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On the Synthesis of Adaptive Multiparameter 
Control Systems by the Lyapunov Method 

L A D I S L A V K R O C 

A general form of adaptive algorithm is formulated. The derived algorithm is more general 
and simpler than algorithms previously published in the cited papers. Also an acceptable choice 
of measurable state variables is recommended which often facilitates to realize the adaptive 
algorithms without derivative terms of higher order. 

1. INTRODUCTION 

Adaptive automatic control systems become very frequently of use in technical 
practice. They are especially applied in automatic control systems of the flying 
bodies despite of higher expenses like the variable aerodynamic configuration of an 
aircraft and the application of a computer in autopilot circuits. 

Model reference adaptive control systems constitute an important group of adap
tive systems. At present, the synthesis of model reference adaptive control systems is 
made more perfect by the Lyapunov stability theory. The design by means of Lyapu-
nov method simultaneously guarantees the stability of the whole adaptive system. 

The published papers [1; 2; 3] deal only with the Lyapunov design of adaptive 
algorithms for one-parameter control systems. The objective of this paper is to 
formulate adaptive algorithms in more general and simpler form than in the cited 
papers. The derived relations are suitable for multiparameter control systems, too. 
In addition, it is recommended to avoid the use of derivative members of higher 
order by a suitable choice of state variables and of a reference model. 

2. THE FORMULATION OF THE ADAPTIVE ALGORITHMS 

A general multiparameter control system consists of a plant and a controller. 
Let us consider a plant whose characteristics vary in time. The operation of such 



a plant is expressed by differential equations with time-varying coefficients. Purposeful 
changes of controller coefficients are acting against the natural changes of plant 
coefficients so that the whole control system is time invariant. 

The corresponding controller must satisfy two basic conditions. At first it must 
have a convenient structure in order that each plant parameter change may be 
possibly compensated. This first condition is not always simple to realize. It usually 
requires to use the auxiliary manipulated variables and the corresponding servo-
drives. The second condition consists in the design of suitable adaptive algorithms 
so that the adaptive system will be stable as a whole. The contents of this paper is 
focused only on the second condition. 

The reference model is chosen so that its properties are identical with the required 
properties of the control system. Let the reference model equation be of the linear 
form 

(1) ~xm = Amxm + Bmu, 
dt 

where xm is the model state vector of dimension n, u is the control vector of dimension 
r, Am is the n x n model coefficient matrix and Bm is the model n x r exciting matrix. 
The controlled variables or outputs are included into the state vector and create r 
components of this vector. 

Papers [1; 2; 3] consider the transformation of the coefficient matrix to the well-
known row form. This transformation, however, leads to the state variables which 
require the utilization of derivative terms of higher order. Such a structure is not 
usually simple to realize. It is more convenient to choose the measurable state variables 
despite of more complicated coefficient matrix. Such a choice of state variables 
enables to avoid the utilization of derivative terms of higher order. 

The system, consisting of the plant and the adaptive controller, is expressed by the 
system state equation 

(2) ±x = As(t)x + Bs(t)u, 

where x is an n x 1 system state vector, As ins an n x n system coeficient matrix 
and Bs is an n x r system exciting matrix. 

The task of the adaptive loop is to stabilize the system matrix elements to be the 
same with the model matrix elements, i.e. the equations (1) and (2) to be identical. 
The stabilization of system matrix elements is reached by varying the controller 
parameters, which compensate the effects of the plant parameter variations. 

It is convenient to introduce the adaptive error vector, i.e. the difference 

(3) e = xm - x 



and then the system state equation (2) can obtain the form 

(4) - e = Ame + [Am - As(t)] x + [Bm - Bs(t)] u . 
dt 

The matrix differences may be expressed by means of the error matrices or through 
corresponding error matrix elements and it holds 

(5) A(t) = Am - Alt) = [amiJ - a,lt)] = [au(t)] , 

(6) B(t) = Bm- Bs(t) = [bmik - bsik(t)] = [bik(t)] , 

i = l,2,...,n; j = l,2, ..., n; k = 1, 2,.. . . r . 

Substituting (5), (6) into (4), the system state equation will take on the simple form 

(7) — e = Ame + A(i) x + B(t) u . 
W df V ' 

The adaptive couplings are designated for the elimination of the error state vector 
e(t) and the error matrix elements a,7(f), bik(t), i.e. the steady state must be provided 
as follows 
(8) lim e(t) = 0 , lim A(t) = 0 , lim B(t) = 0 . 

