s_{0} \in$ $\in L\left(M_{j}\right)$, where $s_{0}=s$ for all $m \in\{1,2\}$. From here $c=s_{0} \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$ and by 2.7 there exists $v^{\prime} \in N_{\delta[C]}$ such that for $s=s_{0}\left(s, v^{\prime}\right) \in N(c)$ holds, thus $\left(s, v^{\prime}\right) \in$ $\in N_{s[C]}$. Hence the implication

$$
\begin{equation*}
\text { if }(s, v) \in N_{\delta_{P}} \text { then there exists }\left(s, v^{\prime}\right) \in N_{\delta[C]} \tag{9}
\end{equation*}
$$

holds true. Now suppose $\left(s, v^{\prime}\right) \in N_{\delta[C]}$. By 2.4 and 2.7 there exist a word $c=s_{0} \in C=$ $=L\left(M_{1}\right) \cap L\left(M_{2}\right)$, where $s_{0}=s$ and $v^{1} \in\left(S_{1}-I_{1}\right), v^{2} \in\left(S_{2}-I_{2}\right)$ such that $\left(s, v^{1}\right) \in$ $\in N_{\delta_{1}},\left(s, v^{2}\right) \in N_{\delta_{2}}$. From (3) it follows $\left(s, v^{1}\right) \in N^{\prime},\left(s, v^{1}\right) \in N_{\delta_{P}}$ and therefore the implication

$$
\begin{equation*}
\text { if } \quad\left(s, v^{\prime}\right) \in N_{\delta[C]} \text { then there exists }(s, v) \in N_{\delta_{P}}, \tag{10}
\end{equation*}
$$

where $v=v^{1}$ holds. By (8), (9), (10) and (A) of Proposition 3.3 we obtain $L\left(M_{P}\right)=$ $=L(M[C])$.
3.6. Corollary. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), \quad M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. Then $M_{P} \sim M[C] \sim M_{p}^{R}$.
3.7. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=$
$=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. Then $C=L(M[C])=L\left(M_{P}\right)=L\left(M_{P}^{R}\right)$.
Proof. Since $C=L\left(M_{1}\right) \cap L\left(M_{2}\right)$ is a generable language (see [3]) then by Proposition 3.2 $C=L(M[C])$ and the proof is completed.
3.8. Example. Using Definition 3.4 we shall construct to given G-machines M_{1}, M_{2} the G-machine M_{P}, for which $L\left(M_{P}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. G--machines $M_{1}=$ $=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ are given as follows: $S_{1}=\{a, b, c, x\}, I_{1}=$ $=\{a, b, c\}, \delta_{1}:[a \rightarrow\{a, x\}, b \rightarrow\{a, b\}, c \rightarrow\{c, x\}], S_{2}=\{a, b, y\}, I_{2}=\{a, b\}$, $\delta_{2}:[a \rightarrow\{y\}, \quad b \rightarrow\{a, b\}, \quad c \rightarrow\{b\}]$. Since $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{1}\right)=s_{0} s_{1} \ldots s_{n-1}\left(\delta_{2}\right)$, where $s_{j}=b$ for every $n \in(T-\{1\})$ and $j \in \bar{T}_{n-1}$ then by (1) $(b, b) \in P_{1}$. Further, $b a\left(\delta_{1}\right)=b a\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}}$, thus by (2) $(b, a) \in P_{2}$. The pairs (a, a), $(c, c),(c, b)$ obviously do not belong to P_{j} for any $j \in\{1,2\}$. Further, $(a, x) \in N_{\delta_{1}}$, $(a, y) \in N_{\delta_{2}}$ and by (3) $(a, x) \in N^{\prime},(a, y) \in N^{\prime}$. Hence $\delta_{P}:[a \rightarrow\{x, y\}, b \rightarrow\{a, b\}]$, $S_{P}=\{a, b, x, y\}, I_{P}=\{a, b\}, M_{P}=\left(S_{P}, I_{P}, \delta_{P}\right)$. By $2.5 M_{P}^{R}=\left(S_{P}, I_{P}, \delta_{P}^{R}\right)$, where $\delta_{P}^{R}:[a \rightarrow\{x\}, \quad b \rightarrow\{a, b\}]$. Apparently $L\left(M_{P}^{R}\right)=\left\{b^{\infty}, b^{k} a, a \mid k \in T\right\}=L\left(M_{1}\right) \cap$ $\cap L\left(M_{2}\right)$.
3.9. Definition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Define G-machine $M_{U}=\left(S_{U}, I_{U}, \delta_{U}\right)$, where $S_{U}=S_{1} \cup S_{2}, I_{U}=I_{1} \cup I_{2}, \delta_{U}=\delta_{1} \cup \delta_{2}$.
3.10. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=$ $=L\left(M_{1}\right) \cup L\left(M_{2}\right)$. Then $L\left(M_{U}\right)=L(M[C])$.
Proof. Suppose $(s, t) \in P_{\delta_{U}}$. Obviously $(s, t) \in\left(P_{\delta_{1}} \cup P_{\delta_{2}}\right)$. There exists a word $w \in L\left(M_{U}\right)$ beginning with the output word $s_{0} s_{1}\left(\delta_{v}\right)$, where $s_{0}=s, s_{1}=t$ (see [2], Corollary 1). By $2.7\left(s_{0}, s_{1}\right) \in P(w)$, thus $\left(s_{0}, s_{1}\right) \in P_{s_{[}[]},(s, t) \in P_{s[C]}$. Herefrom it follows

