KYBERNETIKA - VOLUME 10 (1974), NUMBER 2

Complete Characterization of Context-Sensitive Languages

Miroslav Novotný

Intrinsic complete characterizations of constructive, context-free and regular languages have been formulated by means of configurations of languages. The definition of a semiconfiguration is given here by generalizing the definition of a configuration. By means of semiconfigurations, an intrinsic complete characterization of context-sensitive languages is formulated.

1. Languages and generalized grammars. If V is a set we denote by V^* the free monoid over V, i.e. the set of all finite sequences of elements of the set V including the empty sequence Λ this set being provided by the binary operation of concatenation. We identify one-member-sequences with elements of V; it follows $V \subseteq V^*$. If $x = x_1 x_2, \ldots, x_n \in V^*$ where n is a natural number and $x_i \in V$ for $i = 1, 2, \ldots, n$ we put |x| = n; further, we put $|\Lambda| = 0$.

An ordered pair (V, L) where V is a set and $L \subseteq V^*$ is called a *language*. The elements of V^* are called *strings*. If (V, L), (U, M) are languages then we define the *intersection* $(V, L) \cap (U, M)$ of these languages by the formula $(V, L) \cap (U, M) = (V \cap U, L \cap M)$.

Let V be a set, suppose $R \subseteq V^* \times V^*$. Let us have $x, y \in V^*$. We writte $x \to y(R)$ if $(x, y) \in R$. Further, we put $x \Rightarrow y(R)$ if there exist such strings $u, v, t, z \in V^*$ that $x = utv, uzv = y, t \to z(R)$. Finally, we write $x \Rightarrow^* y(R)$ if there exist an integer $p \ge 0$ and some strings $x = t_0, t_1, \ldots, t_p = y$ in V^* that $t_{i-1} \Rightarrow t_i(R)$ for $i = 1, 2, \ldots$ \ldots, p . Then the sequence of strings $(t_i)_{i=0}^p$ is called an x-derivation of y of length p in R.

Let V be a set, $V_T \subseteq V$, $S \subseteq V^*$, $R \subseteq V^* \times V^*$. Then the quadruple $G = \langle V, V_T, S, R \rangle$ is called a *generalized grammar*. We put $\mathscr{L}(G) = \{x; x \in V_T^*, \text{there} exists an <math>s \in S$ with $s \Rightarrow^* x(R)\}$. Then $(V_T, \mathscr{L}(G))$ is called the *language generated* by the generalized grammar G. A generalized grammar $G = \langle V, V_T, S, R \rangle$ is called special if $V_T = V$; then we write $\langle V, S, R \rangle$ instead of $\langle V, V, S, R \rangle$. A generalized grammar $G = \langle V, V_T, S, R \rangle$ is called a grammar $G = \langle V, V_T, S, R \rangle$ is called a grammar if the sets V, S, R are finite.

2. Phrase structure grammars. Let $G = \langle V, V_T, S, R \rangle$ be a grammar. This grammar is said to satisfy the condition

(A) if $(x, y) \in R$ implies $\Lambda \neq x$;

(B) if $(x, y) \in R$ implies $x \in (V - V_T)^*$;

(C) if there exists and element $\sigma \in V - V_T$ with the property $S = \{\sigma\}$;

(D) if $(x, y) \in R$ implies $|x| \leq |y|$;

(E) if $(x, y) \in R$ implies |x| = 1;

(F) if $(x, y) \in R$ implies $1 = |x| \leq |y|$.

A grammar with the properties (A), (B), (C) is called a *phrase structure grammar*. A phrase structure grammar with the property (D) is called *context sensitive*. A phrase structure grammar with the property (E) is called *context free*. A phrase structure grammar with the property (F) is called *context free*.

A language is called *constructive* [*context sensitive*, *context free*, *context free A-free*] if it is generated by a phrase structure grammar [by a context-sensitive, by a context-free, by a context-free *A*-free grammar] (cf. [1]). Clearly, each context--free *A*-free grammar is context sensitive. Thus, each context-free *A*-free language is context sensitive.

3. Theorem. (A) To each grammar $G = \langle V, V_T, S, R \rangle$ there exists a phrase structure grammar $H = \langle U, V_T, \{\sigma\}, P \rangle$ such that $\mathscr{L}(H) = \mathscr{L}(G)$.

(B) To each grammar $G = \langle V, V_T, S, R \rangle$ with the property (D) there exists a context-sensitive grammar $H = \langle U, V_T, \{\sigma\}, P \rangle$ such that $\mathcal{L}(H) = \mathcal{L}(G) - \{A\}$.

