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Fuzzy Topologies 

JIŘÍ MICHÁLEK 

In the paper [1] there was the fuzzy set approach applied to the notion of the metric space. 
Here, this approach to the general topological space will be used. Fuzzy topological space is 
defined and studied in [2] but this conception is quite different from that which is presented in 
this paper. 

We shall start from the definition of the topological space in the usual sense. 

Definition 1. Let X be a non-empty set and let SPyX) be the system of all subsets* 
of the set X. We say that the couple <Z, M> is a topological space supposing that u 
is a mapping of the system SP(X) into itself satisfying the following two axioms: 

(I) if A c X contains at most one element, then uA = A 

(II) if Ai c X, A2 <= X, then u(At u A2) = uAt u uA2. 

Definition 2. Let X and 0>(X) have the same meaning as above, let 9> be the system 
of all fuzzy sets in X. A pair <Z, M> is called fuzzy topological space supposing that u 
is a mapping from the system £?(X) into !F satisfying the following three axioms: 

(FI) if A c X, then uA(x) = 1 for all x e A 

(FII) if A cr X contains at most one element, then MA(x) = \]/A(x), where \j/A is 

the characteristic function of the set A 

(Fill) if At cz X, A2 c X, then u(At u A2) (x) = max {uA^x), uA2(x)}. 

Clearly, any topological space is also fuzzy topological space. The property (Fill) 
implies, immediately, that if A <= B cz X, then MA(x) = uB(x) for all xeX. In the 
following we shall write fuA(x) instead of MA(x). The value fuA(x) can be interpreted 
as "the degree of membership of the element x in the closure of the set A", asfuA(x) 
forms, in fact, a fuzzy set in X. 



For every set A c X and every X s <0, 1> let us define the set Ax c X by the 
relation: 

Ax = {x:xeX,fuA(x)^X}. 

This definition involves a mapping from the Cartesian product &'(X) x <0, 1> 
into SP(X) having the following properties: 

1) A0 = X, as fuA(x) = 0 for all x e X, 

2) 0A = 0 for every X e (0, 1>, as/u 0(x) = 0, 

3) if A c B, then AA <= Bx for every A e <0, 1>, 

4) for any A c X and any Xe <0, 1> A c Ax is valid, 

5) if X, n e <0, 1>, X -£ fi, then Ax => A" for any A c X, 

6) for any A c X the equality A" = f) Ax holds, as A" c Ax for any /I < n, 
>.<u 

hence A" c f) A;'. Conversely, let x e f) AA, i.e., /u/((x) S: /. for all X < p. 
A</( A</i 

Iffu(x) < ,u were valid, then such an e0 > 0 would exist, that fuA(x) < n — e0, 
hence x^A"~ £ 0 , as fi — e0 < /i. This contradicts to our presumption that 
x e f j i ' 1 , which gives AM = f) AA. 

7) every A-section for X > 0 defines on the set X a closure operator in the sense 
of Definition 1, these topologies we shall call A-topologies, 

8) this mapping defines the membership function fuA by the relation fuA(x) = 
= sup {X : x e Ax}. 

Definition 3. The fuzzy set {X,fA.} where f4.(x) = fU(A~{x))(x) is called fuzzy 
derivative set of the set A. 

Lemma 1. In every fuzzy topological space the following assertions are valid: 

1) if A c X contains at most one element, thenfA{x) = 0, 

2) if Ac X, Be X, then f(AuB){x) = max {fA{x), fB{x)}, 

3) if A c X, then/u/1(x) = max {4>A(x),fA{x)}, 

4) ifAcBcX, then fA.(x) g fB.(x) for all x e X. 

Proof. If A = 0, then fuA(x) = 0 and the assertion is valid. If A = {x0}, then 
fu({X0}-M)(x) = fA{x) which gives f{xo){x) = 0, as/u{Xo)(x) = ^{Xo}(x). 

- ) f(AuB){X) = fu((AuB)-{x))(x) = fu((^-W)u(B-W))W = "MX {fu{A-{x))(x), 

f«(B-{X})(
x)} = max{/^,(x),/B-(x)}. 

3) max {ijsA(x), fu(A-{x))(x)} = 1 for x e A. If x ^ A, then clearly max {i/z^x), 

f(.4-{*»(*)} = f^W> as A - {x} = A in this case. 



