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The Computation of Characteristic Vectors 
of Logical-Probabilistic Expressions 

T O M Â S H A V R A N E K 

This paper is related to paper [2], knowledge of which is essential for a full understanding 
of the following text. Particular case of the computation of the characteristic vector of logical-
-probabilistic expressions are considered here. 

The notion of logical-probabilistic expression was introduced in paper [2] for 
describing nets with logical and probabilistic elements. A logical-probabilistic 
expression 4> is a triple \F, QF, 0>F\ where F is a logical-probabilistic form (LP-form), 
QF is a space of random events, and SPj, is a system of probabilities on QF. 

An LP-form is a generalized logical form of the propositional calculus in which 
a new kind of unary connectives is introduced; let every such connective (probabilistic 
connective) be denoted by one of the symbols <plt <p2, ..., (probabilistic connectives 
in a given LP-form must be denoted by different symbols). Let the connectives 
cpu ..., q>n occur in a given LP-form F. A space of random events (denoted £2; = 
= {co0, coj is associated with each connective <p;. The value of the associated func
tion of <p; is 1 or 0, depending on the random events o^ and' co0. 

Further QF is equal to X"=1 Qt. The system of probabilities 0>F is 

{P(Y; <»)}T6{O.I}-» y = (7i. •••>?») • 

Let x = (xj, ..., xm) be variables occurring in F. Then for their given evaluation 
a e {0, l}m , yt is equal to the evaluation of a subform F' such that <pt(F') is a subform 
of F((Pi(F') < F), for i = 1 , . . . . n. 

For a more precise description of the notion of LP-expression (and correspond
ing LP-net) see Definitions 8 and 5 in [2]. It is useful if £PF fulfills condition 4) from 
Definition 5 in [2]. 

As formulated and proved in Theorem 2 of [2], the probabilistic properties of an 
LP-expression <P can be described by the characteristic vector p0. p0 is equal to the 
vector of probabilities (P<T(^i))(Te{o,i}'", where a are possible evaluations of the variables 



xu ...,xm and Qt is a subset of QF such that funcF(a, co) = 1 for coe Qu where 
funcF is the function associated with F (see [2], Def. 8). Analogously for Q0. 

Remark. The previous description of p0 is valid only if every variable occurring 
in F occurs in the interior of some probabilistic connective cpt. Otherwise if xh,..., xJs 

are variables occurring in F, but not occurring in the interior of any cpt, then £2_ £ 
£ l ' x QF, where I' is the space of values of these variables. 

The general method of computation of p# was described in the previous paper [2]. 
But this general method is too complicated to be used in many real cases. Theorem 3 
from [2] made it possible for us to restrict the subject to the computation of the 
characteristic vectors of LP-expressions which are in probabilistic disjunctive normal 
form (PDNF). Roughly speaking in LP-expression [F, QF, 0>F\\ is in PDNF, if for 
every cpt occurring in F (cp^F1) -< F) is its interior (F') of the form 

F' ~ (F1&...&F„l) v . . . v (F„,_1 + 1 & . . . & F „ , ) , 

where Fj are either variables or of the form <Pj(F'j). 
The following considerations will be devoted to the computation of p0 for several 

particular cases of LP-expressions in PDNF. These particular cases are given by 
restrictions on SPF (e.g. stochastic independence). 

Remark. It is very useful to bear in mind, that an LP-expression is a description 
of a net with logical and probabilistic elements (LP-net). For more particulars see 
Definitions 5 and 8 and Theorem 1 from [2]. 

Theorem 1. Consider an LP-expression <P = [F, QF, 0>F~\, where 

F as cpn((F1&...&Fni) v ... v (F„,_1 + 1 & .. . & F„,)) 
and 

0>F = {p(y, o)}y. 

Let 1 be number of conjuctive members in F. 

Then: 1) For every conjuctive member 

Ki^Fni_i + 1&...&Fni 

(more precisely, for the corresponding subexpression) we have pK. — PF,,I> where 
pFtJ is the last column of the matrix PF. (Ft = (F„,_1 + 1, ..., F„,)). 

