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On Two Special Cases of the Optimum 
Decision Rule for the Radar Signal Processing 

IVAN VRANA 

In paper [1] the optimum decision rule for the radar signal processing was derived. That 
derivation was done under the assumptions of common covariance properties of the jamming 
random component of the radar signal. In the present paper we shall discuss the optimum deci
sion rule in two technically important special cases of the jamming covariance properties. In the 
first case the jamming will consist only of the noise of the radar receiver (of the white Gaussian 
noise), in the second case the noise of the radar receiver will be negligible compared to clutter. 

INTRODUCTION 

Under the assumptions given in [ l ] the optimum decision rule is defined by the 
relation 

(1) Q = & 

where 9 is the threshold of the decision rule (a previously chosen constant) and Q is 
the random variable that has arisen in the functional transformation of the tested 
section of the received signal (signal in the output of the radar receiver). This function
al transformation is given by the expression: 

M M 

(2) Q = vl E M - Biet)Y + [ E (Aiei + B^Y\ • 
1 = 1 1 = 1 

In case (l) holds, we say that the radar signal contains echoes from an aircraft 
(hypothesis Ht), in the opposite case we say that the radar signal consists only of 
jamming (hypothesis H0). The dh et in (2) are orthogonal components of the vector r\t 

of the received signal in the i-th moment. M is the number of elements of the finite 



random sequence of vectors {)?;} = ^u ^2, ..., r\M, the information of which is used 435 
in decision. 

The A;, Bi are fixed constants (so-called weight coefficients), the values of which 
are given by the expressions: 

(3) 
Ai = Y J je JÍ s'm JF, 

J=Í 

Bi = £ • ! / ; ; COS JE 
J = I 

Fig. 1. 

where {Jj} = Ju J2, ..., JM is the known sequence of modulus and F is the known 
increment of the phase of the useful signal vector (vector of echoes from the aircraft). 
Coefficients c,,- are elements of the inverse matrix C of the given M x M covariance 

Fig. 2. 

H0orҚ 



436 matrix of jamming R, C = R - 1 . The block diagram of the optimum decision rule is 
shown in Fig. 2. 

In [1] it is proved that the random variable Q has the Rayleigh-Rice probability 
density 

(4) „Q ( , | , ) = 4lexp(-ilii£!)f,(^); *>0 

where q is some unknown quantity the value of which is 0 under H0 (when the radar 
signal consists only of jamming) and 1 under Hi (when the radar signal contains 
echoes from the aircraft). The following expressions are derived in [ l ] for para
meters a2 and D of the probability density (4): 

MM M 

(5) '2 = Z [ ( E ^ ) 2 + (E~¥Q2]> 
j = i ; = i i = i 

M M 

(6) D = V[ £ Ji{Ai cos iF - Bt sin i f ) ] 2 + [ £ JL4 , sin if + fl, cos iF)]2\ ; 
; = i i = i 

JC,7 in (5) are coordinate coefficients of the canonical expansion of the jamming 
covariance sequence. 

The derivation of the optimum decision rule in [1] was based on the common 
assumptions of the properties of jamming and of the useful radar signal component. 
The expressions (l), (2) and (3) therefore define the optimum decision rule for the 
processing of the wide class of possible input signals, while the radar signal is only its 
sub-class. From the point of view of the technical applications we shall be interested 
above all in the properties of the optimum decision rule when used for the radar 
signal. That si why we shall further assume, in accordance with [2], the covariance 
sequence of jamming in the form: 

(7) Q\i-j\ + i = Al exp [--X* - l')2] J [' * J < 

= 1 + A2 ; i = j , 

where A2 is the ratio of clutter to the receiver noise and Q is a positive constant, 
characterizing the spectrum width of clutter (Q depends e.g. on the wind velocity). 

In the present paper we shall derive the structure and properties of the optimum 
decision rule in the two technically significant special cases of radar jamming. First 
we shall discuss the case when jamming consists only of the receiver noise (white 
normal noise) which corresponds to A = 0 in (7). Further, we shall deal with a case 
where the receiver noise is negligible comparing to the clutter. This corresponds to 
the case in (7) when A > 1. 