4) if A<=B, then fuA(x)=fuB(x) implies fu{A.{x))(x) = / H ( B - W ) (x ) , which 34' 
completes the proof. 

Lemma 2. For any finite subset A <= X the equalities fuA(x) = \j/A(x) andLV(x) = 0 
hold for every x e X. 

Proof. Immediately from the foregoing lemma. 

Definition 4. Let A <= X, Ac = X - A, then the fuzzy set (X,fAoy whereL.„(x) = 
= 1 — fuA*(x) is called fuzzy interior set of the set A. 

Lemma 3. In every fuzzy topological space the following assertions are valid: 

1) if A contains at most one element, thenL,„(x) = ij/A(x), 

2) if A<= X, B<= X, then/ ( i l n B ) .(x) = min {L„(x),/B„(x)}, 

3) for every A <= X the inequality L„(x) S fuA(x) holds. 

Proof. Follows immediately from Definitions 2 and 4. 

Definition 5. Let A c X, then the fuzzy set {X,fdA~) where feA(x) = min {fuA(x), 
fuAc(x)} is called fuzzy boundary set of the set A. 

Lemma 4. For every A c X feA(x) = fSA.(x). 

Proof. Immediately from the definition. 

Definition 6. A subset A <= X is called to be fuzzy closed if 

\pA(x) = min {fuA(x),fuAC(x)} . 

Theorem 1. A subset A <= X is fuzzy closed if and only if fuA(x) = \j/A(x) for all 
xeX. 

Proof. If A is fuzzy closed, then for any x e Ac necessarily 0 = min {fuA(x), 
fuA°(x)}, asfuA°(x) = 1 for x e Ac. From this fact the validity of fuA(x) = \lfA(x) for 
every x e X immediately follows. Conversely, if fuA(x) = i^A(x), then min {fuA(x), 
fuAc(x)} = min {i]/A(x), L^c(x)}. This value is equal to fuAc(x) for x e A and is equal 
to \l*A(x) for x e A. However, if x e A, then \l>A(x) = 1, hence ij/A(x) = min {fuA(x), 
fuAc(x)} and the theorem is proved. 

Definition 7. A subset A c X is called to be fuzzy open if for every x e X 

min {ikA(x),fdA(x)} = 0. 

Theorem 2. A subset ^ c l i s fuzzy open if and only if fA„(x) = \jiA(x) for every 

xeX. 



348 Proof. Let A be fuzzy open, i.e., min {rl/A(x),feA(x)} = 0 for all xeX. This 
gives that min {fuA(x), fuAc(x), \I/A(x)} = 0 for all xeX. This implies that if x e A, 
then fuAc(x) = 0, i.e., fuAC(x) = \pAc(x), hence, 1 - i/^c(x) = fAO(x) = 4/A(x) for 
every xeX. Conversely, if fAo(x) = ipA(x), then fuAc(x) = ^Ac(x), from which 
min {ij/A, fuA, fuAc} vanishes for every x e X, i.e., the set A is fuzzy open. The theorem 
is proved. 

Similarily, it can be proved that a set A c X is fuzzy open if and only if the set Ac 

is fuzzy closed. 

Definition 8. A subset U c X is called to be fuzzy neighbourhood of an element 
a e X if fu{a](x) = fv,(x) for every x e X. 

Lemma 5. A set U _ X is a fuzzy neighbourhood of an element a e X if and only 

if /__*(«) = 0. 

Proof. If U is a fuzzy neighbourhood of an element aeX, then Definition 8 
gives that fu{a](x) = \//{a)(x) ^ fue(x) = 1 - fuVc(x). As iA{a)(x) = 0 for x H= a, 
the equality / ^ ( a ) = 1 — fuVc(a) = 1 must hold, i.e., fuVc(a) = 0. The opposite 
inclusion can be proved quite analogously. 

Lemma 6. If a set U _ J_ is a fuzzy neighbourhood of an element a e X, then 
^{a)(x) = fuV(x) for every x e X. 

Proof follows immediately from the inequality fv°(x) — fuV(x). 

Lemma 7. The intersection of any finite system of fuzzy neighbourhoods of an 
element a e X is again a fuzzy neighbourhood of a. 

Proof. Let U«. U2, ..., U„ be fuzzy neighbourhoods of a. This means that for 
every i ^ n 

tla}(x)^fVot(x) = l-fuUCi(x). 