$$
\begin{equation*}
P_{\delta_{U}} \subseteq P_{\delta[C]} . \tag{11}
\end{equation*}
$$

Now assume $(s, t) \in P_{\delta[C]}$. By 2.7 there exists a word $c \in C$ such that $(s, t) \in P(c)$. Since $C=L\left(M_{1}\right) \cup L\left(M_{2}\right)$ it must hold $(s, t) \in P_{\delta_{j}}$ at least for one $j \in\{1,2\}$, therefore $(s, t) \in P_{\delta_{U}}$ and $P_{\delta[C]} \subseteq P_{\delta_{U}}$. Using (11) we obtain

$$
\begin{equation*}
P_{\delta_{U}}=P_{\delta_{[C]}} \tag{12}
\end{equation*}
$$

Let $(s, t) \in N_{\delta_{U} .}$. By $2.4 w=s_{0}=s \in L\left(M_{U}\right)$. Apparently $(s, t) \in N_{\delta_{j}}$ at least for one $j \in\{1,2\}$. From 2.7 it follows there exists $\left(s, t^{\prime}\right) \in N(w)$, thus $\left(s, t^{\prime}\right) \in N_{s[C]}$ and the implication

$$
\begin{equation*}
\text { if }(s, t) \in N_{\delta_{U}} \text { then there exists }\left(s, t^{\prime}\right) \in N_{\delta_{[}[]} \tag{13}
\end{equation*}
$$

396 holds true. Now suppose $(s, z) \in N_{\delta[C]}$. Then there exists $c \in L(M[C])$ such that $(s, z) \in N(c)$. Since $c \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$, then $c \in L\left(M_{j}\right)$ and there exists $\left(s, z^{j}\right)$ at least for one $j \in\{1,2\}$. Hence the implication

$$
\begin{equation*}
\text { if } \quad\left(s, t^{\prime}\right) \in N_{\delta[C]} \quad \text { then there exists } \quad(s, t) \in N_{\delta_{U}}, \tag{14}
\end{equation*}
$$

where $t^{\prime}=z, t=z^{j}$ is satisfied. From (12), (13), (14) it follows the condition (A) of Proposition 3.3 is fulfilled, hence $M_{U} \sim M[C]$ and $L\left(M_{U}\right)=L(M[C])$.
3.11. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines and let $C=L\left(M_{1}\right) \cup L\left(M_{2}\right)$ be a generable language. Then $C=L(M[C])=L\left(M_{U}\right)=$ $=L\left(M_{v}^{R}\right)$.

Proof. The statement is the consequence of Propositions 3.1, 3.2 and Theorem 3.10.
3.12. Proposition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Then - the following statements (A), (B) are equivalent:
(A) For every $i, j \in\{1,2\}, i \neq j$ and for every $n \in T$
(A^{\prime}) if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v\right) \in P_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or $\left(s_{n-1}, v\right) \in P_{\delta_{j}}$ and
($\mathrm{A}^{\prime \prime}$) if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v^{i}\right) \in N_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or there exists $\left(s_{n-1}, v^{j}\right) \in N_{\delta_{j}}$.
(B) $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ is a generable language.
(See [3]).
3.13. Corollary. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Then the following statements (A). (B), (C) are equivalent:
(A) For every $i, j \in\{1,2\}, i \neq j$ and for every $n \in T$
($\left.\mathrm{A}^{\prime}\right)$ if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v\right) \in P_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or $\left(s_{n-1}, v\right) \in P_{\delta_{j}}$ and
($\left.\mathrm{A}^{\prime \prime}\right)$ if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v^{i}\right) \in N_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or there exists $\left(s_{n-1}, v^{j}\right) \in N_{\delta_{j}}$.
(B) $\quad L\left(M_{1}\right) \cup L\left(M_{2}\right)$ is a generable language.
(C) $\quad L\left(M_{1}\right) \cup L\left(M_{2}\right)=L\left(M_{U}\right)=L\left(M_{U}^{R}\right)=L\left(M\left[L\left(M_{1}\right) \cup L\left(M_{2}\right)\right]\right)$.
3.14. Example. Let G-machines $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be given as follows: $S_{1}=\{a, b, c, x\}, I_{1}=\{a, b, c\}, \delta_{1}:[a \rightarrow\{a, x\}, b \rightarrow\{b, c, x\}, c \rightarrow\{a\}]$,
$S_{2}=\{a, c, d, y\}, I_{2}=\{a, c, d\}, \delta_{2}:[a \rightarrow\{a, y\}, c \rightarrow\{a\}, d \rightarrow\{c, d\}]$. First, we shall examine the condition (A) of Corollary 3.13. Let $k, m \in T$. Then the following holds:

