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Complete Characterization
of Context-Sensitive Languages

MirosLAY NOVOTNY

Intrinsic complete characterizations of constructive, context-free and regular languages have
been formulated by means of configurations of languages. The definition of a semiconfiguration
is given here by generalizing the definition of a configuration. By means of semiconfigurations,
an intrinsic complete characterization of context-sensitive languages is formulated.

1. Languages and gencralized grammars. If V' is a set we denote by V* the
free monoid over V, i.e. the set of all finite sequences of elements of the set V'
including the empty sequence A this set being provided by the binary operation
of concatenation. We identify one-member-sequences with elements of V; it follows
Ve Vi If x = x1X,, ... X, €V* where n is a natural number and x,eV for | =
= 1,2,..., n we put |x| = n; further, we put |4]| = 0.

An ordered pair (V, L) where Vis a set and LS V* is called a language. The
clements of V* are called strings. If (V, L), (U, M) are languages then we define the
intersection (¥, L) n (U, M) of these languages by the formula (V, L) n (U, M) =
= (VnU, Lo M).

Let ¥ be a set, suppose R & V* x V*. Let us have x, y € V*. We writte x — y(R)
if (x, y) e R. Further, we put x => y(R) if there exist such strings u,v,t,ze V*
that x = utv, uzv = y, t - z(R). Finally, we write x =* y(R) if there exist an integer
p = 0and some strings x = to, t, ..., t, = yinV*thatt;_, = t(R) fori = 1,2, ...
..., p. Then the sequence of strings (;)7-, is called an x-derivation of y of length
pinR.

Let V be a set, Vp <V, SS V¥ R<SV*xV* Then the quadruple G =
= (V,Vp, S, R) is called a generalized grammar. We put £(G) = {x; x € V'}, there
exists an se S with s =* x(R)}. Then (Vy, £(G)) is called the language generated
by the generalized grammar G. A generalized grammar G = {V,Vy, S, R) is
called special if Vi = V; then we write (¥, S, R) instead of (V, V, S, R). A generalized
grammar G = {V, Vy, S, R) is called a grammar if the sets V, S, R are finite.
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2. Phrase structure grammars. Let G = {V, Vr, S, R) be a grammar. This grammar
is said to satisfy the condition

(A) if (x, y) € Rimplics 4 + x;

(B) if (x, y) € R implies x € (V — Vp)*;

(C) if there exists and element o € ¥ — V- with the property S = {a};

(D) if (x, y) € R implies |x| < |y[;

(E) if (x, y) € R implies |x| = 1;

(F) if (x, y) e Rimplies 1 = |x| < |y].

A grammar with the properties (A), (B), (C) is called a phrase structure grammar.
A phrase structure grammar with the property (D) is called context sensitive. A phrase
structure grammar with the property (E) is called context free. A phrase structure
grammar with the property (F) is called context free A-free.

A language is called constructive [context sensitive, context free, context free
A-free] if it is generated by a phrase structure grammar [by a context-sensitive,
by a context-free, by a context-free A-free grammar] (cf. [1]). Clearly, each context-
-free A-free grammar is context sensitive. Thus, each context-free A-free language
is context sensitive.

3. Theorem. (A) To each grammar G = {V,Vy, S, R) there exists a phrase
structure grammar H = (U, Vr, {c}, P) such that £(H) = %(G).

(B) To each grammar G = (V,Vy, S, R)> with the property (D) there exists
a context-sensitive grammar H = (U, Vy, {0}, P} such that Z(H) = Z(G) — {4}.

(C) To each grammar G = (V,Vy, S, R) with the property (E) there exists
a context-free grammar H = (U, Vr, {c}, P) such that Z(H) = #(G).

(D) To each grammar G = (V,Vy, S,R> with the property (F) there exists
a context-free A-free grammar H = (U, Vy, {c}, Py such that £(H) = £(G) — {A.}

The assertions {A), (B) can be found in [2] Theorem 4.4, the proofs can be found
in [3] p. 51—52. The assertion (C) coincides with 1.16 of [4]. The assertion (D)
follows from (C) by Theorem 1.8.1 of [1].

4. Conditions for grammars, Let G = <V, Vr, {c}, R) be a phrase structure [con-
text-sensitive, context-free, context-free A-free] grammar. Then, we can suppose,
without loss of generality, that G has the following two properties: (M) (x, y)e R
implies x # y; (N) (x, y) e R implies the existence of such zeVy, u,veV* that
o =* uxv(R), uyv =* z(R).