(C) To each grammar $G = \langle V, V_T, S, R \rangle$ with the property (E) there exists a context-free grammar $H = \langle U, V_T, \{\sigma\}, P \rangle$ such that $\mathcal{L}(H) = \mathcal{L}(G)$.

(D) To each grammar $G = \langle V, V_T, S, R \rangle$ with the property (F) there exists a context-free A-free grammar $H = \langle U, V_T, \{\sigma\}, P \rangle$ such that $\mathcal{L}(H) = \mathcal{L}(G) - \{\Lambda\}$

The assertions (A), (B) can be found in [2] Theorem 4.4, the proofs can be found in [3] p. 51-52. The assertion (C) coincides with 1.16 of [4]. The assertion (D) follows from (C) by Theorem 1.8.1 of [1].

4. Conditions for grammars. Let $G = \langle V, V_T, \{\sigma\}, R \rangle$ be a phrase structure [context-sensitive, context-free, context-free] grammar. Then, we can suppose, without loss of generality, that G has the following two properties: (M) $(x, y) \in R$ implies $x \neq y$; (N) $(x, y) \in R$ implies the existence of such $z \in V_T^*$, $u, v \in V^*$ that $\sigma \Rightarrow^* uxv(R), uyv \Rightarrow^* z(R)$.

Clearly, each $(x, y) \in R$ for which the condition contained in (M) is not fulfilled can be cancelled and the language generated by the grammar obtained in this way is $(V_T, \mathcal{L}(G))$. Thus, we can suppose that G has the property (M). Similarly, a pair $(x, y) \in R$ which does not fulfil the condition contained in (N) does not appear in any σ -derivations of strings of $\mathcal{L}(G)$ in R. Thus, each such pair can be cancelled and the language generated by the grammar obtained in this way is $(V_T, \mathcal{L}(G))$.

74

5. Topics of paper. The definitions of constructive, context-sensitive, context-free and regular languages (cf. [1], Chapter II, 2. 1) are formulated by means of grammars with certain properties. A complete characterization of regular languages which does not use explicitly the concept of a grammar is well known ([1] Theorem 2.1.5). The author found complete characterizations of constructive languages [5], of context-free languages [4] and of regular languages [6] in the terms of the theory of configurations.

The aim of this paper is to give an intrinsic complete characterization of context-sensitive languages, i.e. a complete characterization which does not use explicitly the concept of a grammar. It was necessary to generalize the notion of a configuration to this aim. A modification of this generalized notion gives a new intrinsic complete characterization of context-free languages.

6. Definitions. Let (V, L) be a language.

For $x \in V^*$ we put x v(V, L) if there exist such strings $u, v \in V^*$ that $uxv \in L$. For $x, y \in V^*$ we put x > y(V, L) if, for all $u, v \in V^*$, $uxv \in L$ implies $uyv \in L$. For $x, y \in V^*$ we put $(y, x) \in E(V, L)$ if the following conditions are satisfied: $y v(V, L), y > x(V, L), y \neq x, |y| \leq |x|$. Then x is called a *semiconfiguration with* the resultant y in the language (V, L).

7. Remark. If (V, L) is a language, $t, z \in V^*$ such strings that $t \Rightarrow^* z$ (E(V, L)) then $|t| \leq |z|$ which follows from the fact that $(y, x) \in E(V, L)$ implies $|y| \leq |x|$.

8. Definition. Let (V, L) be a language. Then, for $x \in L$, we put $x \in B(V, L)$ if, for each $t \in L$, $t \Rightarrow^* x(E(V, L))$ implies |t| = |x|.

9. Remark. Let (V, L) be a language. Then for each $x \in L$ there exists a string $s \in B(V, L)$ that $s \Rightarrow^*.x(E(V, L))$. – Indeed, there exists at least one string $s \in L$ with the property $s \Rightarrow^*.x(E(V, L))$; e.g. we can put s = x. If we take such an s of minimal length then, clearly, $s \in B(V, L)$.

