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Statistical Methods for Comparing 
Theorem Proving Algorithms 

IVAN KRAMOSIL, ZBIGNIEW ZWINOGRODZKI 

In this paper a binary relation on a set of theorem proving algorithms is defined, using some 
basic notions of statistics and probability theory. This relation is proved to generate a linear 
ordering in any given set of theorem proving algorithms, it means to serve as an attempt to formal
ize somehow the often used phrase: "Algorithm A is better than algorithm B", at least in the case 
of theorem proving algorithms. 

A number of assertions describing some basic properties of this relation is stated and proved. 
The notion apparatus used here is close to that from [1]—[4]. 

1. INTRODUCTION 

The first attempts to use the mathematical machines in order to decide the classes 
of problems not decidable by algorithms used before were made a long time ago. 
We can meet with these classes of problems in every field of human activity which is 
considered to be "creative" one; mathematics being a special case. It is a well-known 
fact that even for the first order predicate calculus no universal method exists enabling 
to decide in a finite number of steps, whether a given formula of this calculus is or 
is not a tautology [5]. Nevertheless, for many mathematical theories based on the 
first order predicate calculus with equality we can construct the so called semialgo-
rithms (this term is used in [6]), enabling to decide in a finite number of steps, for 
every given tautology of this calculus that it is a tautology. This property is usually 
called the completeness of the semialgorithm. If the tested formula is not a tautology 
it is possible that the decision process, obtained when the semialgorithm applied 
to this formula, will not be finite. In the following we shall use the term "algorithm" 
even when considering a semialgorithm; this terminology is usual in papers of this 
type. 

The first attempt to suggest a theorem proving algorighm which was in some 
measure successful was presented in [7]. The following years have brought a number 
of new proposals all of them being interpretable as various forms of improvement 



of the so called Gentzen's system, see [8]. Usually the well-known Herbrand's 
and Craig's theorems are used to this goal. Among the best known results of this 
type we can mention the Beth's method of semantic tables [10], improved by L,, W. 
Szczerba [11], J. A. Robinson's resolution method [6], [12], [13], S. Ju. Maslov's 
inverse method, [14], [15]), paramodulation method [16], [17] and some else. 

The starting period of this "building movement" in the theory of automatic theorem 
proving was very optimistic and connected with a firm believe that the next successes 
were very close. J. A. Robinson wrote in the time (in [6]): "It is not foregone con
clusion, at present, that we are going to be outclassed at solving deduction problems 
by suitably programmed automatic computing devices; but the odds are that we shall 
be, and overwhelmingly so. If and when this comes to pass, we must all be glad 
of it, for then there will be so much more time for us to think and to dream. "However, 
in a short time mathematicians discovered that the organization of a selecting of for
mulas described in these methods is not sufficient for a following practical applica
tion of these methods using even the most powerful and most capable computers 
being to our disposal at present. 

The disappointment following the first failures of the attempts of a practical ap
plication of the methods investigated in [10] — [17] was one of the sources of in
spiration for a statistical approach to the problem of automatic theorem proving. 
As far as the authors know, the first suggestion of a statistical method for theorem 
proving was proposed by A. Spacek [ l ] , [2] for the case of Boolean algebras. This 
method was significantly modified by I. Kramosil, who avoided some very strong 
and practically (using computer, e.g.) not realizable conditions, see [3], [4]. The 
latest attempts to apply some probabilistic notions in order to construct a statistical 
theorem proving algorithm can be found in [18] and [19]. 

In the statistical methods of theorem proving the postulate of completeness, 
mentioned above and satisfied in any "classical" method, is not satisfied. If the proce
dure, given by a statistical method of theorem proving, says that a formula is a tauto
logy, there is, in general, a positive probability that this decision is not correct. 
By increasing the number of random extensions, in which the tested formula is in
vestigated, we can reach the situation in which the probability of proclaiming a non-
-theorem to be a theorem is smaller than an a priori given positive real number. 
The mechanism of verification used in [3], [4], [18], [19] is close to that known in ge
neral as natural induction principle. At present, rather great hopes are connected 
with these methods because of their greater practical effectivity. However, there is 
a rather important difference between [3], [4] on one side and [18], [19] on the 
other side. If these algorithms are to be effective from a practical point of view 
we must define a priori a number N0 such that if a decision about the tested formula 
was not accepted during the first iV0 steps of the decision procedure, we stop the 
decision procedure. Under this condition we can see that in Maslov's method for 
an infinite number of theorems the probability of their proclaming to be a theorem 
is equal to zero, i.e. "they are not given any chance". In the method proposed in [3], 



[4] any formula is given a positive probability to be decided correctly, i.e. to be 
proclaimed to be tautology if it is a tautology and to be proclaimed not to be a tauto
logy if it is not a tautology. 