2) For the subform F' = int (cpn, F) we have pF = 1T - pK0, where pKg is 

the first column of the matrix PK(K = (Ku ...,Kt)) and 1 = (l , . . . , ! ) • 
Moreover, let 

P(y;co) = Pi(y1;co1).P2(yn;con) 

(for every y e {0, l}"), where 

Vi = (?i> • • •' y»-1) ' °»i = (wi« • • •' »»-1) • /<^ 

ß 



Then: 

3) PF = (I7* - PK,O) PI + PK,OPO » 

where p0, P\ are probabilistic parameters of (p„-

Remarks. 1) We suppose that the number of probabilistic connectives in F is n. 
For conventions concerning the enumeration of these connectives, see [2], con
vention 1). 

2) An LP-subexpression [ F , QF., ^ V ] of a given LP-expression [F, QF, 3fF"\ 
is determined by a subform F' -< F. 

3) Int (tpi, F) is the F' for which cplF') < F. 
4) It is necessary to explain the meaning of symbols PFi, PK. We have 

-,K = (PK;-,£)-,«(Ce{0,l} ,)) 

where 

PK;«,Z = P(funcFF1(a,co) = Ci, . . . , juncF £,((-, to) = Ci) • 

The right-hand side of the preceding equation is equal to 

P(tr;QK\,...,QK\), 

where (for i = 1, ..., /) QK\ is a set which plays the same role for Kt as the set Qt 

(if d = 1) or Q0 (if d = 0) for F (see above; for more details see [2], the remark 
before Theorem 6 and the method of computation of p0 in Part II). Analogously 
for PFi. 

5) Probabilistic parameters of a probabilistic connective <pj (in a given 4>) are 
defined by the following equalities: 

Pi - I P(y2,--;7j-uO,yJ+2,...,y„;to), 
{m;a>j= 1} 

Pi - Z -fya. •••.yj-i»-,ty+i.-. . .y-S'a»). 
{e»;»j=l} 

In the preceding theorem, then, 

po = P 2 (0 ; l ) and p\ = P 2 ( 1 ; 1 ) . 

We will denote pJ
0, p{ by p^.. 

P r o o f of T h e o r e m 1: We can use Theorem 5 from [2]. 

1) According to this theorem we obtain pKi =- PFlp&', we know that p& = 0,0,... 
..., 0, 1)T and the assertion is evident. 

2) Again, according to Theorem 5, pint(VinF) = PKPV- It is well known that pv = 
= (0, 1...., 1)T and thus 

(!) Pint(Vn,F;)a = Z PK;<r,dW ^ Z PK;«,y • 
f6{0, l} ' ?*0 



Recall that the matrix PK is stochastic; hence, the right hand-side of (1) equals 
1 — pK;a,0 and we obtain the second assertion. 

3) We have PinKq>tF) = (pK,0, 1 — pKt0) and so we obtain the third assertion 
(by Theorem 5). • 

Examples. 1) Consider an LP-expression <P = [F, QF, S?F\ where F ~ 
— ^ i ( x i ) & ^2(x2); we assume stochastic idependence of <P and we denote q = 1 — p. 
LetpVl =/>„, = (! - p , p ) . T h e n : 

(2) P = 

IP pq, pq, q 
pq, p2, q2, pq 

pq, q2, p2, pq 
\q2, pq, pq, p2 

and p& = (0, 0, 0, l) r . Thus 

pF = Pp& = (q2, pq, pq, p2)T-

2) Analogously, for F ~ ^ ( X j ) v cp2(x2) . There is pv = (0, 1, 1, l ) r and thus 

[q2 + 2pq 

P, = Ppr = \Pl+ M + 
PF PV \P2+ Pq + q 

\p2 + 2pq 

3) Let us now consider an LP-expression $ = [F, QF, 3PF\ where F ~ 
— 9'3(1!'i(;'ci) v <P2(X2))- Then we have Kt ~ (p1(x1) and K2 ~ cp2(x2). We assume 
stochastic independence and p^ = p^ = pVi = (q, p) again. Now we obtain 
(PK is equal to the matrjx (2)) 

fp2\ [p + (q~p)p2\ 
pq\ \p + (q -p)pq\ 
pq\ \p + (q- p)pq\' 

\l-q2I \q2l \p + (q-p)q2l 

Let us have an LP-expression $ = [F; QF, 0>F\ where F is 

cpn((F2&...&Fni) v . . . v (F„,.1 + 1 & . . . & F „ , ) ) . 