10. Definitions. Let (V, L) be a language. If $s, t \in V^*$ are such strings that $s \Rightarrow t(E(V, L))$ then we put $|(s, t)| = \min\{|q|; (p, q) \in E(V, L), s \Rightarrow t(\{(p, q)\})\}$. If $s, t \in V^*$ are strings and $(t_i)_{i=0}^p$ and s-derivation of t in E(V, L) then we put $||(t_i)_{i=0}^p|| = 0$ if p = 0 and $||(t_i)_{i=0}^p|| = \max\{|(t_{i-1}, t_i)|; i = 1, 2, ..., p\}$ otherwise. The integer $||(t_i)_{i=0}^p||$ is called the norm of the s-derivation $(t_i)_{i=0}^p$ of t in E(V, L). If $s, t \in V^*$ are such strings that $s \Rightarrow^* t(E(V, L))$ then we define the norm ||(s, t)|| of the ordered pair (s, t) to be the minimum of norms of all s-derivations of t in E(V, L). If $t \in L$ then we put $||t|| = \min\{||(s, t)||; s \in B(V, L), s \Rightarrow^* t(E(V, L))\}$; the integer ||t|| is called the norm of t.

11. Lemma. Let (V, L) be a language. Then, for each $t \in L$, there exists a string $s \in B(V, L)$ and an s-derivation of t in E(V, L) such that the norm of this s-derivation is equal to ||t||.

75

76 Indeed, there exists such an element $s \in B(V, L)$ that ||(s, t)|| = ||t||. It means the existence of such an s-derivation of t in E(V, L) that its norm is equal to ||t||.

12. Definition. Let (V, L) be a language. Then we put $X(V, L) = \{(y, x); (y, x) \in E(V, L), |x| > ||t||$ for each $t \in L\}$, Z(V, L) = E(V, L) - X(V, L).

13. Corollary. Let (V, L) be a language. Then, for each $t \in L$, there exists at least one element $s \in B(V, L)$ such that $s \Rightarrow * t(Z(V, L))$.

Proof. According to 11, there exists a string $s \in B(V, L)$ and an s-derivation $(t_i)_{i=0}^p$ of t in E(V, L) such that $||(t_i)_{i=0}^p|| = ||t||$. It follows from 10 that $||(t_{i-1}, t_i)| \le ||t||$ for i = 1, 2, ..., p. Thus, for each i = 1, 2, ..., p, there exists an element $(p_i, q_i) \in E(V, L)$ such that $t_{i-1} \Rightarrow t_i(\{(p_i, q_i)\})$ and $|q_i| = |(t_{i-1}, t_i)| \le ||t||$. It follows $(p_i, q_i) \in Z(V, L)$ for i = 1, 2, ..., p and $s \Rightarrow t(Z(V, L))$.

14. Definitions. Let (V, L) be a language. We put $K(V, L) = \langle V, B(V, L), Z(V, L) \rangle$.

15. Theorem. Let (V, L) be a language. Then $\mathscr{L}(K(V, L)) = L$.

Proof. According to 13, $L \subseteq \mathscr{L}(K(V, L))$.

Let V(n) denote the following assertion: If $t \in \mathscr{L}(K(V, L))$ and there exists an element $s \in B(V, L)$ and an s-derivation of t of length n in Z(V, L) then $t \in L$.

If $t \in \mathscr{L}(K(V, L))$ and there exists an element $s \in B(V, L)$ and an s-derivation of t of length 0 in Z(V, L) then $t = s \in B(V, L) \subseteq L$. Thus V(0) holds true.

Let $m \ge 0$ be an integer and suppose that V(m) holds true. Let us have $t \in \mathscr{L}(K(V, L)), s \in B(V, L)$ and an s-derivation $(t_i)_{i=1}^{m-1}$ of t of length m + 1 in Z(V, L). Then $t_m \in L$ according to V(m). Further, $t_m \Rightarrow t(Z(V, L))$ which means the existence of strings $u, v, x, y \in V^*$ such that $t_m = uyv$, uxv = t, $(y, x) \in Z(V, L) \subseteq E(V, L)$. It implies y > x(V, L), thus, $t \in L$. We have proved that V(m) implies V(m + 1).

It follows that V(n) holds true for n = 0, 1, 2, ... It means $\mathscr{L}(K(V, L)) \subseteq L$.

16. Definition. Let (V, L) be a language. Then it is called *finitely semigenerated* if the sets V, B(V, L), Z(V, L) are finite.

17. Lemma. Let (V, L) be a finitely semigenerated language such that $\Lambda \notin L$, U an arbitrary finite set. Then $(V, L) \cap (U, U^*)$ is a context-sensitive language.