Clearly, each (x, y) € R for which the condition contained in (M) is not fulfilled
can be cancelled and the language generated by the grammar obtained in this way
is (Vr, £(G)). Thus, we can suppose that G has the property (M). Similarly, a pair
(x, ) € R which does not fulfil the condition contained in (N) does not appear
in any o-derivations of strings of .#(G) in R. Thus, each such pair can be cancelled
and the language generated by the grammar obtained in this way is (Vr, Z(G)).



5. Topics of paper. The definitions of constructive, context-sensitive, context-free
and regular languages (cf. [ 1], Chapter II, 2. 1) are formulated by means of grammars
with certain properties. A complete characterization of regular languages which does
not use explitcitly the concept of a grammar is well known ([1] Theorem 2.1.5),
The author found complete characterizations of constructive languages [5], of con-
text-free languages [4] and of regular languages [6] in the terms of the theory of con-
figarations.

The aim of this paper is to give an intrinsic complete characterization of con-
text-sensitive languages, i.c. a complete characterization which does not use explicitly
the concept of a grammar. It was necessary to generalize the notion of a configu-
ration to this aim. A modification of this generalized notion gives a new intrinsic
complete characterization of context-free languages.

6. Definitions. Let (¥, L) be a language.

For x e V* we put x v (V, L) if there exist such strings u, v € V* that uxv e L.

For x, y e V¥ we put x > y(V, L) if, for all u, v e V*, uxv € Limplies uyv € L.

For x,yeV* we put (y,x)e E(V, L) if the following conditions are satisfied:
yv(V,L), y > x(V.L), y + x, |y| £ |x|. Then x is called a semiconfiguration with
the resultant y in the language (V, L).

7. Remark. If (V, L) is a language, 1, z € V* such strings that ¢ =* z (E(V, L)) then
Jt| < |z| which follows from the fact that (y, x) € E(V, L) implies |y| < |x|.

8. Definition. Let (V, L) be a language. Then, for x € L, we put x € B(V, L) if, for
eachte L, t =* x(E(V, L)) implies |t| = |x].

9. Remark. Let (V, L) be a language. Then for each x e L there exists a string
se B(V, L) that s =*x(E(V, L)). — Indeed, there exists at least one string se L
with the property s =* x(E(V, L)); e.g. we can put s = x. If we take such an s of
minimal length then, cleatly, s e B(V, L).

10. Definitions. Let (¥, L) be a language. If s, 1€ V* are such strings that s =
= ((E(V,L)) then we put [(s,7)| = min{|q|; (p. @) € E(V. L), s = «({(p, 9)})}. If
5, t € V* are strings and (,)_, and s-derivation of ¢ in E(V, L) then we put [[(1,)o| =
=0if p = 0and [(1;)7=o| = max {|(t;—,, £)}; i = 1,2, ..., p} otherwise. The integer
[()7-0] is called the norm of the s-derivation (t-q of t in E(V, L). If s, teV* are
such strings that s =* {(E(V, L)) then we define the norm ||(s, )|| of the ordered pair
(s, 1) to be the minimum of norms of all s-derivations of ¢ in E(V, L). If t e Lthen
we put [[¢] = min{|(s, £)]|; se BV, L), s =*(E(V, L))}; the integer |[t] is called
the norm of t.

11. Lemma. Let (V, L) be a language. Then, for each t € L, there exists a string
s e B(V, L) and an s-derivation of t in E(V, L) such that the norm of this s-derivation
is equal to ||t].
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Indeed, there exists such an element s e B(V; L) that ||(s, )l = [¢. It means the
existence of such an s-derivation of ¢ in E(V, L) that its norm is equal to |¢].

12, Definition. Let (¥, L) be a language. Then we put X(V, L) = {(y, x); (y,x) e
e E(V, L), |x| > || for each te L}, Z(V, L) = E(V, L) — X(V, L).

13. Corollary. Let (V, L) be a language. Then, for each t € L, there exists at least
one element s € B(V, L) such that s =* 1(Z(V, L)).