We believe that in our time one of the most important problem is to compare 
various theorem proving algorithms and to develope a mathematical theory for such 
a comparing than to add to the list of theorem proving algorithms one more, having 
only few hope that it will be better than the other ones. The investigation comparing, 
under some strictly defined conditions and criterions, the various types of theorem 
proving algorithms gives the possibility of performing the deep analysis of optimiza
tion methods for such algorithms and, at the same time, gives us the limits for such 
an optimization process. The theory of algorithm complexity and computing proces
ses is rather developed in our time, see [20], neverthless, the investigation of this 
type were only very seldom applied to the theorem proving algorithms. In fact, only 
three papers, devoted to this subject are known to the authors: [21] —[23]. In the 
first of these papers only theorem proving algorithms for the propositional calculus 
based on the so called resolution method are investigated. In [23] a simple method 
is described how to transform, for an arbitrary formula of the first order predicate 
calculus, the proof of this formula obtained by Maslov's inverse method (if it is the 
case) into the proof of this formula based on the Robinson's resolution principle. In 
[21] some more detailed connections between the two methods are given. In the same 
paper also various methods of improvement of resolution method as well as the inverse 
method are described; these improvements consist mainly in the fact that the class 
of formulas investigated during the testing of a given formula is limited and minimized 
to be as small as possible using some auxiliary strategies and tactics. The ratio of the 
lengths of proofs — measured by the number of applications of deduction rules — 
is investigated (under some conditions). 

The statistical method for comparing theorem proving algorithms is of a rather 
general nature and can be applied also to the algorithms for theorem proving in theo
ries based on the predicate calculi of higher orders. The "classical" methods for 
comparing theorem proving algorithms allow to obtain some more general results 
only in case the both investigated algorithms are very similar to each other, which is 
just the case of Robinson's and Maslov's results. In general, however, the function 
transforming the proof of a formula obtained by one method into the proof of the 
same formula obtained by the other method can be rather complicated and the finding 
of the class of formulas "preferred" by one algorithm and the class of those "prefe-
red" by the other algorithm can be difficult and in different case different methods 
must be applied. 

The only goal of the remarks concerning the present stage of the theory of automatic 
theorem proving is to show the most important reasons leading to an attempt to apply 
statistics in this field of mathematics — not to persuade the reader that the statistical 
methods are better than the non-statistical ones. The last and the most important argu
ment in favour of one or the other method will be always the results obtained by this 



224 method. Nowadays only the first attempts are made to exploit the basic notions 
of something what can be later called the statistical theory of automatic theorem 
proving, so it is very difficult to do some forecasts dealing with the efficiency of such 
methods. It will be possible only in case a certain mathematical theory is developed 
enabling to consider and describe several competetive statistical theorem-proving 
algorithms at the same time. It is also necessary to perform rather a large number 
of experiments by computers using these methods.* 

The experiments having been made until now, using the computers and following 
a pattern close to that described in this paper, e.g. the testing of some formulas 
of number theory, have played a very important role during the process of finding 
some hypotheses having a high degree of probability that they are valid which were 
later proved using the "classical" methods. Hence, it seems that just the process 
of discovering some new hypotheses offers a large field of application for statistical 
methods described in [3], [4], [18], [19] and that just such an application can be 
the most useful for mathematician's work. Mathematics were defined as a deductive 
science and no mathematicians will be satisfied knowing that the hypothesis having 
been discovered by him has only some probability, even if close to one, that it is 
valid. He will try to prove the hypothesis using the "classical" means used in the 
investigated theory and will try to embed this hypothesis into the theory as a new 
assertion. It is why we ought better to use the term "discovering of theorems" rather 
than "theorem proving" when discussing the statistical methods mentioned above. 

Perhaps we can allow to describe the situation in this field using a rather known 
slogan of St. Mazur: "What does an user of science expect from statistics.? The same 
what a drunkard expects from a lamp-post: a prop, not a light." 

2. A STATISTICAL LINEAR ORDERING RELATION 

In the foregoing part of this paper we discussed the present stage in the field of auto
matic theorem proving and we saw that they were a few principal ideas in this field 
and a large number of modifications. Any modification is, for certain formulas 
and from certain aspect better than preceeding ones, however, for some other formu
las and from another point of view it may be worse. 

* Some fundamentals of a general theory of automatic theorem proving for algorithms in
vestigated in [7], [8], [10], [11] are presented in [24]. In this paper certain formal system is pro
posed enabling to define in its frame-work the notions like: Theorem-proving algorithm, process 
of automatic theorem proving etc. A number of assertions is proved showing the characteristic 
properties of special classes of automatic theorem-proving systems. However, the authors do 
not know in which degree this formalism can be used in order to obtain some new results 
dealing with the degree of complexity of theorem-proving algorithms or at least dealing with the 
comparing of these algorithms under some criterions and conditions interesting from the practical 
point of view. 



Now, let us consider the following situation. Our aim is not to develope a new 
theorem proving algorithm or to improve some already known one but we have 
to choose among some given theorem proving algorithms one, being the most ade
quate for some reasons staying beyond us. This case occurs, for example, if we con
struct an automaton, a robot. It is necessary to equipe the automaton memory (com
puter storage) by some program for automatic theorem proving and so the question 
arises: which is the best algorithm among those being to our disposal? Or, in other 
words, how to compare two such algorithms? 