Proof. If (V, L) is a finitely semigenerated language then $L = \mathscr{L}(K(V, L))$ according to 15 and $K(V, L) = \langle V, B(V, L), Z(V, L) \rangle$ is a special grammar according to 16. We put $H = \langle V, V \cap U, B(V, L), Z(V, L) \rangle$. Then H is a grammar with the following properties: $(y, x) \in Z(V, L)$ implies $|y| \leq |x|$ and $\mathscr{L}(H) = \mathscr{L}(K(V, L)) \cap U^* = L \cap U^*$. According to 3 (B) there exists a context-sensitive grammar $G = \langle W, V \cap U, \{\sigma\}, R \rangle$ such that $\mathscr{L}(G) = \mathscr{L}(H) - \{A\} = L \cap U^* - \{A\} = L \cap U^*$. Thus, $(V, L) \cap (U, U^*) = (V \cap U, L \cap U^*)$ is the language generated by the contextsensitive grammar G, i.e. it is a context-sensitive language.

18. Lemma. Let (U, M) be a context-sensitive language. Then there exists a finitely semigenerated language (V, L) with the property $\Lambda \notin L$ such that $(V, L) \cap (U, U^*) = (U, M)$.

Proof. A) There exists a context-sensitive grammar $G = \langle W, U, \{\sigma\}, R \rangle$ such that $\mathscr{L}(G) = M$. According to 4, we can suppose that $(y, x) \in R$ implies $y \neq x$ and the existence of strings $z \in U^*$, $u, v \in W^*$ such that $\sigma \Rightarrow^* uyv(R)$, $uxv \Rightarrow^* z(R)$. We put $H = \langle W, \{\sigma\}, R \rangle$. Then $\mathscr{L}(G) = \mathscr{L}(H) \cap U^*$. We prove that $(W, \mathscr{L}(H))$ is a finitely semigenerated language. Clearly, $\Lambda \notin \mathscr{L}(H)$.

B) First of all, as $(y, x) \in R$ implies the existence of $u, v \in W^*$ with the property $\sigma \Rightarrow^* uyv(R)$, we have $uyv \in \mathcal{L}(H)$ and $yv(W, \mathcal{L}(H))$.

Further, $(y, x) \in R$ implies y > x (*W*, $\mathscr{L}(H)$) and $y \neq x$ follows from our hypothesis. The fact $|y| \leq |x|$ follows from the supposition that *G* is context sensitive.

Thus, $(y, x) \in R$ implies $(y, x) \in E(W, \mathscr{L}(H))$ and $R \subseteq E(W, \mathscr{L}(H))$.

C) Let us have $z \in \mathscr{L}(H)$, |z| > 1. Then $\sigma \Rightarrow^* z(R)$ which implies $\sigma \Rightarrow^* \Rightarrow^* z(E(W, \mathscr{L}(H)) \text{ according to B. As } |\sigma| = 1$, we have $z \notin B(W, \mathscr{L}(H))$ according to 8. Thus, $z \in B(W, \mathscr{L}(H))$ implies $|z| \leq 1$ and $B(W, \mathscr{L}(H))$ is finite. Clearly, $\sigma \in B(W, \mathscr{L}(H))$.

D) We put $N = \max \{ |x|; (y, x) \in R \}$. Since $z \in \mathcal{L}(H)$ implies $\sigma \Rightarrow^* z(R)$ and $R \subseteq E(W, \mathcal{L}(H))$ according to B, we have $||z|| \leq N$ for each $z \in \mathcal{L}(H)$. According to 12, $(y, x) \in Z(W, \mathcal{L}(H))$ implies $(y, x) \in E(W, \mathcal{L}(H))$ and the existence of a $z \in L(H)$ such that $|x| \leq ||z||$ which implies $|y| \leq |x| \leq N$. It implies the finiteness of $Z(W, \mathcal{L}(H))$.

E) It follows from C and D that $(W, \mathcal{L}(H))$ is finitely semigenerated language and that $(U, M) = (U, \mathcal{L}(G)) = (W \cap U, \mathcal{L}(H) \cap U^*) = (W, \mathcal{L}(H)) \cap (U, U^*).$

19. Theorem. Let U be a finite set, (U, M) a language. Then the following two assertions are equivalent:

(A) (U, M) is a context-sensitive language.

(B) There exists a finitely semigenerated language (V, L) with the property $A \notin L$ such that $(V, L) \cap (U, U^*) = (U, M)$.

It is a consequence of 17 and 18.