Denote U = U1 n U2 n ... n U„. Then/uo(x) = min {/^(x), i :g n}, hence ^{a](x) _s 
= /_-«(*) which proves the lemma. 

Lemma 8. If a set U is a fuzzy neighbourhood of an element a e X and x0 4= a, 
then U — {x0} again is a fuzzy neighbourhood of a. 

Proof. Lemma 5 gives that fuVc(a) = 0. We can write 

fu{U-{xo))°\X) = fu(X-(V-{xo)))\X) > 

if x0 $ U, then U - {x0} = U and lemma is valid, if x0 e U, then X - (U - {x0}) = 
= (X - U) u {x0}, hence / ^ - L ^ X O } ) ^ ) = max {/uI,c(x),/H{;(o)(x)}. So if x = a, 
then /„(£,_ („0})o(a) = 0 and the lemma is proved. 



The lemmas 6, 7, 8 characterize certain system 1(a) of subsets in X for every 349 
element aeX, l(a) = {U c: X :fuVc(a) = 0}. The properties of the system l(a) 
following from the mentioned lemmas are: 

1) the system 1(a) is non-empty, 

2) a e U for every U E 1(a), 

3) if x # a, then there exists such a U e Z(a) that x e X — U, 

4) if U e 1(a), Ve 1(a), then there exists We l(a) that W c U n V. 

These foregoing properties of the system 1(a) enable to introduce certain topology 
into the set X. Let us denote this topology by v. It is familiarly known that the closure 
vA of a set A c X in a topology is the set vA = {x e X : U e Z(x) => U n A + 0}. 

Using this property we can prove immediately the following theorem. 

Theorem 3. The pair <X, v} is a topological space where 

vA = {xeX:fuA(x)>0} 
for every A <= X. 

Proof. Let x e X belong to the set vA where A is an arbitrary subset in X. It 
means that for every U e l(x) the intersection U n A is non-empty. The set U 
belongs to the system l(x) of fuzzy neighbourhoods if and only if fuVc(x) = 0. If 
were A n U = 0 then A c Uc would hold. This implies that also fuA(x) = 0. Con
versely, if fuA(x) = 0 then the set U = X — A is a fuzzy neighbourhood of x because 
f(X-A)o(x) = 1 — fU(X-Ar(x) = 1 — Lx(x) = -• B u t in this case x cannot belong 
to the closure vA because A n U = A n (X — A) = 0. This completes the proof. 

Remark. It is clear, immediately, that also the closure vA can be written as vA = 
= (J Ax where Ax is the closure of the set A in /.-topology. It implies that the topology 

A > 0 

v is coarser than all A-topologies because vA => AA for every X > 0. The set A c X 
is closed in the topology v if and only if A is closed in every A-topology because if 
A = vA = U Ax then A = Ax must hold. In this case fuA(x) = ^A(x) for every 

x>o 
x e X must hold, hence the set A is closed in topology v if and only if A is fuzzy closed. 
From this point of view a fuzzy topology in the set X can be understood as the 
one-parametric system of the due A-topologies if we put the topology v in the case 
A = 0. 

A very important notion in the theory of topological spaces is that of F-topology. 
For the sake of completness let us introduce the definition. 

Definition 9. Let (X, u) be a topological space. The topology u is called F-topology 
if the closure of any subset of X is a closed set, in symbols: u2A = uA for any A c X. 

The following definition introduces an analogous notion into the fuzzy topological 
spaces. 



Definition 10. A fuzzy topological space (X, u) is called F-fuzzy topological space, 
if for any A c X and any ordered pair <A, p) e <0, 1> x <0, 1> there exists such 
a g = QA(X, p.), that (AA)" <= Ae; at the same time such a pair <A0, p0}, X0 > 0, p0 > 0 
must exist, that gA(A0, p0) > 0, as A0 = X for any i c l (said in other words, 
QA(X, p) is not allowed to be an identical zero on (0, 1> x (0, 1>). For any F-fuzzy 
topological space (X, u) and any A <= X we can define 

TA(X, p) = min {sup {Q : (AA)" c Ae], sup {Q : (A»)x c Ae}} . 