There are at least two basic aspects from which it is necessary to judge the qualities 
of theorem proving algorithms. 

(a) The first aspect deals with the set of formulas to which the algorithm can be 
applied. The larger this set is, the better algorithm. 

(b) The second aspect deals with the expenses, time sparing, number of operations 
and so on connected with a decision. We shall suppose in this paper that there exists 
a unit by which all these expenses can be uniformly measured. If the algorithm is 
performed using a computer then, for example, the change of the contents of a bit 
from 0 to 1 or vice versa is such an elementary operation to which every other opera
tions and instructions can be transformed, at least in principle. So again at least 
in principle, we can ascribe to any formula decidable by the considered algorithm 
a natural number giving the number of such elementary 0 — 1 operations needed 
for coming to a decision.The smaller this number is, the better algorithm, of course, 
with respect to the tested formula. 

If we limit ourselves to these two aspects and if we consider, instead of formulas, 
their Godelian numbers we can see that every algorithm can be described by a partial 
function defined in the set of all natural numbers and taking its values in the same set. 
In the following we shall use this functional representation of theorem proving algo
rithms in order to define some criteria for comparing of such algorithms and to prove 
some relations among them. Algorithms will be usually denoted by A, B, ..., the 
corresponding functions by fA, fB, ..., domains of these functions by D(A), D(B), ..., 
in all cases also with indices if necessary. Relations (only binary relations will be 
considered here) between algorithms will be denoted by R, S, R(l), R(2), ..., with 
other indices if necessary. By F the set of all partial functions defined in the set 
N = {0, 1, 2, . . .} and taking their values in the same set will be denoted, i.e. 

F = U (Nx) . 

The notion of partial ordering is supposed to be known to the reader. 

Definition 1. Let fu f2 be functions from F, let D(ft), D(f2) be their domains, 
let X <= N. We define the following three binary relations on F: 

f> R ( l ) / 2 iff D(ft)czD(f2), 



226 / , R(2) f2 iff D(fj) c D(/2) and, at the same time, /,,(x) ^ /2(x) for every 
xeD(ft), 

/< R(3) (X) / 2 iff £)(/!) n X c D(/2) n X and, at the same time, /j(x) ^ /2(x) 
for every x e D(fi) n X. 

Definition 2. Let ^ be a set, let R, S be two partial orderings on Sf. The ordering S 
is called consistent with respect to R (in symbols R -< S) if for every x, y e SP the 
implication 

xRy -* xSy 
holds. 

Corollary. -< is a partial ordering in the set of all partial orderings on Sf. 

We can easily see that the relations R(l), R(2), R(3) (X) correspond to usual crite-
tions according to which algorithms for theorem proving are classified. If A, B 
are two such algorithms, then fA R(l) / „ iff B is applicable to the same or larger 
set of formulas than A no matter which the expenses connected with the decision 
may be. It gives that B is better than A iff B has a larger domain of applicability. B 
is better than A with respect to R(2) iff B has a larger (or at least the same) domain 
of applicability as A and, moreover, the expenses connected with decisions of formu
las which are decidable by both A and B are for B at most the same or smaller than 
for A. If X c N, then B is better than A with respect to R(3) (X) if it is better than A 
for the formulas from X in the sense of R(2). 

Theorem 1. 

(a) R(2) is identical with R(3) (IV). 
(b) R(l), R(2), R(3) (X), I c J V , are partial orderings in F. 
(c) If X c Yc N, then R(3) (Y) -< R(3) (X), R(2) < R(3) (Y), 
(d) If/, , f2 e F, D(/i) c D(f2) and for every x e D(f1) the relation fx(x) = /2(x) 

holds, then fx R(2) f2 and fx R(l) f2 are both valid. 
(e) R(l), R(2), R(3) (X) are not linear orderings on F supposing X has at least 

two elements. 

Proof. Assertions (a ) - (d) are trivial. Let X c N, Y aN,X n Y# X,X n Y* Y, 
let / i (x) = 1 if x e X, / x undefined otherwise, /2(x) 4= 1 if x e Y, f2 undefined other
wise. Then neither / t R(l) f2 nor f2 R(l) / x hold, i.e. R(l) is not a linear ordering. 
The same example shows that neither R(2) is a linear ordering. 

Let I c J V , ca rdX ^ 2, let x, y e X , x + y, let ft(x) = f2(y) = 0, /.(>>) = 
= fi(x) = 1, / i , / 2 defined arbitratily or undefined on N — {x, y}. Then neither 
/ . R(3) (X) / 2 n o r / 2 R(3) (X) / l t i.e. R(3) (X) is not a linear ordering. 

Assertion (e) expresses the fact that two algorithms A, B cannot be compared, 
at least by method a formal description of which is given in Definition 1, if there 
exists at least one formula for which A is better than B and, at the same time, if there 



exists at least one formula for which B is better than A. Our reason in the following 
will be to suggest some linear ordering on set F which would be consistent with 
R(l), R(2), R(3) (X) in the best possible way. 