$$
\begin{gathered}
a^{k}\left(\delta_{1}\right),(a, a) \in P_{\delta_{2}}, a^{k}\left(\delta_{2}\right) ; a^{k}\left(\delta_{1}\right),(a, y) \in N_{\delta_{2}},(a, x) \in N_{\beta_{1}} ; \\
b^{k} c\left(\delta_{1}\right),(c, a) \in P_{\delta_{\delta_{2}}},(c, a) \in P_{\delta_{1}} ; b^{k} c a^{m}\left(\delta_{1}\right),(a, a) \in P_{\delta_{2}},(a, a) \in P_{\delta_{1}} ; \\
b^{k} c a^{m}\left(\delta_{1}\right),(a, y) \in N_{\delta_{2}},(a, x) \in N_{\delta_{1}} ; a^{k}\left(\delta_{2}\right),(a, a) \in P_{\delta_{1}}, a^{k}\left(\delta_{1}\right) ; \\
a^{k}\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}} ; c a^{k}\left(\delta_{2}\right),(a, a) \in P_{\delta_{1}},(a, a) \in P_{\delta_{2}} ; \\
d c a^{k}\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}} ; d c a^{k}\left(\delta_{2}\right),(a, a) \in P_{\delta_{1}},(a, a) \in P_{\delta_{2}} ; \\
d c a^{k}\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}} .
\end{gathered}
$$

From the above G-machines M_{1}, M_{2} satisfy the condition (A) of Corollary 3.13, therefore $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ is a generable language and $L\left(M_{1}\right) \cup L\left(M_{2}\right)=L\left(M_{U}\right)=$ $=L\left(M_{U}^{R}\right)$ holds true. By $2.4 L\left(M_{1}\right) \cup L\left(M_{2}\right)=\left\{a^{\infty}, a^{k}, b^{\infty}, b^{k}, c a^{k}, b^{k} c a^{\infty}, b^{k} c a^{m}\right.$, $\left.c a^{\infty}, d c a^{\infty}, d c a^{k}, d^{\infty}\right\}$. By Definition $3.9 S_{v}=S_{1} \cup S_{2}=\{a, b, c, d, x, y\}, I_{u}=$ $=I_{1} \cup I_{2}=\{a, b, c, d\}, \delta_{U}=\left(\delta_{1} \cup \delta_{2}\right):[a \rightarrow\{a, x, y\}, b \rightarrow\{b, c, x\}, c \rightarrow\{a\}$, $d \rightarrow\{c, d\}], \quad M_{U}=\left(S_{U}, I_{U}, \delta_{U}\right)$. By $2.5 \delta_{U}^{R}:[a \rightarrow\{a, x\}, b \rightarrow\{b, c, x\}, c \rightarrow\{a\}$, $d \rightarrow\{c, d\}], M_{U}^{R}=\left(S_{U}, I_{U}, \delta_{U}^{R}\right)$. It is easy to verify that $L\left(M_{U}\right)=L\left(M_{U}^{R}\right)=\left\{a^{\infty}, a^{k}\right.$, $\left.b^{\infty}, b^{k}, c a^{k}, b^{k} c a^{\infty}, b^{k} c a^{m}, c a^{\infty}, d c a^{\infty}, d c a^{k}, d^{\infty}\right\}=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
(Received January 3, 1973.)

REFERENCES

[1] W. Kwasowiec: Generable Sets. Information and Control 17 (1970), 257-264.
[2] I. Mezník: G.-Machines and Generable Sets. Information and Control 5 (1972), 499-509.
[3] I. Mezník: On Some Closure Properties of Generable Languages. CMUC 14 (1973), 3, 541— 552.
[4] Z. Pawlak: Stored Program Computers. Algorytmy 10 (1969), 7-22.

RNDr. Ivan Meznik, CSc.; katedra matematiky FE VUT v Brně (Department of Mathematics, Technical University of Brno), Hilleho 6, 60200 Brno. Czechoslovakia.