Theorem 4. The following assertions concerning the function TA are valid: 

(1) TA is non-decreasing in <0, 1> x <0, 1>, i.e. TA(X, p) = TA(X', p') for X = X', 

P = /.', 

(2) TA(X, 0) = TA(0, p) = 0 for all A, /* e <0, 1>, 

(3) TA(X, p) = T>, X) for all A, /* e <0, 1>, 

(4) /(A, p) = TA(X, p) = min (X, p), where 
f(A, p) = A if /i = 1 , t(A, p) = p if A = 1 , /(A, /*) = 0 else. 

Proof. (1) Let X^X',p = p', then Ax => Ax', hence (AA)" => (AA')"', analogously 
A" =3 A"', hence (A")A => (A"')A'. If (AA)" <= Aff, then (A r )" ' c A«, so the function 
sup {g : (AA)" <= Ae} is non-decreasing, this gives that also TA is non-decreasing. 

(2) TA(X, 0) = 0, as (Ax)° = X for any X e <0, 1>, analogously T,(0, p) = 0 
for any /J e <0, 1>. 

(3) Symmetry of TA follows immediately from the definition. 

(4) If p = 1, then (Ax)1 = f) (AA)" c ft (A*)7"-^^ = lim (AX)TAX'"\ For any 
/"<! «<i nil 

pe(0,l) is AA c (AA)", hence Ax c (A*)1, which gives TA(X, 1) = A. Symmetry 
of TA gives that TA(l, p) = p. Combining these results we have that the inequality 
T,(A, p) = t(X, p) must hold. As A c AA c (AA)" c A™-'*) = fl {^e : (Ax)" c 
<= A*}, another saying /l7"-^'" ' = {x :fuA(x) = TA(A, /<)} => {x :fuA(x) = A} = AA, 
necessarily TA(X, p) = A and symmetry gives also T^A, /i) = /t. This implies that 
TA(X, p) = min (A, p) and, also, that (AA)A = Ax for any A G <0, 1>. The theorem is 
proved. 

Theorem 5. For any fuzzy-topological space (X, u) there exists a probability 
space (Q, I, P) such that Q is a set of certain topologies defined in X, er-algebra 
I contains all the sets of the type {xk :fuA(x) = A} and P({zx :xxzQ, fuA(x) = A}) = 
= /UA(X). 

Proof. Let A e (0, 1>, let us ascribe, to any i c l , a subset Ax = {x :fuA(x) = A}. 
We shall prove that the mapping Q} . : A -> Ax defines a topology in the space X. 
If A = 0, then AA = {x :juA(x) = A > 0} = {x : 0 = A > 0} = 0. If the set A 



contains just one element, i.e. A = {a}, aeX, then Ax = {x :L ( a)(x) >. X} = 351 
_ {x : \l/{a](x) = X} = {a}, as X > 0 and (A{a,(x) = 0 foi x * a, ^[a)(a) = 1. The 
only thing which rests to be proved is the equality (A u B)x = Ax u B*. However, 
(A u Bf = {x : LMuB)(x) ^ A} = {x : max {/^(x), /uB(x)} ^ X} = {x : LA(x) 1 
^ A} u {x :/uB(x) >,X) = AXKJBX. 

Denote Q = {xx : 0 < X = l } , where TA is the topology defined by the closure 
operator 6X. Denote also, for the sake of lucidity, the sets of the type {{rx eQ :QL < 
< X <. Q2}, QL, Q2 e <0, 1>} by {{(QI, Q2)} '• Qt, Q2 e <0, 1>}. These sets can be easily 
proved to form a semi-ring in Q, at the same time Q = (0, 1>. Clearly, a set (g,, g2> 
cannot be, in general, expressed in the form (QU Q2} in the unique way. If there exist 
more such possibilities for one subset of this type, i.e. if, e.g. (glt Q2~) = (Q3, QX), 
QI + £3, Q2 4= ^4, then such an ambiguousity can be eliminated by expressing 
(Qu Q2) in i t s "maximal" form, i.e. in the form (inf QU sup Q2}. In this way the sets 
of the type (glt Q2} are defined unambigously and we can ascribe to them a pro
babilistic measure P{(QI,Q2)} = Q2 — Qv Clearly P{Q} — 1 and P can be easily 
proved to be a measure on the semi-ring mentioned above. Let I be the minimal 
ff-algebra over this semi-ring, let us extend P to this Z-algebra (it is a well-known fact 
that such an extension is defined unambigouosly). As can • be easily seen, 
Hkx : / _ i W = A)} = P{(TA : x e Ax)} = fuA(x), i.e. the value fuA(x) can be under
stood as the probability, that an element x belongs to the closure of the set A. Q. E. D. 