When applying a theorem proving algorithm in practice there are two possible 
situations. Either we know a priori to which formulas the algorithm will be applied 
and in this case we try to choose — if possible — an algorithm "good enough" 
for these formulas. Or we do not know before to which formulas the algorithm will be 
applied and we have only some idea about the probability that a formula will be 
tested — some formulas will have a great probability to be submitted to testing, 
for some other formulas this probability will be very small, still another formulas 
will never be decided. The probability with which a formula is submitted to be 
tested depends on the situation in which the algorithm is applied and we are not 
able, in general, to change this situation or to influence it. Hence, we must take this 
situation into consideration and we must use such a theorem proving algorithm 
which is, in some sense "good" or "adequate" for the formulas having a rather 
great probability to be tested in the considered situation and which is not necessarily 
too "good" for the other formulas. This way of reasoning offers to us a way how to 
construct a well-ordering on F using the "statistical" approach. 

Definition3. Let N0 be a positive integer or N0 = co. Let p = {pt, p2, ...} be 

a sequence of non-negative reals such that Y, Pi = 1 (every such a sequence is called 

distribution or probability distribution). Let A, B be two theorem proving algorithms. 
Denote 

cA(i) = min {fA(i), N0} if fA(i) defined , cA(i) = N0 otherwise , 

E(p,N0)(A) = ^cA(i).Pi, 
i = l 

analogously for B. We write 

fAR(4)(p,N0)fB iff E(p,N0)(A)^E(p,N0)(B). 

Remark. If a is a random variable defined on some probability space (Q, y , P) 
and taking its values in the set JV = {l, 2, ...} of integers we shall write R(4) (JV0, a) 
instead of R(4) (p, N0) supposing p = {pL, p2, ...} is such that 

Pi = P({co : coeQ, a(co) = i}) . 

Detailed explanation of all probabilitic and statistical notions and assertions used 
in this paper can be found, for example, in [25] or [26]. 

The intuitive sense of the value E(p, N0) (A) can be seen in the most simple form 

if iV0 = oo and D(fA) = N, because in this case E(p, N0) (A) = £ pt. fji) = EfA, 



which is the expected value of the function fA understood as a random variable 
defined on some probability space and taking its values in the set of natural numbers, 
namely taking the value fA(i) with the probability Pi. If D(fA) =f= N, it means if algo
rithm A does not give a result for some formulas, we must decide what to do in such 
a case. Usually we try for some time to obtain the desired result and after some a priori 
given number of operations or time units we give up our effort, leaving the formula 
undecided (in such a case the statistical approach to theorem proving would be 
useful but we do not intend to investigate this matter here). The number N0 expresses 
somehow the expenses and the loss connected with this non-resulting searching. 
We consider the situation that we stop our work after reaching or overreaching the 
limit N0 of expenses in every case — even if fA(i) is defined but greater than N0 (we sup
pose that, in general, we do not know whether fA(i) is defined or not before deciding 
the formula with the index i). It is why we consider, in the definition of E(p, N0) (A) 
the value min {fA(i), N0) instead of fA(i) even if fA(i) defined. 

Theorem 2. (a) For every probability distribution p = {Pl, pz,...}, pt J> 0, 

£ p; = 1 and for every integer N0 
;=i 

R(2)<R(4)(p,N0). 

(b) For every X c N there exists a probability distribution px such that for every 

No 
R(3)(X)<R(4)(px,N0). 

(c) For every algorithm A 

E(p,N0)(A)^N0. 

(d) If N0 = co, Pi > 0 for every i = 1,2, . . . and if the considered theory is not 
decidable by algorithm A, then 

E(p,iV0)(A) = oo. 

(e) For every probability distribution p and every N0 the relation R(4) (p, N0) 
is a linear ordering on F with respect to the equality in the set of all reals. 

Proof. Let A, B be two algorithms. 

(a) Let fAR(2)fB. Then D(fA) <= D(fB), fA(i) ^ fB(i), i e D(fA). So we have 

E(p,N0)(A)= X (N0.Pl)+ £ mm(N0,fA(i)).Pi> 
ieN-D(fA) i*D(fA) 

= I (N0.Pi)+ Z min(iVo,/B(0).p. = 
ieN-D(fB) isD(fB) 

= E(p,N0)(B), 
so (a) holds. 



(b) Let I c J V , choose a distribution px = {pi, Pi, •••} such that pt = 0 for 229 
i e JV - X. Let fA R(3) (X) / . . Then 

E(p,jv0)(A) = J^(i).pI- = i : c i o . P i = x (jv0.p,) + 
i = l ie* ieX--D(/y4) 

+ £ min(N0,/yl(i)).p,^ I (!V0.p,) + 
ieJTnD(/J4) ieX-D(fB) 

+ £ min(N0,fB(i)).Pi = E(p,N0)(B), 
ieXnD(f-) 

which proves (b). 

(c) E(p, JV0) (A) = £ min (JV0, / , ( . )) • p.- + Z (iV0 . p,) rg £ (JV0 . p.) = 
ieD(fyi) ieN~D(fA) i-l 

= JV0, so (c) holds. 