1. JAMMING CONSISTS ONLY OF THE RECEIVER NOISE 437 

Let the jamming consist only of white noise, i.e. we shall assume the case A = 0 
in (7). Then the covariance matrix of jamming R and its inverse matrix C = R~l are 
two M x M unit matrices. Therefore 

(8) c,,. = l ; / = / , 

= 0 ; i * ; . 

The assumptions of covariance properties of jamming in optimum decision rule are 
contained only in expressions (3) for the weight coefficients. Substituing (8) into (3) 
we have 

(9) A, = J; sin iF , 

5,- = J, cos iF . 

Denote 

(10) di = 0, cos «F,, 

et = 0 ; sin *F; 

where 0, is the envelope and "P; is the phase of the received signal ^;. Let us substitute 
(9) and (10) into (2). After an arrangement we obtain 

M M 

(11) Q = V[ E < V ; sin (iF - f , ) ] 2 + [ £ o,f cos (/F - f , ) ] 2 ^ S\ . 
i = i i = i 

The expression (l l) defines the optimum decision rule for the processing of the radar 
signal that does not contain a correlated jamming. 

The random variable Q has the Rayleigh-Rice probability density (4). Parameters a2 

and D of this probability density can be obtained by substituting (9) into (5) and (6), 
making use of the fact that the coordinate coefficients of the canonical expansion 
create the unit matrix in our case, i.e. 

(12) Ku = 1 ; » • - . / , 

= 0 ; i * j . 

Then 
M 

(13) *2 = I I 2 , 
i = l 

(14) D=ij]. 



438 The vector of signal received in the i-th moment rjf is created by the sum of the 
useful signal vector x ; and the jamming vector f(, see Fig. 3. 

Random variable Q in (11) is the length of the vector Z that is the vector sum of the 
vectors fji. Vector f\t arises from the Vector >y; by its rotation by the angle (iF - 2 f ; ) 
and by multiplying it by the coefficient J ; . Owing to the rotation all the vectors of the 

Fig. 3. 

useful signal x ; are in phase. Thus we achieve that the power contributions of the 
useful signal %; are with respect to their weigths, i.e. D2 in (14) is the weighted sum 
of powers of the signal received in the single moments i. In the special case when 
Ji = const, for all i e <1, M>, the decision rule ( l l ) operates as the ideal coherent 
integrator. 

In technical practice the opinion has been accepted that as for as the radar signal 
does not contain clutter, the phase information of the received signal is useless. 
Suitable decision rules are then looked for in the class of rules for the processing of 
the radar signal evelope. 

The decision rule for the optimum processing of the radar signal envelope is given 
by the well-known expression [3]: 

(15) ß = У > / 0 ( J ; O ; ) ^ 3 

where IQ is the modified Bessel function of the first kind. The relations ( l l ) and (15) 
are not equivalent. This implies that the ignoring of the phase information results in 
a worse performance of the decision process. 



Further, we shall show that the rules ( l l ) and (15) are equivalent when 

(16) Jfii > 1 

i.e. when the useful signal to noise ratio (S/N ratio) is high. 

For x > 1 the I0(x) can be approximated by the term 

I o ( x ) = ^ 

and from here 

(17) In I0(x) = x - \ In (2nx) = x . 

Substituting (17) into (16), we obtain 

M 

(is) Q^yjtOi p . 
i = l 

By this relation the optimum decision rule for the processing of the radar signal 
envelope is defined in case the S/N ratio is high. 

When the S/N ratio is high, the influence of the noise on the received signal phase Wt 

is evidently negligible. Therefore we can write 

(19) iF - ¥, = const. 

Substituting (19) into ( l l ) , we obtain the expression for the common optimum 
decision rule that is valid when (16) holds and the jamming is not correlated 

If 
(20) Q = £ Jfii £ 3 . 

i = l 

This relation is actually the same as (18). 

2. THE CLUTTER PREDOMINATES IN JAMMING 

Let the ratio of the clutter variance to the noise variance be so high that A |> 1 
in (7) is valid, i.e. the receiver noise is no practicaly use in the jamming. In this case 
(see Appendix) we can express the elements of matrix C approximately in the fol
lowing manner: 

(21) c „= fc , .X , 

c^. = cnkj = kikjX ; X > 0 



440 where X is a constant for the fixed A and Q and ki are coefficients given by the 
relation 

(22) fc< = ( - i r i ^ - ^ . - b D , - 1 ^ - J l ! ; 

^ j * ^ [i -l) 0-1)!(M-0!' 
are binomial coefficients. 

