Complete Characterization of Context-Sensitive Languages

Miroslav Novotný

Intrinsic complete characterizations of constructive, context-free and regular languages have been formulated by means of configurations of languages. The definition of a semiconfiguration is given here by generalizing the definition of a configuration. By means of semiconfigurations, an intrinsic complete characterization of context-sensitive languages is formulated.

1. Languages and generalized grammars. If V is a set we denote by V^{*} the free monoid over V, i.e. the set of all finite sequences of elements of the set V including the empty sequence Λ this set being provided by the binary operation of concatenation. We identify one-member-sequences with elements of V; it follows $V \subseteq V^{*}$. If $x=x_{1} x_{2}, \ldots x_{n} \in V^{*}$ where n is a natural number and $x_{i} \in V$ for $\underline{i}=$ $=1,2, \ldots, n$ we put $|x|=n$; further, we put $|\Lambda|=0$.

An ordered pair (V, L) where V is a set and $L \subseteq V^{*}$ is called a language. The elements of V^{*} are called strings. If $(V, L),(U, M)$ are languages then we define the intersection $(V, L) \cap(U, M)$ of these languages by the formula $(V, L) \cap(U, M)=$ $=(V \cap U, L \cap M)$.

Let V be a set, suppose $R \subseteq V^{*} \times V^{*}$. Let us have $x, y \in V^{*}$. We writte $x \rightarrow y(R)$ if $(x, y) \in R$. Further, we put $x \Rightarrow y(R)$ if there exist such strings $u, v, t, z \in V^{*}$ that $x=u t v, u z v=y, t \rightarrow z(R)$. Finally, we write $x \Rightarrow^{*} y(R)$ if there exist an integer $p \geqq 0$ and some strings $x=t_{0}, t_{1}, \ldots, t_{p}=y$ in V^{*} that $t_{i-1} \Rightarrow t_{i}(R)$ for $i=1,2, \ldots$ \ldots, p. Then the sequence of strings $\left(t_{i}\right)_{i=0}^{p}$ is called an x-derivation of y of length p in R.

Let V be a set, $V_{T} \subseteq V, S \subseteq V^{*}, R \subseteq V^{*} \times V^{*}$. Then the quadruple $G=$ $=\left\langle V, V_{T}, S, R\right\rangle$ is called a generalized grammar. We put $\mathscr{L}(G)=\left\{x ; x \in V_{r}^{*}\right.$, there exists an $s \in S$ with $\left.s \Rightarrow^{*} x(R)\right\}$. Then $\left(V_{T}, \mathscr{L}(G)\right)$ is called the language generated by the generalized grammar G. A generalized grammar $G=\left\langle V, V_{T}, S, R\right\rangle$ is called special if $V_{T}=V$; then we write $\langle V, S, R\rangle$ instead of $\langle V, V, S, R\rangle$. A generalized grammar $G=\left\langle V, V_{T}, S, R\right\rangle$ is called a grammar if the sets V, S, R are finite.
2. Phrase structure grammars. Let $G=\left\langle V, V_{T}, S, R\right\rangle$ be a grammar. This grammar is said to satisfy the condition
(A) if $(x, y) \in R$ implies $\Lambda \neq x$;
(B) if $(x, y) \in R$ implies $x \in\left(V-V_{T}\right)^{*}$;
(C) if there exists and element $\sigma \in V-V_{T}$ with the property $S=\{\sigma\}$;
(D) if $(x, y) \in R$ implies $|x| \leqq|y|$;
(E) if $(x, y) \in R$ implies $|x|=1$;
(F) if $(x, y) \in R$ implies $1=|x| \leqq|y|$.