New, we shall study probabilistic metric spaces as a special case of fuzzy topological 
spaces. Let (X, F) be a probabilistic metric space, let A be a subset in X and let us 
define the function fuA() by the relation fuA(x) = inf sup Fxy(t). If the set A contains 

f>0 yeA 

only one point, say, A = {a}, then L{a)(x) = inf Fxa(t). Then there are the two 
posibilities: r > 0 

1) infF„(.-)-0, 
!>0 

2) inf Fxa(t) > 0. 

If the first case occurs for every pair (x, a), x + a in the set X, then the function 
/u{a)(.) is just the indicator of the set {a}. If the other case occurs, at least for one pair 
(x, a), x 4= a, then the considered probabilistic metric space cannot be a fuzzy topo
logical space in the sense of Definition 2. This fact leads us to the modification of 
Definition 2 as follows. 

Definition 11. Let X be a non-empty set, let SP\X) be the system of all subsets 
in X and let $F be the system of all fuzzy sets in X. We shall say that the pair <X, w> 
is a generalized fuzzy topological space supposing that u is a mapping of the system 
2P(X) into SF satisfying the following properties: 

1) if A _ X then uA(x) - 1 for all xeA 

2) A <= X, B c X then u(A u B) (x) = max {uA(x), uB(x)} for every x e X. 



352 It is obvious that every fuzzy topological space is a generalized fuzzy topological 
space. In the case of a fuzzy topological space we could define for every A e (0, 1> 
and every A <= X the A-closure Ax = {x :fuA(x) ^ X}. We have proved that the 
A-closure is a topological closure in the sense of Definition 1. It is not true in the case 
of a generalized fuzzy topological space because some one-point sets in X need not 
be A-closed. Let <X, E> be such a probabilistic metric space in which for every pair 
x, ye X, x 4= y lim Fxy(t) — 0 holds. Then the requirement (F II) in Definition 2 

no 
is fulfilled. If A c X then sup Fxy(t) = 1 for every x e A because Fxx(t) = 1 for 

yeA 

every xeX and every t > 0. Hence, the requirement (F I) in Definition 2 is also 
fulfilled. Let A, B be arbitrary subsets in X, then fu(AuB)(x) = inf sup Fxy(t) S; 

r > 0 yeAuB 

^ max {inf sup Fxy(t), inf sup Fxy(t)}. On the other hand,/u(AuB)(x) = inf sup Fxy(t) 
r > 0 yeA r > 0 yeB f>0 yeAuB 

and, hence, for every e > 0 there exists such a tE > 0 that/u(XuB)(x) + e > sup Fxy(tB). 
yeAuB 

Evidently, sup Fxy(te) = Fxy(te) for every y e A u B. There exists such a ye e A u B 
yeAuB 

that sup Fxy(te) — s < Fxyc(te) ^ max {sup Fxy(te), sup Fxy(te)}. As the inequality 
yeAuB yeA yeB 

fu(AuB)(x) = sup Fxy(t) holds, also LMuB)(x) - e < sup F ^ i . ) - e < max {sup Fx,(t£), 
ye-4uB }>6,4uB yeA 

sup FX),(JE)} must hold for every e > 0. From this fact it follows that fu(AwB)(x) = 
yeB 

= max {fuA(x),fuB(x)} for every xe X. We have just proved the following theorem. 

Theorem. 6 Let {X, F) be such a probabilistic metric space that lim Fxy(t) = 0 
r j O 

for every pair x, y eX,x ^ y. Then the mapping u : 0>(X) -* HF where «A(x) = 
= inf sup Fxy(t) defines a fuzzy topology in the space (X, F). 

t > 0 yeA 

Further, we shall study the basic properties of this fuzzy topology in these probabilistic 
metric spaces. 

Lemma 9. A set A <= X is fuzzy closed if and only if for every x e Ac lim Fxy(t) = 0 
uniformly with respect to y e A. n° 

Proof. This statement follows immediately from that fact that a set A is fuzzy 

closed if and only if fuA(x) — ij/A(x) for every xeX. 

Similarily, we can prove the following lemma. 