Let us substitute (22) into (3) 

(23) Ai = ktX £ Jjkj sin jF = fc,a , 

Bt = kjZ X! Jjkj cos ; F = fc;/?. 

a and /? are evidently constants that are independent of i. Using (23) in (2) we obtain, 
after arrangement: 

(24) GW(«2 + /*2)W(IM.)2 + (IM,)2\. 

The expression ^/(a2 + p2)\ does not contain components dt, et of the received signal 
and therefore it is a constant. Let us denote 

(25) G = Q 

5 = 

v(«2 + n 
g 

V(« 2 + /?2) \ ' 

Fig. 4. 

Then by the relation 

(26) <W(lM.)2 + ( I W \ = s 

the optimum decision rule for the case A > 1 is defined. This rule will be referred 
to as the binomial decision rule because it requires the multiplying of the received 



signal values by the binomial coefficients. The block diagram of the binomial decision 
rule is shown in Fig. 4. 

Using the relation (26) we can see an interesting and important property of the 
binomial decision rule. Only coefficients ki and the constant M (the length of the 
iule) are the factors in the functional transformation of the random sequence of the 
received signal vectors {f/;} to the random variable G. Under the assumption A > 1, 
the constant M is the only parameter of the above mentioned functional transforma
tion that contains some assumptions about the signal 

(27) G = G(M) 

contrary to the optimum decision rule (2), where 

(28) Q = Q(M, {J ;}, F, A, Q). 

This implies, for the given M, that the random variable G of the binomial decision 
rule is constructed in the same way for all the combinations of values of the signal 
parameters ({./;}, F, A, Q), A P 1. An example of the construction of G from the 
sequence of the received signal vectors rj, = [d;, e j is shown in Fig. 5 for M = 5. 

Ľk. e. 

Fig. 5. 

Now we determine the probability density wG(x | q) of the random variable G. 
Transformation (25) is of no influence on the type of the probability density function, 
thus G again has the Rayleigh-Rice probability density (4), We obtain parameters a2 



442 and D of (4) substituting (23) into (5) and (6) and considering (25). After the ar
rangement we have 

M M 

(29) *2 = I(IMQ2, 
J = l f = l 

(30) D = V( X kiJi cos iFf + ( £ k,Jt sin iF)2\. 
f = 1 i = 1 

From the expression (30) it follows that for the given M and {J,} 

(31) D(F) = D(2TU - F) . 

Thus the function D(F) is symmetric with respect to the value F = re. 

CONCLUSION 

The special cases of the optimum decision rule that have been discussed in this 
paper correspond to the two limit values of A in (7). The results that we have obtained 
for the first and the other special case have different significances. 

The results, obtained for the case of the noise-jamming, are mainly of a theoretical 
importance. They show us the mechanism of common optimum processing and its 
relationship wif h the optimum processing of the envelope and with the ideal coherent 
integration. As the S/N ratio is usually high enough, the technically sufficient results 
can be reached already by using simpler methods, e.g. the optimum processing of 
the envelope and its approximations [5]. 

On the other hand, the results, obtained for the case when the clutter predominates 
in jamming, have also a considerable practical importance. Comparing the relations 
(2) and (26) or Fig. 2 and Fig. 4, it is obvious that the binomial decision rule has an 
essentially simpler structure than the common optimum decision rule and, moreover, 
the binomial decision rule has only the integer weight coefficients. 

Thus, the necessary number of operations with the signal can be reduced by using 
the binomial decision rule. In [6] it is proved that decreasing the value of A, the 
performance of the decision process of the binomial decision rule (expressed e.g. by 
the type I and type II errors) does not get worse. This implies that if we choose the 
value of the threshold 5 so that under A = Ax the necessary performance of decision 
process is reached then the performance does not get worse, if A < Av. The results 
of the calculations of properties of the binomial decision rule in [6] for the typical 
range of radar signal behaviour show us that using the binomial decision rule techni
cally very good results can be reached as far as the increment of the phase F e 
e(|7t + 2m; fix + 2m); i - 0, + 1 , ±2 , etc. 



