
KYBERNETIKA— VOLUME 11 (1975), NUMBER

On Certain Aspects of Generative Grammar
Computer Testing

ANTONÍN ŘÍHA, SVATAVA MACHOVÁ

The present paper deals with the description of computer testing of the functional generative
description (proposed by P. Sgall). Illustrations are given of the system of programmes for
testing the generative component of the grammar, and some aspects of notation necessitated by
the specific requirements of computer testing are pointed out.

1.

The problem whether a particular generative grammar is working in such a way
as it is assumed to, is unsolvable by a linguist not aided by computer. Therefore,
programmes started to be written, so as to enable the computer to test particular
variants of generative description (cf. [1; 2; 3]).

In the Computing Centre of Charles University in Prague tests are being worked
out for functional generative description of the Czech language. Some preliminary
tests were carried out earlier on smaler types of computers (LGP 30 — 1965; Minsk
22 — 1969). The aim of the present paper is to describe the preparation of the pro
grammes for testing the generative component (GC) of a certain variant of functional
generative description (cf. [4; 5]), enumerating semantic representations (SR's)
of sentences.

Before demonstrating the way in which the testing is carried out we shall give
a brief outline of the basic properties of the GC of the functional generative de
scription.

The GC is a context-free phrase structure grammar, i.e. a grammar of the type 2
in Chomsky's classification of grammars. Together with the theory of immediate
constituents the dependency syntax finds its application in it. In the GC there are

several types of context-free rules: modifying, substitutional and selectional ones.
They are shown illustratively in Fig. 1, where U, V, W are auxiliary non-terminal
symbols, u is a terminal symbol, r is a functor of two arguments - terminal symbol
indicating which of the two non-terminal symbols on the right-hand side of the rule

, modifying rules t/—> (VrW)
REWRITING RULES — substitutional rules U-+ V

selectional rules U—> u

Fig. 1.

is the governing one and which is the dependent one as well as the type of dependency.
For the sake of simplicity each of the terminal and non-terminal symbols is repre
sented by a single letter.

A substitution of some units for others is often possible in Czech in certain con
texts only. The GC meets this fact generally by introducing new, more refined catego
ries specified by indices.

In the written form of the grammar, non-terminal symbols of the grammar are
ordered (n + 2)-tuples X, X0, Xu ..., X„ where X is the so-called name-symbol, i.e.
a name shared by a certain class of non-terminal symbols, and X0, Xu ...,X„ are
indices specifying individual non-terminal symbols of that class. Terminal symbols
are characterized by a similar structure. From a linguistic point of view the name-
symbols in terminal symbols correspond to the so-called lexemes, grammatemes, and
functors. (One name-symbol corresponds to the left bracket and one to the right
one.) For the time being the total number of lexemes in the variant tested is 275.
Thus this experiment ranks among those experiments operating with a "lexicon"
of a small extent which is typical of most computer experiments with generative
grammar so far.

The number of indices actually used varies with the individual name-symbols the
brackets and some other name-symbols having no indices at all. The maximum
number of indices attached to one non-terminal name-symbol is 15; the maximum
number of indices attached to one terminal name-symbol is 30; the maximum number
of values of each individual index is 94, and the average number of values per one
index is 8.

3.

The form of grammar was maintained in a shape close to the original one, with
which the linguists are used to work, and which makes a good orientation in the
grammar possible. Some modifications, however, were carried out. The values of the
indices were coded with natural numbers and some designations were introduced, such
as the so-called references, which make it possible to do only one registering of the

34 lists of index values and even of the whole non-terminal symbols that occur more
than once, and to refer to these values in other cases. These lists, symbols and values
are usually referred to by means of references only in the frame of a single rule-
scheme so that these references do not cause any serious slowing down of the work
of the programme and at the same time they save the storage space.

There are some quantitative characteristics of the variant tested here (the given
values are mere estimates based on partial calculations, exact values will be reached
on the computer in the course of transducing the grammar into a form suitable for
the work of the programme):

a) the number of non-terminal name-symbols 62
b) the average number of irfdices with one non-terminal name-symbol 5
c) the average number of possible values of one index with one non-terminal name-

symbol 8
d) the number of terminal name-symbols 304
e) the number of "proper" name-symbols corresponding to lexemes 275
f) the average number of indices with one terminal name-symbol 13
g) the average number of possible values of one index with one terminal name-

symbol 7
h) the average number of schemes of left-hand sides for one non-terminal name-

symbol 7
j) the total number of schemes of left-hand sides 460
k) the average number of schemes of right-hand sides for one left-hand side 2
m) the total number of schemes of right-hand sides 1010