We will assume further that x = (xu ..., xm) are variables occurring in F and xt = 

= (xh,..., X; ) are variables occurring in Ft (i = 1. ..., nt). We can now formulate 

the following theorem. 

Theorem 2. Consider an LP-expression <P such as in Theorem 1. Let, moreover, 
all variables be different (i.e. each variable cannot occure more then once on F) 



84 and let 

P(r,co) = f[Pi(yi;oyl), 

where, if <ph, ••-, (pik, are probabilistic connectives occurring in Fh yt is (yh, ..., y( ) 

andmiis(coh, ...,coik). 

Values of the variables xt will be denoted by <r; (if we have the evaluation a on x). 
Then 

i) _ » * « , _ . - . - - - - n ( - - fi ->.-,.,). 
_=1 (-«/-! + _ 

where £,-._< = P;(<r;; __,•)> - « d 

2) _>.-._ = _»_ + (p" - PD n (i - n _».._,) • 
j - i i = _ j - j + i 

Remark: It is helpful to note that 

p.( f f. ; flj) __ p{/uncF E;(<7;; c_;) = 1) 

as we know from [2]. According to our assumptions 

funcF P;(ff;; to.) is equal to funcF E;(<r; w) . 

Example. If we return to point 3) of the preceding example, we can see that Theorem 
2 immediately gives 

[p + (q - P) (1 - «) (1 - «)\ JP + (« ~ P) P2\ 
_ _ _> + ( « - P ) ( 1 - « ) ( 1 - P ) \ _ \ P + ( « - P ) p q \ 
P* \p + (q-p)(l-q)(l-p)\ \p + (q-p)pq[ 

\P + (q- P) (1 - P) (1 " _»)/ \P + (« - P) «V 

Remark. The situation described in Theorem 2 is well known to everyone who 
deals with unreliable logical nets. 

P r o o f of t h e o r e m 2. As a consequence of stochastical independence we have 

PKy,a = P.;;_,/ - ft P.';-, • 
> = _ ; - . + 1 

Furthemore 

P4__?) - 1 - PKj;a = 1 - fi Pt;ai 

and with respect to stochastic independence 

PK,.,. = I 1 ( 1 - fi Pi; J 
. = 1 < • = . , - . + 1 



(pK._ 0 is a member of the first column of PK) and thus 

p.n.(,„,F).~ = i - r i ( - - fi - I , J . 
j = i , = » y _ i + i 

The second assertion is a consequence of point 3) from the previous theorem. • 

Remarks. 1) The assumption that the variables must be different is not essential. But 
for practical computation it is useful to have different variables and to denote them 
in such a way that x2 = (x l5 .., x m i ) , ..., x, = (xmi_1 + 1, ..., xm). Then a — (alf... 
..., ani) and the computation of matrices PPi, PK is simpler.We must consider this 
fact from the point of view of the inductive computation of p0 for an LP-expression 
$ which is in PDNF. 

On the other hand it is possible to transform every LP-form F to the LP-form F' 
in which all variables are different. Then we obtain the result for the original LP-
expression by omitting some members in p9.. 

2) For Theorem 2 it is sufficient that 

P(a;co*,...,col) = f[Pi(oi;co*), 
i = l 

where P(a; to*, ..., <a*) is the joint probability of evaluations of Fu ..., Fni if the 
variables are evaluated by a (to* is a variable with two possible values QFi, QFi; 
see point 4) of the remark after Theorem 1). 

Fig. 1. 

Examples. 1) Let us consider an LP-net [JV, QN, 0>N~\ (fig. 1). Assume stochastic 
independence and let the probabilistic parametres of all probabilistic elements 
(connectives) be (0-4, 0-6). The corresponding LP-expression is \_F(N), QN, _*. /] , 



86 where 

Then 

F(N) a <P5((OPi(~Xi)&x2) V (tpa(xO & p s(x,)) v (cp4(x2&x3))) . 