APPENDIX 

For illustration of the approximate binomial properties of the inverse matrix C 
under A -* oo, the typical values of its elements ctj are shown and the method of their 
calculation is described in this section. 

The M x M standardized covariance matrix of jamming R with elements 

r . = g|.--Jltl 
'J \ + A2 

is ill conditioned matrix for high values of A. Using the usual methods for matrix 
inversion or using standard software programs, the calculation of the inverse matrix 
C = R _ I is numerically unstable even when the order of the matrix is small, e.g. 
M = A. For this reason the program INVER has been created and debugged. This 
program enables us to carry out the inversion of the standardized covariance matrix 
of jamming even when A -» oo. Besides, this program enables us to invert the ill 
conditioned matrices even in the cases when the other methods fail. 

The program INVER utilizes a combination of two methods, the method of in
version by succesive bordering of the matrix and the method of successive approxima
tion of the inverse matrix elements. Both these methods are described in [4]. In order 
to limit the influence of the round off errors on the stability of the calculation, the 
program INVER utilizes some simulated arithmetic. This arithmetic (created as 
subprograms) operates on the basis of number recording to 144 significant decimal 
places (72 decimal places preceeding the decimal point and 72 decimal places fol
lowing the decimal point) and enables us to carry out all arithmetic operations with 
an absolute error less than 10~72. 

Successive approximation of elements of the obtained inverse matrix is made by 
iteration procedure after each step of bordering. The deviation of the matrix R„Cn 

from the unit matrix £„ 

is measured by the norm 

A = £„ - RC,, 

\á\\ = m a x YJ |<5;;[ > 

where <5(J- are elements of the matrix A and n = 2, 3 , . . . , M is the order of the matrix 

corresponding to the in — l)-th step of the bordering. 

The values of coefficients 

bu=^ 1 Y 

under A -» oo, are given in Tables 1 and 2 (Yis a constant). 



Table 1 is valid for Q = 5-27 . 10 4 which corresponds to the wind velocity v = 

= 32 km/h. Table 2 is valid for Q = 3-2 . 10~6 which corresponds to v = 0 km/h. 

Table 3 gives the values of the coefficients b,, = I 11 

Tablel. ( У = 1-62. 102 ÍИ;І = 4-i. ю - ' 1 ) . 

1-02 

10-14 100-92 

45-45 - 452-54 2027-09 

120-83 1202-38 - 5389-66 14331-56 

211-01 -2099-96 9414-01 -25035-31 43737-95 

252-92 2517-61 -11287-28 30020-20 -52452-34 62909-65 

210-79 -2098-18 9408-05 -25024-74 43728-72 

120-58 1200-35 .- 5382-83 14319-46 

45-31 - 451-13 2023-25 

10-10 100-58 

1-01 

Table 2. (Y= 2-4324. 1 0 4 5 , \\á \\ = 2-84. 10" 

1-0001 

100007 100-003 

45-0018 - 450005 

1200026 1199-990 

2100019 -2099-957 

252-0007 2519-934 

210-0006 -2099-947 

1200011 1199-978 

450010 - 449-998 

10-0004 100-001 

1-0001 

2024-97 

5399-83 14399-29 

9449-59 -25198-49 44096-91 

11339-45 30238-05 — 52916-08 63499-10 

9449-55 -25198-43 44096-85 

5399-79 14399-22 

2024-95 

1 

10 100 
45 450 2025 

120 1200 5400 14400 

210 2100 9450 25200 44100 

252 2520 11340 30240 52920 

210 2100 9450 25200 44100 

120 1200 5400 14400 

45 450 2025 

10 

1 

100 -

63504 



For a better survey only those elements bu are given the indices of which j e 445 
e <1, i(M + 1)); í e <j, M + 1 — j>. The other elements can be obtained using 
the symmetry of the inverse matrix with respect to both diagonals, i.e. 

"ij = "ji = "M+l-j,M+l-i = "M+l-i,M+í-j • 

(Received February 14, 1974.) 
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