Lemma 10. A set U c X is a fuzzy neighbourhood of a point a e X if and only 
if lim Fay(t) = 0 uniformly with respect to y e Uc. 

no 
If we denote &(a, e, t) = {xeX : Fax(t) > e} and if a set U c X is a fuzzy neigh

bourhood of the point a e X then using the foregoing lemma we are able to find, for 
every e > 0, such a te > 0 that Uc n &(a, t, te) = 0, hence @(a, e, te) <= U. From this 



fact it follows, immediately, that some fuzzy neighbourhoods of the point a can be 353 
expressed in the form U = (J (9(a, s, te) where te is a non-decreasing function at e. 

E > 0 

Now, we shall study in details the A-topologies defined by the closure operators 
ux : A -> Ak = {x e X : inf sup Fxy(t) > X}. 

< > 0 ye A 

Lemma 11. The system of the sets {0(a)} x = {0(a, X - 8, r\), 3 s <0, A), ^ > 0} 
forms the complete system of neighbourhoods for the A-topology. 

Proof. The system {0(a)} x is, evidently, non-empty and every set Ue{0(a)}x 

contains the point a because Faa(t) = 1 for every t > 0. Let x 4= a, x e X.We 
assume that lim Fxa(t) = 0, i.e., Vs > 03 rE > 0 such that if Fxa(tc) < e, then 

no 
x $ 0(a, X-(X- s), te) if we choose e < X. When the sets &(a, X - 5U qj, 0(a, X -
— <52, <72) belong to the system {0(a)}x then also the set 0(a, X - m i n (3U 32), 
max (f/i, q2)) belongs to {0(a)} x and 0(a, X — min (3U 52), max (qu ^2) c <S(a, X — 
— 3U ^l) n 0(a, A — 52, ^2). So we have proved that by the using of the system 
{0(a)}x one can introduce certain topology into the set X. Let A be any subset in X, 
then the closure of A in this topology is the set Ax = {x e X : U e {@(x)}x => U n A 4= 
4= 0}. Let a e Ax. It means that for every neighbourhood <S(a, X — b,i\) there exists 
an xon e 0(a, X — 3, v) n A. From this fact it follows, immediately, that the ine
quality /„,,(«) ^ 2 must hold. On the other hand, itfuA(a) = X. i.e., inf sup Fay(t) ^ 

<>0 ysA 

= X, hence, sup Fay(t) ^ X for every t > 0 and for every e > 0 and every t > 0 
ye A 

there exists such a j £ , e A that EflJ,el(t) > A — e, i.e., &(a, X — e, r) n A 4= 0. This 
implies that this topology is identical with the A-topology. 

The foregoing two lemmas demonstrate the necessity of the assumption of the 
continuity of all distribution functions Fxy(.) at 0 for every pair x, y eX, x 4= y. 
If this assuption is not fulfilled, then every A-topology is a so called generalized 
topology in that sense that some one-point sets in X need not be 1-closed. In this 
general case only the most gentle A-topology, i.e., 1-topology, is a topology in the 
sense of Definition 1. It follows from this assuption that Fxy(t) = 1 for every t > 0 
implies x = y. 

Theorem 7. If (X, E> is a Menger space with the t-norm T = min then every 
A-topology is F-topology. 

Proof. The proof of this statement is quite based on the strongest possible form 
of the generalized triangular inequality Fxy(X + fi) ^ min (FXZ(X), Fyz(fi)). 

Remark. If the space <X, E> is a Menger space with f-norm T which is con
tinuous on <0, 1> x <0, 1> then one can prove that 1-topology is an F-topology. 

One of the most important problems in the theory of topological spaces is the 
problem of the metrizability. The similar problem arises also in fuzzy topological 
spaces. 



354 Definition 12. Let <X, i>> and <Z, u> be two fuzzy topological spaces. We say 
that the fuzzy topologies u and v are equivalent if every fuzzy closed set in the fuzzy 
topology u is also fuzzy closed in fuzzy topology v and vice versa. 

Definition 13. A fuzzy topological space <X, u) is fuzzy metrizable if there exists 
such a fuzzy metric space <Z, F> that the fuzzy topology defined by the functions 
IUA(X) — inf SUP I"^(t)> A <= X, is equivalent to the fuzzy topology u. 

r > 0 yeA 

Immediately, the following question arises: Under which conditions a fuzzy topo
logy is fuzzy metrizable? 

(Received December 12, 1974.) 
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