The leftmost-derivation method is used as well as a random choice of alternatives.
It was, however, necessary to avoid a repeated choice of some e.g. recursive rules,
which would lead either to an excessive prolongation of the string generated, possibly
without any transition to terminal symbols, or to a situation where the number of
some types of SR's in the generated sample would be far removed from their actual
frequency in the language. Therefore, the alternatives on the right-hand sides are not
picked out at random only, but with a certain prescribed probability. In consequence
of the use of rule-schemes it is not possible to prescribe the probabilities only to the
schemes of the right-hand sides as wholes, but it is necessary to prescribe also pro
babilities for various values of indices used in these schemes. The prescribed pro
babilities also enable us to control the derivation of the SR's so as to make the
generated sample contain, first of all, some strings of a particular type chosen a priori,
which we intend to examine more closely. Thus it will be possible to change the set
of the generated strings by means of a change of the probabilities prescribed. Here
is an example of the form of the rule-scheme in the written form of the grammar (the
modifying rule):

VERBUM 0= 18 7=1 (50), 2 8=0,1 $9= 13 -> 40 (NP 0=9 (20), 10 (30), 11

2=1 3= L8 RD LS)

VERBUM, NP are non-terminal name-symbols

RD is a functor (terminal name-symbol)

7—1 (50), 2 in 50% of cases the non-teminal symbol "VERBUM... 7 = 1..." will
be rewritten according to the above rule, in the rest of cases it is necessary
to use the next suitable rule

8=0,1 the rule can be used when the value of index 8 with the given non-teminal

symbol is 0 or 1

$ 9 = 13 the rule can be used for the non-terminal name-symbol VERBUM when

index 9 either has the value 13 or is not used

40 the prescribed probability for the choice of this alternative (other alter

natives are not quoted here for this example)

0=9 (20), 10 (30), 11 in 20% of cases the value 9 is to be chosen; in 30% of the rest of cases the

value 10 is to be chosen, otherwise the value 11

3—L8 the value of index 3 with the non-terminal symbol NP will equal the

value of index 8 of the rewritten non-terminal symbol

LS another type of reference; in this place the whole left-hand side should

be repeated (i.e. VERBUM with all its indices).

4.

The most essential work involved in the transduction of the grammar into a shape
which is convenient for the work of the computer was left to the GRAMMAR
TRANSDUCER programme, which also performes the input check of the representa
tion. The programmes are being prepared for the computer of the type IBM 370 and
will be written in PL/1 programming language.

The whole grammar will be written on a magnetic disk by means of the
GRAMMAR TRANSDUCER programme as one file. This file will contain records
of variable lengths. Each record will contain information about all left-hand sides
with the same name-symbols and about the corresponding right-hand sides.

The main programme - DERIVATION OF SEMANTIC REPRESENTATIONS
— and the generated string will be stored in the internal storage of the computer.
The programme reads a corresponding record of the file on the disk storage, using
the code of the non-terminal name-symbol as a key. The record read is processed
directly in the buffer with the use of based variables; first, an appropriate left-hand
side of the rule and then a corresponding right-hand side of it are found and then the
substitution is carried out. On the output of the programme there will be two output
files containing generated semantic representations. One of them will be recorded
on the magnetic tape and will serve as an input for the next (transductive) component
of the generative system, the other will be a file to be printed and to serve for checking
up the results.

Possible changes and corrections of the rules of the grammar will be carried out
by means of the programme called GRAMMAR MODIFIER, which will carry
out the changes in the file stored on the magnetic disk according to the data on

36 punched cards. A system of programmes for testing the whole generative grammar

is illustrated by means of a flow-chart diagram (Fig. 2).

C_-PH~THH3~

GЬЧZІ

Fig. 2.

Input files:

/ t Rules of Grammar
12 Rules of Transduction
13 Rules of Transduction
/ 4 Rules of Transduction

Processes:

P j Derivation of Semantic Representations

P2 Transduction to the Phenogrammatical

Level

C-^H~H—[jp
i°3 Transduction to the Morphemic Level
/>4 Transduction to the Graphemic Level

Output files:

O t Semantic Representations of Sentences

0 2 Representations of Sentences on the
Phenogrammatical Level

03 Representations of Sentences on the Mor
phemic Level

0 4 Sentences in Graphemic Form

C-Z-ЬЧ ~

Fig. 3.

Input files:

/ 0 Vocabularies and Rules of Grammar

/ 0 Corrections and/or Modifications

I[Initial Pseudorandom Number

I'{ Preprocessed Initial String for the Deri

vation

Processes:

T Grammar Transducer

M Grammar Modifier

>-гт:

.__J___.

Љtí

Pr Derivation of Semantic Representations

Output files:

O 0 List of the Rules of Grammar

O 0 List of the Modified Rules of Grammar

Oj Semantic Representations of Sentences

Output/Update/Input file:

/ . Vocabularies and Rules of Grammar

The diagram of programmes corresponding to the GC is given in Fig. 3. The other
data will be prepared in an analogous way.