Ft ~ ^ 1 ( ~ x 1 ) , E2 a. x2 , F 3 a. ^ 2 ( x i ) , E4 a. <p3(x3) , 

E5 ~<p4(x2)&x3) 

and 

PFi Pïг PFл Pғ5 

000 б 0 .4 .4 .4 .550 0 

001 б 0 .4 .6 .4 .510 0 

010 6 1 • .4 .4 .4 .560 0 

011 б 1 .4 .6 .6 .576 1 

100 4 0 .6 .4 .4 .510 0 

101 4 0 .6 .6 .4 .538 1 

110 4 1 .6 .4 .4 .546 1 

111 4 1 .6 .6 .6 .588 1 

where £ are, for comparison, the values of expression F(N') without probabilistic 
elements (connectives). 

2) Consider an LP-net [iV, QN, 0>N) (fig. 2). Assume stochastic independence. The 

Fig. 2. 



corresponding LP-expression is [E(N), QN, 0>N\ where F(N) is 87 

<P8((<P5(~*1 v x3 v <?i(~x3))&x2) v (cPl(x1 & cp2(~x2) & (p3(Xl) & (p4(x3))) v 

v (?5(x2 & x3) . 

For all probabilistic connectives let the probabilistic parametres be (OT, 0-9). Then 

Pi ~ Ce(~^i v x3 v (j9!(~x3)), F2 ~ x2 , E3 ~ <p7(x. & <p2(~x2)& (p3(xt)) 

F4 ~ (p4(x3) , F5 ~ <p5(x2 & x3) 

(for the second step of induction) and pF is 

(.2514, .2514, .7744, .8872, .2000, .3117, .3304, .8872)r ; 

for comparison, the characteristic vector of this net without probabilistic elements 
is (0, 0, 1, 1, 0, 0, 0, I f . 

3) As an example, we can compute the characteristic vector of LP-expression <i*>' 
from the proof of Theorem 4 of [2]. There we had <£' = \F', QF„ ^ F / ] , where 

2<" 

F' = V 9i(x\'')& xf & ... & at**' 
i = i 

(where ^ = f x, if e) = 1 , 
J l~x, if a} = 0). 

The LP-expression $' was assumed to be stochastically independent, i.e. 

2"> 

P(T,o)) = Y[Pi(yi;coi), 
i = \ 

and P ;(0; 1) = 0, P,-(l; 1) = Vi (' = !>•••> 2"')- According to Theorem 2 we have 

PF;o = i - fl(i - U PJia), 
1 = 1 / = B . - i + l 

where <r, = a„ if j = (i — 1) m + I (I = 1, .., m). For 

M I - O . + I c io F*,-{* ! " ' * , . 
(1, if (7, = SJ 

and for 
fO, if o-i * £• j = (І - 1) m + 1 p J ; в J - <, , , 

př, l f ЄГj = £• 

Then 

if (T + S1 

if <- = £* 
i-«,д.„л-'-{î*-л ï 



and thus 

PF;„ = Pi {? = «0 • 

As we mentioned in [2], the class of stochastically independent LP-expressions 
is not closed with respect to the transformation to PDNF. During this transforma
tion, stochastically independent groups of functionally equivalent probabilistic 
connectives are formed. The same problem can arise if we consider logical nets with 

Fig. 3. 

stochastically independent probabilistic elements, but, in addition, with elements 
of forkjunction. If we have such a net, e.g. having the structure of fig. 3, we can 
transform this net to that net which will be an LP-net according to our concept 
(see [2], Def. 2). Let us consider the net from fig. 3 and assume that Nu N2, N3 are 
nets without elements of forkjunction. Let N[ be a new net such that Jfx = 
= [rV., QNl, 0>Nl~] and J/"^ = \N\, QNl., 8?xJ\ are functionally equivalent, i.e. 
P(funcNl (a, (o) = funcNl. (a, ca)) = 1 (for every a) (see [2], Def. 10). Then we trans-

Fig. 4. 

form the net from fig. 3 to the net having the structure of fig 4. The new net is a net 
in our sense of word. 

Generally we proceed in the same way as in the process of transforming an LP-
expression to PDNF. If we need the new subnet, we take new functionally equivalent 
probabilistic elements and substitute them in the given structure. Transforming the 
net, we proceed by induction on degrees of probabilistic elements. For more parti
culars see [2], Lemma 2, Theorems 3 and 7 and their proofs. 

Now, we must consider the computation of characteristic vectors for these cases, 
i.e., when we have an LP-expression for which 

iP(y,(o), if for yt = yn = . 
P(y'; ca') = < is coi = con = .. 