It we take the steady-state conditions (8) into consideration, it is convenient to 
choose the Lyapunov function as a positive definite function of the error state vector 
and the error matrix elements 

(9) VO, A, B) = e^Pe + J £ a2
u + £ £ b2

k, 
i = l j = 1 i = t k=1 

where P is a positive definite matrix. The argument t is and will be omitted for the 
sake of simplicity of mathematical expressions. 

The adaptive control system will be asymptotically stable if the first time derivative 
of the Lyapunov function is negative definite. The time derivative of the Lyapunov 
function 

ff.(i.y* + «(i.) + »j i»„0/) + 2i £*.(!», 
df \ d f / \ d f / ;=i y=i \ d f / ;=i *=i \ d f 

(10) 
may be arranged step by step in the forms (10a) and (10b) 

Ay 
(10a) — - (Ame + Ax + Buf Pe + erP(Ame + Ax + Bu) + 

+ 2Z iaJ±av) + 2t tbm(Um), 
; = i j = i \ d f ) i = i «. = I \ d f ) 
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280 (10b) — = eT(AT
mP + PAm) e + xTAT(P + />T) e + uTBT(P + PT)e + 

df 

+ 21 i a J ^ + ii ibm(±bik). 
i=i j = i \dt J ;=i k=i \ d r / 

The first term on the right hand side of the expression (10b) is always negative 
definite for the chosen stable reference model. Respecting the further design procedure 
it is necessary to determine the positive definite matrix P which satisfies the Lyapunov 
equation 

(11) • 4lP + PAm = -Q, 

where Q is a positive definite matrix. The solution of the matrix P is not an unambig-
nous problem because the matrix Q is not given in advance. For the simplicity of the 
adaptive algorithms it is convenient to proceed in opposite way and to choose at first 
the matrix P in a simple form. The matrix Q need not be determined because a 
stable reference model was chosen. This basic idea will significantly simplify the un
known adaptive algorithms. 

The second and other terms on the right-hand side of the equation (10b) are not 
definite. For the system to be stable the sum of these four terms must be zero. The 
second and the fourth terms contain the matrix A and therefore, it is of advantage 
if their sum is zeroed separately. Similarly, the sum of the third and fifth terms will 
also be set to zero. 

Thus the additional conditions of system stability can be written as follows 

(12) xTAT(P + PT)e + 2 i j > . / ( ~ « y ) = 0, 

(13) «TBT(P + PT)e + 2i ibik(±bik) = 0. 
;=i k=i \ d f / 

The condition (12) can be expressed as the sum of components and it holds 

(14) I i [xjaui(Plt + Pqi) eq + 2au (± A , , ) ] = 0 .' 

The adaptive system will be stable if the adaptive algorithm of the coefficient matrix 
element satisfies the condition 

0 5) T Ay = ~ ~ XJ t (Pt9 + Pn) ei • 
at 2 «=i 



If we take into consideration the relation (5), the relation (15) can be simplified 281 
to the following form 

d 
(16) 

dř 
asiJ = xa(7iXj 

°І = E {PІЧ + Pчò eч 
« = i 

i = 1,2, ..., n; j = 1, 2,..., n , 

where xa is an arbitrary positive constant and 

(17) 

is the linear combination of error state variable components 

(18) eq = xmq-xq, q = 1,2,..., n. 

The magnitude of the constant xa affects the rate of the adaptive process and it 

can be determined by modelling on an analog computer. 

The adaptive loops are connected to the stable control system and, therefore, 

it is possible to choose the matrix P in the simplest diagonal form 

(19) 

1 0 . . 0 

0 1 . . 0 

0 0 . . 1 

Due to these simplifications the adaptive algorithm (17) will have the resultant 

simple form 

(20) — O.Ц = XaЄiX: , 

dř J 

x = 1,2, .... и ; j = 1,2,..., и . 

It follows from the algorithm that the rate of adjusting asiJ is to be proportional to 

the product of the i-th error state component and the j-th system state component. 

The second adaptive algorithm can be obtain in a similar way, i.e. by expanding 

the stability condition (13) into the component form 

(21) I i [ukbmi(pk + Pqi) eq + 2bik Q( 6N j = 0 , 

and by other simplifications we obtain the adaptive algorithm of the elements of the 

exciting matrix in the resultant form 

(22) V fosik = *beiUk > 

dt 

i = 1, 2, ..., n ; k = 1,2, ...,r. 



It follows from (22) that the rate of adjusting bsik is to be proportional to the 

product of the i-th error state component and the j-th control component. 

A simplified scheme of the adaptive system is shown in Fig. 1. It follows from the 

figure that each adaptive loop requires a multiplier. The scheme does not contain the 

derivative terms because the measurable state components have been considered for 

Fig. 1. 

simplicity. The derived structure of adaptive system is, therefore, relatively simple 

for realization. 