(d) Considered theory is not decidable by A, i.e. there exists at least one i0 eJV 
such that cA(i0) = JV0 = oo, so 

E(p, N0) (A) = Y, -A(i) • Pi = cA(i0) . pio = oo , as pio > 0 . 
i = i 

(e) For every p and every JV0 E(p, JV0) is a mapping from E into (0, oo) therefore 
for any two algorithms A, B either E(p, JV0) (A) ^ E(p, JV0) (E) or E(p, JV0) (B) = 

= E(p, JV0) (A) and (e) is also proved. 

There is one weak point of the linear ordering relation defined by R(4) which is not 
too agreeable, namely its substantial dependence on the chosen probability distribu
tion p. This weak point of our construction is expressed explicitely in the following 
assertion. 

Theorem 3. Let fA, fBeF be such that neither fA R(2) fB nor fB R(2) fA holds. 
Then there exist, for some JV0 < oo, two probability distributions p = [pu p2, . . . } , 
q = {q-, q-,...} such that the assertions 

fA R(4) (p, JV0) fB , fB R(4) (q, JV0) fA 

are simultaneously valid. Moreover, the probability distributions p, q can be chosen 
in such a way that for every ieN pt > 0, qt > 0 hold. 

Proof. (lfAR(2)fB)&(lfBR(2)fA) gives that there exist i,J6JV such that 
i 6 D(fA) n D(fB), j 6 D(fA) n D(fB) fA(i) < ftf), fJJ) > Mf)-

Let JV0 ^ max (fB(i), Li(j)) + 1. Define p in such a way that pk> 0, k = 1,2,. . . 

1 > P l L> * -

/,(o - m + NO 



230 (it can be cleary seen that it is possible). We have 

E(p, N0) (B) - E(p, N0) (A) = £ cB(k) . Pk - f cA(k) . Pk = 
k=i k=i 

- E (cB(/c) - cA(k)) . Pk + (cB(i) - CA(i)) . Pi = 
k*i 

= I (cB(k) - cA(k)). Pk + (fB(i) - fA(ij). pt = 
k* i 

No ^Z(-N0) . pk + (fB(i) - fA(i)) .— 
fв(i) - fл(ђ + N0-

2ҢV0),(l & \ + ШÍ!tøe0 

" V fв{ђ - fл(ђ + N0) Mђ-fл(ђ + N0 

so we have / B R(4) (p, N 0 ) /^. 
Choosing afc > 0, such that 

1 > . , І 
LiO") - M + No 

we can prove analogously that fA R(4) (p, N0) fB, hence our assertion is proved. 

Theorem 4. Let A, B be two theorem proving algorithms. Let 0> be the set of all 
one-to-one mappings of the set of all natural numbers into itself. Let for any prob
ability distributionp = {Pl, Pl, ...} and any q> e $P the symbol <pp denote the prob
ability distribution 

9P = {<PPi, 9Pi, •••} = {P<P(\), P<P(2), •••} • 

Consider the three following statements: 

(a) There exists a probability distribution p such that for all q> e & the relation 
fBR(4)(<pp,N0)fA holds. 

(b) There exists an index n0eN such that for all n _• n0 the inequality fi(n) ^ 
S fB(n) holds. 

(c) There exists a probability distribution p such that for at most countably many 
<p e & the relation fB R(4) (<pp, N0) fA does not hold. 

Then (a) and (c) are equivalent and both imply (b). If, moreover the set of all 
integers i for which fA(i) = fB(i) is finite, then all the three conditions are equivalent. 

Proof. First, we shall prove that (a) implies (b). For this reason suppose that (b) is 
not valid. Denote 

Co = {i: a; = bt} , 

C! = {i: a ; > bt} = {i: a; ^ b{ + 1} , 

C2 = {i: a; < bi} , where a ; = fA(i), bt = fB(i). 



It means, we suppose that Ct is not finite. Let p be any probability distribution. -31 
Take an index n0 such that 

f P.<-i— 
i = n„+l ZV0 + 2 

There exists a mapping q> e&> such that for all i e C0 u C2 is </>(i) > n0, i.e. if <p(i) <. 
< u0, then i e C t (in fact, there exist uncountably many mappings having this 
property). Now, we have: 

£ flf. <j>Pi = £ « i . p„(0 = £ A;. p„ ( 0 + £ a; . p„ ( 0 + £ A, . p f ( 0 = 
i = l i = l ieC0 isCi ieC2 

= £ »i • P*«> + £ (*i + 1) • P«m + £ (*. - !Vo) • P*(„ = 
ieCo ieCi ieCz 

= £ t>; • p-<o + £ p*.. - N0 . £ p*,, = 
i = 1 ieCi isC2 

a> no co 

^ £ >i • $Pi + IPi-N0. £ p; = 
i = l i = l i = n o + l 

2E £ bt. cpPi + l - ~ ^ — - N 0 . — 1 — = 
i=i JV0 + 2 Af0 + 2 

= £ bi • 0Pi + = ? £ & . • <?Pi, 
i=i JV0 + 2 ;=i 

hence fB R(4) (cpp, N0) fA is not valid. This gives that (a) implies (b). 