0 in other cases 

• = Jin, 

. = (ůini (i = 1, . . . , n) 

(v' = (Vi, •••> V„, Vu, •••, ?„„„), V = (Vi, •••, V„), analogously for to', ©). 



Then 

9i = (<Pi,<Pn- •••><?;„,) 

is such a group of functionally equivalent probabilistic connectives. 

We can proceed according to Theorem 1; for computation of probabilities pFi;a,i 
andpX;<T 0 we must consider the occurrence of functionally equivalent subexpressions. 
First, we can consider some particular cases: 

1) Assume Ffa) =fF2(x2). Then (for Ft = (Fu F2)) 

PFi-.oJ = PF;o = PF2;« 

(PFI;*> PF2;<T a r e members ofp f l andp f2) . 

2) Assume F^x^) =f F2{x2), F{ = (Fu q>j(F2)), and let probabilistic parametres 
of (pj be p0, pu Then, using the general method of computation (see [2], Part II), 
we obtain 

(3) p - , . . , , - I P'(vj;>QFl,QP2,l) = 
yrto.i) 

= P'(l;QFl,Ql2,l) = P(l;QFl,l), 

because 

P'(0; QFl, Q°F2, 1) = 0 . 

P'(Vj> co1> t0*, <Oj) is the probability for subexpression corresponding to Fu F2 

and the probabilistic connective <p,-. Using stochastic independence the right-hand 
side of (3) is then equal to pFi;aPi-

Now we can formulate an auxiliary theorem which solves a more general case. 

Theorem 3. Consider two subexpressions with subforms 

Ft = G.CFiO-o), xt) and F2 s G2(F'2{x0), x2) , 

where F[ =fF'2 and for every y let 

P{y; co) = P^y,; co,) P2(y2; <o2) P3{y3; co3), 

where (yu (Oj) corresponds to probabilistic connectives from Fu (y2, co2) to pro
babilistic connectives from Gu and {y3, to3) to probabilistic connectives from G2. 

Then for every a e {0, l} m (r ; = (Fu F2)), we have following: 

PFX;« = jPiy',;ffojPGi;l,»iPG2;l,<r2 + ( l ~ P F ' X ; „ O ) PG1;0,<71PG2;0,V2 • 

Proof . If we apply the disjointness of random events, we have 

PF,;« = E p'(ao> I, ai> K a2; 0\, Qft, Of, A*) 
l,ke{0,l}2 



(where P'(a0, I, <T_, k, a2; co*, o>2, co3, co4) is the joint probability for the subexpres
sions corresponding to F[, F'2, GL(y, xx) and G2(y, x2). 

Furthermore, 

Pғ,-,« = I P"(ffo, h tтi. h °i, ßj, ßî, ßí) 
ИO,П 

and by applying stochastic independence we complete the proof. • 

In the same way we can proceed in some more complicated cases, e.g., if F x is 
GiF_(:r_), F_(x2), x3) and F2 is G2(F_(x_), F_(x2), x 3), where F_ =_- F_ and F_ S / F_. 
Moreover, we can proceed in the same way in the computation of probabilities 

PK;n,0-

Conclusion. In all cases we compute the characteristic vector of an LP-expression 
(LP-net) with the help of its P D N F (more precisely, with the help of a functionally 
equivalent LP-expression in PDNF). We can apply points 1) and 2) from Theorem 1. 
In real cases there can be some simplifications: 

1) If a probabilistic connective is stochastically independent on the probabilistic 
connectives from its int (q>, F), we can apply point 3) from Theorem 1, or its modifica
tion for joint probabilities, if the connective is not the last one. 

2) If the P D N F is stochastically independent, we can apply Theorem 2 inductively. 

3) If a given PDNF contains stochastically independent groups of functionally equi
valent probabilistic connectives (p1, <p2, ..., <p" such that for every k __ n and every 
i,j __ nn if <p1 e ipk and <p_ e <pk, then d(<px, F) = d((pp F) (d((p,F) means the degree 
of probabilistic connective in F; see [2]). we can use all three points of Theorem 2, 
because the independence of <p; on int (cpt, F) is presenved, and the probabilities 
£_•..„_ and pK;<T,fl can be computed analogously as in Theorem 3. It is possible 
to formulate a general theorem for this case, but it would be too complicated and 
incomprehensible. If, for F1,...,Fk for which we compute pF.t or pF.g, it holds 
that no pair F ; , Fj (i =)= j) contains a pair of functionally equivalent subexpressions 
F[ -< F ; and F_ -< F}, we can apply Theorem 2. 