Proportional linear adaptive loops can be replaced by relay loops 

(23) — aSІJ = xa sign (вiXj), 
d í 

(24) — bsik = xb sign (etuk) 

whose properties are analyzed in detail in paper [3]. 

3. EXAMPLES 

Example 1. A two-parameter control system consists of a plant and controller. The properties 
of the system are expressed by the system state equation 

d 
— x 
dt 
d 
— x 

Ldř J 

-
- , l l ( f ) asl2(t) Xi 

+ 
<ts2l(t ) as22(t) x2 

Ь,ц(0 Ь,iг(0 

ЬS2l(t) K22(t) 



At a chosen nominal operating point of the variable system coefficients have the same values as 283 
the coefficients of reference model 

Гd 
- x m l dř 
d 
- x m 2 _dí j 

- 2 1 * m l . 

+ 
- 3 - 1 * m 2 

- 3 1 

- 1 2 

The reference model is stable and, therefore, the adaptive algorithms of eight variable coeffi
cients have the following form 

asll = XaexXx , — Kii = KьЄiUi , 
d í 

T f l s i 2 = ^ 1 * 2 , 
át dř 

t%12 = * І > Є 1 U 2 , 

- C 7 9 2 1 = x0e2xx , 
dí 

— bs21 = xьe2ux , 
át 

dг 
a s 2 2 = *aЄ2X2 > T K22 = x„e2u2 , 

dř 

by relations (20), (22) where 

ei = * m i — xi and e2 = x m 2 — x2 . 

Example 2. The plant is an aerodynamic controlled flying body and its properties in vertical 
plane are expressed by the state equations 

— (o = — ajx> ~ axoc — asd 
át 

• d . . sin 8 
— a = co — Aaa — A6o + g , 
dt v 

where 

co — is the angular speed of flying body, 

a — the angle of attack, 

<5V — the deflection angle of the rudder, 

5 — the deflection angle of wings, 

g — the gravity acceleration, 

v — the speed of center of gravity and 

9 — the angle of longitudinal inclination of the speed. 



284 The angular speed co is the controlled variable, <5V and S are manipulated variables and g repre
sents a disturbance. The coefficients aa, ax, as, Aa, Ad depend on the dynamic presure of the lift 
and they vary considerably in the course of the flight. Two manipulated variables were chosen 
to possibly act against all variable coefficients. The corresponding controller, i.e. the autopilot 
is interpreted by equations 

5V = kuu + kmco + kaa , 

d = cuu + cjx., 

• where u is the control variable or input signal. Substituting Sv, 3 into the plant equation we obtain 
the state equation of the system 

d " 
— co 
åt 
d 
— a 
ât . 

-,u(0 йsiг( t) co \i(t) 
d " 
— co 
åt 
d 
— a 
ât . 

1 «s22(t) a 

+ 

Kг{<) 

u + 
sin 

V J 

flsii(t) = -aji) - a5{t)km{t), 

«s i 2 ( t ) = -aJit) - ad{t)kx{i), 

a S 2 2 ( t ) = -Aa{t)- As{t)cx{t), 

bsl{t) =-ad{t)ku{t), 

MO = -^(0^(0-
Let the reference model have the equation 

— ш m dř 

d 

_dř J 

Ö m bml 
0 

am 

+ 
bm2 

u + 
sin 

9 
v . 

which represents the required properties of the system. The effect of the disturbance is realized 
in the model to eliminate the effect of the disturbance on the adaptive process. 

Applying the relations (20) and (22) the following adaptive algorithms are obtained 

— a s l l ( t ) = K ^ m — C0)C0 , 
df 

— a s l 2 ( t ) = Ч ^ m — CO)a , 
át 



d , , . . 285 
- tts22(t) = «(««. - «) « , 
df • 

— l'si(t) = " K - --) M ' 

- ^ ( t ) = ^fam ~ <X)U . 

Practically only the coefficients of the autopilot can be changed and the realizable adaptive 
algorithms have the simplified form 

- kjt) = K(co - com)co, 
at 

±Ut) =K(co-com)a, 
df 

-cx(t) =K(<x-ccm)x, 
df 

- ku(t) = K(co - com) u , 
at K 

- cu(t) = K(a - am ) « . 
df w v ' 

These algorithms also give the correct steady state value of coefficients. The technical simplitica-
tion of adaptive algorithms does not disturb the system stability; this conclusion can be drawn 
from the relations (14) and (21). 

4. CONCLUSIONS 

The derived adaptive algorithms (20) and (22) are suitable for the synthesis of 
adaptive multivariable systems. The algorithms are more general and more advan
tageous for the realization than many other published adaptive algorithms. 

(Received February 27, 1973.) 
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