Proof. According to 11, there exists a string se B(); L) and an s-derivation
(0= of t in E(V, L) such that ||[(t;)7=o] = [¢[. It follows from 10 that |(#;-,, t;)] <
< |¢| for i =1,2,..., p. Thus, for each i =1,2,..., p, there exists an element
(pi» 9:) € E(V, L) such that t,_; = t{{(p»» q))}) and |q| = |(t;-1, ;)] < |}¢]]. Tt follows
(poa)ez(V,L)fori =1,2,...,pand s =* ((Z(V, L

14. Definitions. Let (V, L) be a language. We put K(V, L) = <V, B(V, L), Z(V, L)>.

15. Theorem. Let (V, L) be a language. Then £(K(V, L)) = L.

Proof. According to 13, L= Z(K(V, L)).

Let V(n) denote the following assertion: If t € #(K(V, L)) and there exists an element
se B(V, L) and an s-derivation of t of length n in Z(V, L) then t € L.

If t e Z(K(V, L)) and there exists an element s & B(V, L) and an s-derivation of ¢
of length 0 in Z(V, L) then ¢ = s e B(V, L) = L. Thus V(0) holds true.

Let m =0 be an integer and suppose that ¥(m) holds true. Let us have
te Z(K(V, L)), s € B(V, L) and an s-derivation (t,)7, of t of length m + 1in Z(V, L).
Then t,, € L according to V(m). Further, #, = {(Z(V, L)) which means the existence
of strings u, v, x, yeV* such that t, = uyv, uxv =t, (y, x)e Z(V, L) < E(V, L).
It implies y > x(V, L), thus, ¢ € L. We have proved that V(m) implies V(m + 1).

It follows that V(n) holds true for n = 0, 1, 2, .... It means Z(K(V, L)) < L.

16. Definition. Let (V, L) be a language. Then it is called finitely semigenerated
if the sets ¥, B(V, L), Z(V, L) are finite.

17. Lemma. Let (V, L) be a finitely semigenerated language such that A¢L, U
an arbitrary finite set. Then (V, L) n (U, U*) is a context-sensitive language.

Proof. If (V, L) is a finitely semigenerated language then L= 2(K(V, L)) accord-
ing to 15 and K(V, L) = <V, B(V, L), Z(V, L)) is a special grammar according to 16.
We put H = <V,V U, B(V, L), Z(V, L)y. Then H is a grammar with the following
properties: (y, x)e Z(V, L) implies |y| < |x| and Z(H) = Z(K(V,L)) n U* =
= Ln U* According to 3 (B) there exists a context-sensitive grammar G =
= (W, ¥V U,{c}, R) such that £(G) = L(H) — {A} = LA U* — {A} = LA U*



Thus, (V, L) n (U, U*) = (VA U, Ln U¥) is the language generated by the context-
sensitive grammar G, i.e. it is a context-sensitive language.

18. Lemma. Let (U, M) be a context-sensitive language. Then there exists a finitely
semigenerated language (V, L) with the property A ¢ Lsuch that (V, L) n (U, U*) =
= (U, M).

Proof. A) There exists a context-sensitive grammar G = (W, U, {c}, R) such
that #(G) = M. According to 4, we can suppose that (y, x)e R implies y # x
and the existence of strings z € U¥, u, v e W* such that ¢ =* uyy(R), uxv =* z(R).
We put H = (W, {0}, R). Then £(G) = £(H) n U*. We prove that (W, Z(H))
is a finitely semigenerated language. Clearly, A ¢ ,?(H)

B) First of all, as (y, x) € R implies the existence of u, v € W* with the property
.o =*uyu(R), we have uyv e Z(H) and yv(W, £(H)).

Further, (y, x) € R implies y > x (W, £(H)) and y =% x follows from our hypo-
thesis. The fact |y| < |x| follows from the supposition that G is context sensitive.

Thus, (y, x) € R implies (y, x) € E(W, £(H)) and R = E(W, £(H)).

C) Let us have ze %(H), |z > 1. Then o =*z(R) which implies o =*
=* z(E(W, #(H)) according to B. As |¢| = 1, we have z ¢ B(W, Z(H)) according
to 8. Thus, ze B(W, Z(H)) implies |z] £ 1 and B(W, £(H)) is finite. Clearly,
o e B(W, 2(H)).

D) We put N = max {|x|; (y,x)e R}. Since ze Z(H) implies ¢ =* z(R) and
R < E(W, 2(H)) according to B, we have ||z < N for each z € #(H). According
to 12, (v, x) € Z(W, £(H)) implies (y, x) € E(W, £(H)) and the existence of a z € L(H)
such that |x| < |z which implies |y| < |x] £ N. It implies the finiteness of
Z(W, Z(H)).