20. Remarks, definitions. We can modify the concept of a semiconfiguration in the following way: Let (V, L) be a language. For $x, y \in V^*$ we put $(y, x) \in \overline{E}(V, L)$ if the following conditions are satisfied: $yv(V, L), y > x(V, L), y \neq x, 1 = |y| \leq |x|$. Then x is called a *strong semiconfiguration with the resultant y in the language* (V, L). For $x \in L$ we put $x \in \overline{B}(V, L)$ if, for each $t \in L, t \Rightarrow^* x(\overline{E}(V, L))$ implies |t| = |x|. Further, for $s, t \in V^*$ such that $s \Rightarrow t(\overline{E}(V, L))$, we put $[(s, t)] = \min \{|q|; (p, q) \in V\}$ 77

78 $\in \overline{E}(V, L), s \Rightarrow t(\{(p, q)\})\}$. If $s, t \in V^*$ are strings and $(t_i)_{i=0}^p$ is an s-derivation of tin $\overline{E}(V, L)$ then we put $[[(t_i)_{i=0}^p]] = 0$ if p = 0 and $[[(t_i)_{i=0}^p]] = \max\{[(t_{i-1}, t_i)];$ $i = 1, 2, ..., p\}$ otherwise. The integer $[[(t_i)_{i=0}^p]]$ is called the strong norm of the s-derivation $(t_i)_{i=0}^p$ of t in $\overline{E}(V, L)$. If $s, t \in V^*$ are such strings that $s \Rightarrow t(\overline{E}(V, L))$ then we define the strong norm [[(s, t)]] of the ordered pair (s, t) to be the minimum of strong noms of all s-derivations of t in $\overline{E}(V, L)$. If $t \in L$ then we put [[t]] = $= \min\{[[(s, t)]]; s \in \overline{E}(V, L), s \Rightarrow t(\overline{E}(V, L))\}$; the integer [[t]] is called the strong norm of t.

Further, we put $\overline{X}(V,L) = \{(y,x); (y,x) \in \overline{E}(V,L), |x| > \llbracket t \rrbracket$ for each $t \in L\}$, $\overline{Z}(V,L) = \overline{E}(V,L) - \overline{X}(V,L)$. Finally, we define $\overline{K}(V,L) = \langle V, \overline{B}(V,L), \overline{Z}(V,L) \rangle$. Similarly as in 15 we prove

21. Theorem. Let (V, L) be a language. Then $\mathscr{L}(\overline{K}(V, L)) = L$.

22. Definition. Let (V, L) be a language. Then (V, L) is called strongly finitely semigenerated if the sets V, $\overline{B}(V, L)$, $\overline{Z}(V, L)$ are finite.

Similarly as in 19 we prove

23. Theorem. Let U be a finite set, (U, M) a language. Then the following two assertions are equivalent:

(A) (U, M) is a context-free Λ -free language.

(B) There exists a strongly finitely semigenerated language (V, L) with the property $A \notin L$ such that $(V, L) \cap (U, U^*) = (U, M)$.

If we take into account the connection between context-free Λ -free grammars and context-free grammars described in the Theorem 1.8.1 of [1] then we obtain

24. Theorem. Let U be a finite set, (U, M) a language. Then the following two assertions are equivalent:

(A) (U, M) is a context-free language.

(B) There exists a strongly finitely semigenerated language (V, L) such that $(V, L) \cap (U, U^*) = (U, M)$.

(Received December 4, 1972.)

REFERENCES

S. Ginsburg; The mathematical theory of context-free languages. McGraw-Hill Book Company, 1966.

^[2] M. Novotný: Algebraic structures of mathematical linguistics. Bull. Math. de la Soc. Sci. Math. de la R. S. de Roumanie 12 (60) (1969), 87-101.

^[3] M. Novotný: Einführung in die algebraische Linguistik. Rheinisch-Westfällisches Institut für Instrumentelle Mathematik an der Universität Bonn, 1967 (Skriptum).

[4] M. Novotný: On a class languages. Archivum Mathematicum Brno, 6 (1970), 155-170.

[5] M. Novotný: On the role of configurations in the theory of grammars. Archivum Mathematicum Brno. 6 (1970), 171-184. 79

[6] M. Novotný: Über endlich charakterisierbare Sprachen. Publ. Fac. Sci. Univ. J. E. Purkyně, Brno, No 468 (1965), 495-502.

RNDr. Miroslav Novotný, DrSc., Matematický ústav ČSAV – pobočka Brno (Mathematical Institute of the Czechoslovak Academy of Sciences – Branch Brno), Janáčkovo nám. 2a, 662 95 Brno. Czechoslovakia.