Remarks. 1) The condition of stochastic independence of q>{ on int (q>t, F) is pre
served if we transform a net with stochastically independent probabilistic elements 
and elements of forkjunction to our LP-net (F describes the structure of our new net). 
In the original net notion of the degree of probabilistic connective is'meaningless. 

2) If we compute p0 recursively for a given LP-expression, we must use Theorem 1, 
paying attention to the joint probabilities. In a given inductive step (at the beginning) 
we have the following situation: 

We have subforms F_, . . . , F„, as in Theorem 1 and moreover, subforms (?_, . . . , Gk. 

F' at (F_ & . . . &FB1) v . . . v (FBI__,..., F„) 



is then the interior of a probabilistic connective cpt. We must consider the joint 91 
probabilities 

P(a, y'; co*, ..., co*!, coG, ..., coG, co) , 

where 

7 , - B ( y ~ - " . 7 » ) . co' = (cot,...,con). 

Now we have to proceed computation from point 1) of Theorem 1 for Kt <a 
a. Fy & ... & Fni (variables co*, ...,co*i) for any given value of other variables. We use 
matrices 

^F1(/;< B*,+i>--->C ( )* f> t o ') 

and we obtain the joint probabilities 

P(a, y'; co*.*, co*i + u ...,coG, to') 

and now we repeat this computation for K2 etc. In the same way we apply point 2) 
to the joint probabilities P(a, y'; co*-*, ..., co**, coG, ..., cok, m') for any given value 
of y', coG, ..., cok, co'. 

3) The computation is simpler for an LP-expression in PDNF, obtained from 
a stochastically independent LP-expression. Functionally equivalent subexpressions 
can occur only in K a. Kt v ... v K^ 

We can see that 

P(a, y'; cot • • •> coG, co') = P,(a; co*, ..., < ) P2(a; coG, ..., coG) FT P(y ; ; cot) 

and for every Ft=f Fj and for co* =# co* 

P1(a;co*,...,co*t) = 0. 

We will now turn our attention to the vectors of LP-expressions. First, we define 
a characteristic matrix of a probabilistic operator (for the concept of probabilistic 
operator see [2]) as a matrix P = (patb), where pab = Pa(b) (a is a symbol from 
input alphabet, b a symbol from the output alphabet). Analogously we define a char
acteristic matrix of a vector of LP-expressions. Let us consider a vector £> = 
= [F, QF, 2Pt\ where F = (Fu ..., Fk) and F contains variables xu ..., x,„. Then 
we call the matrix 

(4) P = (pijYfJcS** w h e r e P«-*jP(*;--c.«—0fc) 

(a, C are binary forms of the numbers i — 1, j — 1), the characteristic matrix of <P 
(see Theorem 5 of [2]). 

We now formulate a theorem about the computation of this matrix for a particular 
case. 



Theorem 4. Let us take a vector ® = [F, QF, 3PF\ where F = (Fu ..., Fk) and 
for every y 

k 

P(y; o>) = U Pt(yi; «,) , 
!=1 

where 
ll = (Vii» ••••> lis) ana" 0>l = ( t O j ^ ••• ; Wis) 

for F, containing q>h, ..., (pis. (We call such a vector weakly stochastically indepen
dent). We put ffj = ah, ..., «Tjs) /or F , containing xh, ..., xir. Let p, = (p i ;oj) be 
the characteristic vector of <Pl = [F,, QFl, P F i ] . Then 

Pu = X\{PnJU^-Pi;°y-U> 
1=1 

Proof . We know that pu = P(a; Qu, ..., Q,-); stochastic independence implies 

pij = P1(a1;Q^),...,Pk(trk;Q^). 
We have 

?,(<-,; fl.) = p;;CT„ P,(ff,; Q0) = 1 - p,.ot 

and thus 

p;j= n p,*, n ( i -Pi ; . ) - • 
i = l , C , = l i = l , ? , = 0 

In other cases we have to compute these probabilities inductively and simultane
ously for all LP-expressions in the vector analogously as for a single LP-expression. 