5.

The algorithm for generating semantic representations as well as the algorithms
for the transduction to the other levels are taken from the theoretical description
of the system. Bulk of work at writing each of the programmes is connected with the
determination of the structure of the data-files and data-sets distribution in the internal
or external storage. It is very important and even decisive from the point of the
promptness of the operations of the programme to ensure the number of transmissions
between the internal and external storage to be minimum and the search in the files
to be as effective as possible.

Our method of computer testing of the generative grammar, i.e. making the
computer generate representations of sentences, is similar to that developed at
Michigan (see [3]), at Stuttgart (see [1]) as well as other research centres. The main
difference between Friedman's test and that carried out here lies in the fact that
two different types of generative grammars are under test, viz. a transformational
generative grammar in the former and a functional generative grammar working with
a semantic base in the latter.

As far as the questions of notation applied and the component algorithms are
concerned, a number of identical problems is faced in the testing of either of the above
types of grammars. In both a formalized notation of representation of the rules of
grammar and other data has been worked out. Unlike the system of J. Friedman,
a grammar without any ordering of rules is made use of in the test for the functional
generative grammar.

In each of the two tests a different kind of control of the derivation process is
applied. J. Friedman utilizes so-called skeletons, constraints and node variables —
i.e. means making it possible to determine to a large extent the structure of the gener
ated sentence in advance. E.g. the skeletons make it possible not to start from the
initial symbol in the process of generation, but to start from some pre-established
string (which will form a part of the sentence generated); this process, among others,
may be used for testing some group of rules chosen. Apart from the above means
a random choice is made from among the possible variants of rules. In testing the
functional generative grammar the derivation is controlled by a system of probabili
ties prescribed for the choice of individual variants. Like in the tests of J. Friedman,
in this kind of testing, as well, it is not necessary to start the derivation process from
the initial symbol, and it is possible to start also from some other pre-established
string. The ordering of rules with Friedman makes it possible to proceed in generating
"from the rules to the string", i.e. to see whether the left-hand side of the rule in
question occurs within the string already generated: only when no such occurrence
is found can one proceed to the next rule where a similar procedure is applied.

In testing the functional generative grammar a reverse direction of the procedure is
applied, "from the string to the rules": for the occurrence of a complex non-terminal
symbol in question a corresponding left-hand side is searched for.

The testing of transformations involves, to some extent, similar problems as that
of transductive components of functional generative grammar. However, a more
detailed comparison of testing two different types of generative grammars (trans
formational and functional) can only be attempted when programmes have been
worked out for testing the whole functional generative grammar of Czech, i.e. not
only programmes for testing its GC but also those for testing its transductive com
ponents.

6.

The main contribution of the computer testing of a generative grammar is usually
seen in the fact that the linguist acquires knowledge on the interaction of the rules
of grammar [3]. Moreover, the preparation of programmes and the data for the
computer calls for more accurate formulations and solutions of some questions, which,
otherwise, would be neglected as less important.

We also consider it useful that the results of computer testing of any particular
generative grammar can help even a linguist who is not familiar in detail with the
theory in question: he can promptly verify his own opinion or that of somebody else
on linguistic properties of the sequence generated, and gain useful information for
his own futher research. For, any linguist, even when supplied with a thorough
description of the properties of the generative grammar, can gain a rough idea on the
strings to be generated, but it is beyond his capacities to conceive a detailed picture
of the system. It is through a study of sets of strings generated by computer that he is
able to make his conception more accurate and to draw conclusions as to the extent
to which the strings meet his objectives or his linguistic intuitions. Then he can decide
aptly whether the generative grammar concerned will be applicable in his own work.

(Received November 30, 1973.)

REFERENCES

[1] I. Batori: Working with the Interactive Version of J. Friedman's Grammar Tester. Intern.
Conf. on Computational Linguistics, Pisa 27. 8.—1. 9. 1973.

[2] S. Boisvert, A. Dugas, D. Belanger: OBLING: A Tester for Transformational Grammars.
Intern. Conf. on Computational Linguistics, Pisa 27. 8. — 1 . 9. 1973.

[3] J. Friedman et al.: A Computer Model of Transformational Grammar. American Elsevier,
New York 1971.

[4] P. Sgall: Generativni popis jazyka a ceska deklinace. Academia, Praha 1967.
[5] P. Sgall, L. Nebesky, A. Goralcikova, E. Hajicova: A Functional Approach to Syntax:

A New Type of Generative description of Language. American Elsevier, New York 1969.

Antonin Pdha, prom, mat., PhDr. Svatava Machovd, CSc. Centrum numericke matematiky
matematicko-fyzikdlni fakulty UK (Faculty of Mathematics and Physics, Charles University,
Centre of Numerical Mathematics). Malostranske nam. 25, 118 00 Praha 1, Czechoslovakia.