Second, we prove that (c) and (a) are equivalent in such a way that we prove: 
if there exists one.<p0 e SP such that fB R(4) (cp0p, N0) fA does not hold, then there 
exist uncountably many cp e 3P with the same property. 

Let fB R(4) (cp0p, N0) fA does not hold, i.e. 

£ -i • <PoPi > £ bi • (PoPi • 
i=i ;=i 

Let n0 be such an index that 

£ <PoPi =5 ( £ ai • <PoPi - £ b, • <PoPi) • r r r - • 
i = n0 i = l i = l 2N0 

Let 0*' <= g> be the set of all permutations (p such that <p(i) = <p0(i) for all i < n0. 
Clearly, &' is uncountable. However, i p e # ' implies 

Y.ai-$Pi-Y, bi • <PPi = ( £ a, • <PoPi ~ £ bt. y0pt) + 
i = i i = i i = i i = i 



+ I.(ai-bl)~pi~-:(ai-bd.$oPi-
i = n0 i = n0 

= - I (at - /3;) . <p0p; + ( f -i • ^ l 7 ' ~ 2 > ' • 6»P.) + 
1 = 7 1 0 < = 1 ' 

+ £ K-Ko - 6,-KO) • Pi = ( l > • ^l7'' - f > ' • ^< ) + 
i = n0 ' - 1 ' 

+ LOw-oG) - *w-'xo) • ^l7''"" 
1 = 7 1 0 

- £ (a, - b.) . <poPi £ ( £ a, • &>!>. - I foi • VoP.) -
i = n0 i = l ' ~ J 

-2At0 . f PoP. = 0 , 
;=no 

according to our assumptions. Here (pPi denotes p^(0, (PoPi denotes pip0{i), cp"1 is the 
inverse mapping with respect to cp and finally <p0<P~l denotes the composed mapping, 
i.e. ((poV'1) (i) - <P0(<P_ *(»))• S o A I<4) (*P. No) /A d o e s n°t hold for any <p e 0>' and 
equivalence of (a) and (c) is proved. 

Third, let {i: a; = bt} be finite and let (b) hold. This gives that there exists such 
an index nt that for all n ^ fij an < b,„ i.e. bn - a„ ^ 1. Choose such a distribution 
/i that 

1 °° 
max p; < • X i>; • 

l < i < a > Tlj . iV 0 i = n i + l 

Such a distribution always exists, e.g. the distribution with p; = 1/(3 . nt . N0) for 
i ^ 3 . nj . At0 and pt = 0 otherwise satisfies the condition, as 

1 „ 1 2 ^ . 1 
max p; = g - < - g 1 -i<i<oo 3.H. .Ato ~ 3 3 '3.At0 

- = ( 3 . n . . j y 0 - n . ) . 1 = J p, 
3 . nt . N0 i=ni + i 

As ]~ Pi - 1, the max p; for every probability distribution clearly exists. Now 
i = i i < ; < » 

£(bi-ai).Pi = E(bi-ai).Pi+ £ ( b , - f l j ) . p ^ 
;=i i= i i=m + i 

^ -lV0 • E p; + E p; ^ -At0 . Hl . max Pi + f p, ^ 0 
; = i i=m + i i < i < o o £=n, + i 

according to the assumptions. So / B R(4) (p, iV0) fA holds. As max p; = max <pPi 



for every permutation q> e 2? and only max pt occurs in the above derivation, we have 
ig;<oo 

that fB R(4) (q>p, N0) fA is valid for every <p e 2P. So under the mentioned condition 
(b) implies (a) which gives, that (a), (b) and (c) are equivalent. The theorem is proved. 

The theorem which we have just proved is, in some sense, a counterpart of the 
foregoing one. Theorem 3 expresses the substantial dependence of the criterion 
K(4) (p, N0) on the probability distribution p. The first idea how to minimize or to eli
minate such a dependence would be, probably, to require that the condition fA R(4). 
• (p> N0) fB be satisfied not only for one probability distribution p but for all class 
of distribution however, Theorem 4 shows the limits of this approach, namely: 
if we require that fA R(4) (p, N0)fB should be valid for all probability distributions 
obtainable from p by permutations, then the result is equivalent with the criterion: 
" 5 is better than A if B is better than A for almost all formulas". This criterion is not 
of statistical nature, however, it does not induce a linear ordering. It follows, that 
wanting to have a linear ordering on the set of all theorem proving algorithms we 
must admit some degree of dependence on the used probability distribution. 

3. A STATISTICAL METHOD FOR COMPARING OF TWO THEOREM 
PROVING ALGORITHMS WITH RESPECT TO A GIVEN 
STATISTICAL CRITERION 

In the foregoing chapter we suggested a possibility how to order, from statistical 
point of view, theorem proving algorithms. Namely, we defined the criterion R(4) 
and we proved that it was a linear ordering in the set of all theorem proving algo
rithms. It means, that for any given random variable a, integer N0 and any two algo
rithms A, B at least one of the relations 

LtK(4)(!Vo,«)/iM fBR(4)(N0,<x)fA 

is valid. Naturally, the following question now arises: how to decide, in any effective 
way, which of these two possibilities holds? 