E) It follows from C and D that (W, £(H)) is finitely semigenerated language and
that (U, M) = (U, £(G)) = (W U, Z(H) n U*) = (W, Z(H)) ~ (U, U*).

19. Theorem. Let U be a finite set, (U, M) a language. Then the following two
assertions are equivalent:

(A) (U, M) is a context-sensitive language.

(B) There exists a finitely semigenerated language (V, L) with the property
A ¢ Lsuch that (V, L) n (U, U*) = (U, M).

It is a consequence of 17 and 18.

20. Remarks, definitions. We can modify the concept of a semiconfiguration
in the following way: Let (¥, L) be a language. For x, y e V* we put (y, x) € E(V; L)
if the following conditions are satisfied: y»(¥, L), y > x(V, L), y #+ x, 1 = |y| = |x|.
Then x is called a strong semiconfiguration with the resultant y in the language
(¥, L). For x € Lwe put x € B(V, L) if, for each t € L, t =* x(E(V, L)) implies |¢| = |x|.
Further, for s, teV* such that s = «(E(V, L)), we put [(s, f)] = min {|q|; (p,q)€
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e EW, L), s = f({(p, q)})}. If s, t e V* are strings and (t,)?_, is an s-derivation of ¢
in E(V; L) then we put [(z)7o] =0 if p =0 and [(t,)}-0] = max {[(t;~1, t)];
i=1,2,..., p} otherwise. The integer [(t)0=¢] is called the strong norm of the
s-derivation (7=, of t in E(V, L). If 5, t € V* are such strings that s =* ((E(¥, L))
then we define the strong norm [(s, 1)] of the ordered pair (s, £) to be the minimum
of strong moms of all s-derivations of t in E(V, L). If te L then we put [t] =
= min {[(s, )]; se BV, L), s=*E(V, L))}; the integer [¢] is called the strong
norm of t.

Further, we put X(V,L) = {(y. x); (. x) e E(¥, L), |x| > [{] for each teL},

2(v,1) = E(, L) — X(, ). Finally, we define K(¥, L) = <V, B(¥ L), Z(%; ).
Similarly as in 15 we prove

21. Theorem. Let (V, L) be a language. Then £(K(V, L)) = L

22. Definition. Let (V; L) be a language. Then (V; L) is called strongly finitely
semigenerated if the sets V, B(V, L), Z(V, L) are finite.

Similarly as in 19 we prove

23. Theorem. Let U be a finite set, (U, M) a language. Then the following two
assertions are equivalent:

(A) (U, M) is a context-free A-free language.

(B) There exists a strongly finitely semigenerated language (V, L) with the
property A ¢ L such that (V, L) n (U, U*) = (U, M).

If we take into account the conmnection between context-free A-free grammars
and context-free grammars described in the Theorem 1.8.1 of [1] then we obtain

24. Theorem. Let U be a finite set, (U, M) a language Then the following two
assertions are equivalent:

(A) (U, M) is a context-free language.
(B) There exists a strongly finitely semigenerated language (V, L) such that
(v, L) ~ (U, U*) = (U, M).

(Received December 4, 1972.)

REFERENCES

[1] S. Ginsburg; The mathematical theory of context-free languages. McGraw-Hill Book
Company, 1966.

[2] M. Novotny: Algebraic structures of mathematical linguistics. Bull. Math. de la Soc. Sci.
Math. dela R. S. de Roumanie /2 (60) (1969), 87— 101.

[31 M. Novotny: Einfithrung in die algebraische Linguistik. Rheinisch-Westféllisches Institut
fiir Instrumentelle Mathematik an der Universitdt Bonn, 1967 (Skriptum).



[4] M. Novotny: On a class languages. Archivam Mathematicum Brno, 6 (1970), 155—170.

{51 M. Novotny: On the role of configurations in the theory of grammars. Archivum Mathe-
maticum Brno, 6 (1970), 171--184.

[6]1 M. Novotny: Uber endlich charakterisierbare Sprachen. Publ. Fac. Sci. Univ. J. E. Purkyng,
Brno, No 468 (1965), 495—502.

RNDr. Miroslav Novotny, DrSc., Matematicky iistav CSAV — pobo¢ka Brno (Mathematical
Institute of the Czechoslovak Academy of Sciences — Branch Brno),Jandékovo ndm. 2a, 662 95
Brno. Crzechoslovakia.

79