A stochastically independent LP-net with more then one output can be transformed 
into a vector of LP-nets. The method is analogous to constructing the canonical 
LP-expression in [2]. We transform our net into a logical net (remembering the 
position of probabilistic elements). And now we transform, this net into a vector 
of logical nets in the way described, e.g., in [3]. Then we can put probabilistic ele
ments in these nets. Since we needed new subnets structurally equivalent to the 
original ones in the preceeding step, we have to use some new functionally equi
valent elements. 

Then we have a vector of LP-nets, where two different nets Nt, Nj can contain 
functionally equivalent subnets, i.e. F(Ni), F(Nj) obtain subexpressions Fx =fF2, 
F% -< F(N(), F2 -< F(Nj). We know how to compute the characteristic vectors 
of LP-expressions which can contain subexpressions F1 =fF2. The characteristic 
matrix of the vector of LP-expressions is then computed similarly to the subsequent 
example. 

Example. Consider a vector # = [F, QF, SPF~\, where 

f J ^ W 
V2 (*). 
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F . * G,(Fi (x), x ) , , P 2 =. G2(E2(x), x ) . 

Let 

F; = / P 2 

and let 

P(y; co) = P,.t(7ii «>i) FGl(y2; « 2 ) PC2(y3; « 3 ) • 

If we denote £ = (£.. r2), ff = ((-., ..., <7m) the binary forms of the numbers j - 1, 
i — l, then 

Py = (P^o,^ (1 - ^ . . . o , . ) 1 - ' 1 G>C.,o.-){l (1 - Pa2;0,ny-^ • 

• (1 - PPia) + (pGul,.r (1 - Pet,tJ-b {Pey.xJ' (1 - PG2;U«Y-"2 Pr;a , 

where pGl, pG2, pF are the characteristic vectors of Gx(y, x), G2(y, x), and F[(x). 

Proof . We have 

-y = P(<r; Q{1, <2?2) = 

(5) = £ -"(».!.ff> *. »;' of'1. C 2 , of,1, «f2
2) • 

(,/te{0,l}2 

If we consider that P'(.; Q*'1, QF
k
2, .) = 0 for / 4= k, then the right-hand side 

of (5) equals 

£ P"(a, I, a; Of \ flf/, flg) , 
(€{0,1} 

and if we apply the independence condition we complete the proof. £~ 

Lastly, we will pay attention to probabilistic automata. Let us have a vector 
of LP-expressions 

# = [P, o,, 0>r\ , 
where 

.F «(<?,, <73). ( . ^ ( F ^ x , . ) , . . ^ ^ ) ) 
and 
(6) G 2 * ( G 1 ( x , J , . . . , G s ( x , J ) . 

We can compute 

P(funcF (x, z) = 8, C/x = ff, - - . t«) . 

If we have an output alphabet {|f35)S|i} (j.f25 e j x = S) and a state alphabet {|fiS|?|2} 
(|05jC |2 = 0 , we have a probabilistic automaton. If P(y; co) = PGl(yil co^) PG2(y2; (o2) 
we have a probabilistic Mealy automaton. We have these automata with the output 
alphabet {£}, the input alphabet {a} and the state alphabet {5}, where a are values 
of variables x(t — I), 5 are values of z(t) and £ are values of z(t — 1). If we include 
a new kind of primitive elements — delay elements and the rules for their connection 



94 (as in [1] or [3]), we have a net realizing a probabilistic automaton. We can transform 
this net by the elimination of elements of forkjunction into a net which can be descri
bed by the vector $ = [f, QN, 3PN~\, F = F(N), where F is as in (6), and where 
both funcGl (x(t), z(t - 1)) = y(t) and (x(t), z(t - 1)) = z(t) are analogous to the 
canonical equations of the deterministic automata (see [3]). We can calculate the 
characteristic matrix P = (pCT^.?>5) in the same way as in the calculation of charac
teristic matrix of the vector of LP-expressions. 

The results which are described in this paper can be applied to the problem of 
realization of probabilistic automata. These problems will be considered in another 
paper [4]. 

(Received December 23, 1971.) 
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