This problem is far from being trivial. If we consider some actual theorem proving 
algorithm it is very difficult for us to express the function fA in any easy form so that 
we were able to manipulate with it and, moreover, so that we were able to express 
in an explicit way the series 

£cA(i).P({co:x(a>) = i}). 
;= i 

In this chapter we want to suggest some other approach to the problem. Since 
we have already once used the probabilistic and statistical approach we use probability 
and statistics still once more and we try to develop a statistical test for testing which 
relation among the two ones mentioned above is valid. We shall consider only a very 



234 simple statistical testing procedure leaving open the problem of introducing some 
more developed statistical methods (see [27], [28]) into this field. 

The basic idea of our statistical test is rather simple. We sample at random, step 
by step, a number of formulas and we apply both algorithms A and B to these formu
las. Having decided these formulas (or having stopped after N0 useless steps) we 
compute the average number of steps needed for deciding by each algorithm. The 
algorithm for which this average value is smaller we proclaim to be better. Of course, 
we undertake, in this case, some risk of an error, some risk that our decision has not 
been correct. In the following we try to formalize this way of reasoning and to express 
somehow the probability of error connected with it. 

Let a., a2, a3, ... be a sequence of random variables defined on the probability 
space (£2, £f, P), taking their values in the set of all natural numbers, mutually inde
pendent, equally distributed and such that for every i = 1, 2,. . . 

P({oo: aj(oj) = i}) = P({or. a(a>) = i), j = 1,2, ... 

where a is an a priori given random variable (i.e. a,- are something like copies of this 
random variable a). Let N0 be a given positive integer, let for a partially recursive 
function / the numbers cf(i) be defined as above, i.e. 

cf(i) = min (f(i), N0) if f(i) defined , 

cf(i) = iV0 otherwise . 

We shall also consider the composed random variables cf(a„(ojj), n = 1, 2, ... 

Theorem 5. Let A, B be two theorem proving algorithms. If fB R(4) (N0, a) fA 

and not fA R(4) (iV0, a) fB, then 

P (L: lim - . t cfA(<x,{coj) < lim ~ . £ c/B(a;(a;))l) = 1 . 

Proof. Our assertion follows immediately from the so called strong law of large 
numbers (see, e.g. [25], [26]) according to which 

* ( { « : lim ±.gc,M»)) - I ^ Z - W • P(^: a H - !'})]}) = * > 

*({«" Hm Y-iffM*)) = tlcfB(j) • p({v- «M - J})]}) - 1 

and from the fact that 

fB R(4) (N0) a) fA , non fA R(4) (N0, a) fB 



imply 

X cfA(j) . P({co: «(co) = ]}) < E cfB(j). P({co: a(co) = ]}) . 
J = I j=i 

Corollary. Denote 

HA(n, co) = i . t cfMco)) , HB(n, co) = i . £ c,„{*{<»)) • 
n i=i n i=i 

Then the foregoing theorem implies that with probability one there exists such 
an index n0 = n0(co) = n0(A, B, co) that for all n ^ n0 

HA(n, co) < HB(n, co) . 

The foregoing theorem and its corollary offers to us the following way how to define 
our test: 

1. Fix an integer n and compute HA(n, co), HB(n, co). 
2. If HA(n, co) < HB(n, co), proclaim: 

"fBR(4)(N0,x)fA is valid". 
3. If HB(n, co) ̂  HA(n, co), proclaim: 

"hRW^^ajfgisvalid". 
In this description, clearly, "to compute HA(n, coy' is nothing else than to sample 

at random and mutually independently n formulas, using the same random genera
tion in every case, to test them or to stop the testing procedure after iV0-th step sup
posing the decision was not reached and then compute the average number of steps 
used for one formula. Denoting, for abbreviation, the decision taken in 2. by £#. and 
the decision taken in 3 by Q)2 we have that our test is a mapping Tfrom the Cartesian 
product N x Q into the set {<?l5 S>2} (here N = {1, 2, 3, ...}) such that 

T(n, co) = ^ i iff HA(n, co) < HB(n, co) , 

T(n, co) = 92 iff HA(n, co) ^ HB(n, co) . 

This test is, of course, of statistical nature and it is why the decision taken by this 
test is not necessarily correct, there is, in general, some probability of error. In the 
following we give some upper bounds for this probability in order to judge the quality 
of our test. 

We denote 

EA = EA(N0, a) = £ cfA(i). P({co: a(co) = i}) , 
i = l 

DA = DA(N0, a) = £ (cfA(i) - EAf . P({co: a(co) = i}) = 
; = i 



236 Theorem 6. Let A be a theorem proving algorithm. Then for every n, N0 integers, 
e > 0 real the following inequality holds: 

P({co: \HA(n, co)-EA\^s})S^~2.DA^J-2. &-^-±t.. 
n. E2

 n . E2 2 

Proof. We know that HA(n, to) = (l/n) . £ Cj-Ja^co)), where cfA(at(.)) are mutually 

independent and equally distributed random variables the expected value of which is 

E(cfM-))) = I cfA(j) • P({o: «.H = j}) = EA . 
j = i 

So we can apply the well-know Tchebysheff inequality and we obtain 

P({co: \HA(n, to) - EA\) ^ e) = \ . D(HA(n, to)) 
E2 

where D(HA(n, co)) (dispersion of the random variable HA(n, •)) is defined by 

D(HA(n, •)) = f UA(n, co) - f HA(n, co) dpYdP = ^ 

according to the Tchebysheff theorem (for Tchebysheff inequality or Tchebysheff 
theorem see [25] or [26]). From this fact the first part of our inequality immediately 
follows. 

Looking for an upper bound for DA we remember that the random variables 
cs(a.j(-)) take only the values from the set {l, 2, ..., N0) of integers (we suppose that 
for every formula at least one step is necessary in order to derive it and, according 
to our intentions, we stop the decision procedure after JVorth step supposing the deci
sion was not reached before). It gives that the dispersion DA is limited by the dis
persion of some other random variable £ taking both the extremal values 1 and N0 

with the probability 1/2. So we have 

DASD^1-.(N0-E,y+±.(Ei-iy = 

which gives the last part of our inequality. 

Now, we use the obtained inequality in order to estimate somehow the probability 
of error connected with the test T. 



Theorem 7. The following inequalities for conditional probabilities are valid: 

P({co: St is valid}l{co: T(n, m) = 3t}) = 

= P({co: fB R(4) (N0, a) fA}j{co: HA(n, co) < HB(n, co)}) ^ 

ï l - 4 - / ^ ^ 
n ' \HB(n, m) - HA(n, co) 

4 /N0 — 1 \ 2 

If a real e > 0 is given and if n > - . / I , then 
£ \EA - EBJ 

P({m: &l is valid}j{co: T(n, m) = D j ) ^ 1 - e . 

Remark. The first inequality gives a lower bound for the probability that the deci
sion taken, according to our test, after having tested n formulas will be correct. 
There is an advantage of this inequality that it does not depend on EA, EB, so we can 
judge the quality of our test only on the basis of the result HA(n, a), HB(n, co). The 
inequality enables to minimize the probability of error below an apriori given e > 0, 
at the cost of "sufficiently large" n but in order to determine this n it would be neces
sary for us to know EA and EB. This inequality can be useful in such a peculiar 
situation: we are given two algorithms, we know that one of them is A and the other 
is B, we know also the functions fA and fB, but we do not know, which algorithm 
is A and which is B and we want to decide this question applying both algorithms 
to a finite sequence of formulas sampled at random. 

Proof. Let the decision 91 be taken wrongly, i.e. let HA(n, co) < HB(n, m) and, 
at the same time, fA R(4) (A^, a) fB which means EB :g EA. It follows that either 

\HA(n, m)-EA\^i.(HB- HA) 
or 

\HB(n,m) -Es\^i.(HB-HA). 

However, the foregoing theorem gives 

P({co: \HA(n, m) - EA\ Z i . (HB - HA)}) <±.(N0- if 
In \HB - H 

the same inequality being valid for B. So we have 

P(S>1 is validJT(n, m) = 9t) ^ 

^ 1 - P({m: \HA(n, m) - EA\ >= * . (HB - HA)} u 

u {co: \HB(n, m) - EB\ £ i . (HB - HA)}) ^ 

^ 1 - [P({m: \HA(n, m) - EA\ >, i . (HB - HA)}) + P({m: \HB(n, co) - E 



238 and the first inequality is proved. Now, if 

4 
n > -

£ \E, - Ej 
then 

p(\co:\HA(n,co)-EA\ ^ 
\EB - Eř 

4 (N0 - 1 V I \EB - EA1-2 (N0 - l)2 

^ЛШi^ľ-
and analogously for B. However, 

P(@x is correction, co) = 2X) ^ 

^ 1 - P (L: \HA(n, co) - EA\ ;> I ^ L l l ^ 

u \or. \HB(n, co) - EB\ ^ & ^ \ 

and the theorem is proved. 
By this theorem we finish our treatment of the statistical criterions for comparing 

of theorem proving algorithms leaving for some future times the application of some 
more advanced statistical techniques in this field. 

Closing this paper we would like to mention one thing which is, in our opinion, 
of rather great importance. We have developed our method for statistical comparing 
theorem-proving algorithms in such a way that we expressed, first, a theorem-proving 
algorithm in the form of a partially recursive function and, second, we defined 
a linear ordering relation on the set of all partially recursive functions. Finally, 
combining these two results, we obtained a linear ordering on the set of all theorem-
-proving algorithms. However, it can be easily seen that a procedure like this is not 
limited only to the theorem-proving algorithms. It is possible to generalize our 
notions, methods and results without any substantial change to any algorithms (e.g. 
algorithms finding the roots of equations or algorithms solving the diophantic 
equations etc.) just under the condition that such algorithms can be expressed in or 
transformed into the form of partially recursive functions. 

(Received November 15, 1973.) 
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