A grammar with the properties (A), (B), (C) is called a phrase structure grammar. A phrase structure grammar with the property (D) is called context sensitive. A phrase structure grammar with the property (E) is called context free. A phrase structure grammar with the property (F) is called context free Λ-free.
A language is called constructive [context sensitive, context free, context free 1-free] if it is generated by a phrase structure grammar [by a context-sensitive, by a context-free, by a context-free Λ-free grammar] (cf. [1]). Clearly, each context--free Λ-free grammar is context sensitive. Thus, each context-free Λ-free language is context sensitive.
3. Theorem. (A) To each grammar $G=\left\langle V, V_{T}, S, R\right\rangle$ there exists a phrase structure grammar $H=\left\langle U, V_{T},\{\sigma\}, P\right\rangle$ such that $\mathscr{L}(H)=\mathscr{L}(G)$.
(B) To each grammar $G=\left\langle V, V_{T}, S, R\right\rangle$ with the property (D) there exists a context-sensitive grammar $H=\left\langle U, V_{T},\{\sigma\}, P\right\rangle$ such that $\mathscr{L}(H)=\mathscr{L}(G)-\{\Lambda\}$.
(C) To each grammar $G=\left\langle V, V_{T}, S, R\right\rangle$ with the property (E) there exists a context-free grammar $H=\left\langle U, V_{T},\{\sigma\}, P\right\rangle$ such that $\mathscr{L}(H)=\mathscr{L}(G)$.
(D) To each grammar $G=\left\langle V, V_{T}, S, R\right\rangle$ with the property (F) there exists a context-free Λ-free grammar $H=\left\langle U, V_{T},\{\sigma\}, P\right\rangle$ such that $\mathscr{L}(H)=\mathscr{L}(G)-\{\Lambda$.
The assertions (A), (B) can be found in [2] Theorem 4.4, the proofs can be found in [3] p. 51-52. The assertion (C) coincides with 1.16 of [4]. The assertion (D) follows from (C) by Theorem 1.8.1 of [1].
4. Conditions for grammars. Let $G=\left\langle V, V_{T},\{\sigma\}, R\right\rangle$ be a phrase structure [con-text-sensitive, context-free, context-free Λ-free] grammar. Then, we can suppose, without loss of generality, that G has the following two properties: (M) $(x, y) \in R$ implies $x \neq y ;(\mathrm{N})(x, y) \in R$ implies the existence of such $z \in V_{T}^{*}, u, v \in V^{*}$ that $\sigma \Rightarrow^{*} u x v(R), u y v \Rightarrow^{*} z(R)$.

Clearly, each $(x, y) \in R$ for which the condition contained in (M) is not fulfilled can be cancelled and the language generated by the grammar obtained in this way is $\left(V_{T}, \mathscr{L}(G)\right)$. Thus, we can suppose that G has the property (M). Similarly, a pair $(x, y) \in R$ which does not fulfil the condition contained in (N) does not appear in any σ-derivations of strings of $\mathscr{L}(G)$ in R. Thus, each such pair can be cancelled and the language generated by the grammar obtained in this way is $\left(V_{T}, \mathscr{L}(G)\right)$.
5. Topics of paper. The definitions of constructive, context-sensitive, context-free and regular languages (cf. [1], Chapter II, 2.1) are formulated by means of grammars with certain properties. A complete characterization of regular languages which does not use explitcitly the concept of a grammar is well known ([1] Theorem 2.1.5). The author found complete characterizations of constructive languages [5], of con-text-free languages [4] and of regular languages [6] in the terms of the theory of configurations.

The aim of this paper is to give an intrinsic complete characterization of con-text-sensitive languages, i.e. a complete characterization which does not use explicitly the concept of a grammar. It was necessary to generalize the notion of a configuration to this aim. A modification of this generalized notion gives a new intrinsic complete characterization of context-free languages.
6. Definitions. Let (V, L) be a language.

For $x \in V^{*}$ we put $x v(V, L)$ if there exist such strings $u, v \in V^{*}$ that $u x v \in L$.
For $x, y \in V^{*}$ we put $x>y(V, L)$ if, for all $u, v \in V^{*}, u x v \in L$ implies $u y v \in L$.
For $x, y \in V^{*}$ we put $(y, x) \in E(V, L)$ if the following conditions are satisfied: $y v(V, L), y>x(V, L), y \neq x,|y| \leqq|x|$. Then x is called a semiconfiguration with the resultant y in the language (V, L).
7. Remark. If (V, L) is a language, $t, z \in V^{*}$ such strings that $t \Rightarrow^{*} z(E(V, L))$ then $|t| \leqq|z|$ which follows from the fact that $(y, x) \in E(V, L)$ implies $|y| \leqq|x|$.
8. Definition. Let (V, L) be a language. Then, for $x \in L$, we put $x \in B(V, L)$ if, for each $t \in L, t \Rightarrow^{*} x(E(V, L))$ implies $|t|=|x|$.
9. Remark. Let (V, L) be a language. Then for each $x \in L$ there exists a string $s \in B(V, L)$ that $s \Rightarrow^{*} \cdot x(E(V, L))$. - Indeed, there exists at least one string $s \in L$ with the property $s \Rightarrow^{*} x(E(V, L))$; e.g. we can put $s=x$. If we take such an s of minimal length then, clearly, $s \in B(V, L)$.
10. Definitions. Let (V, L) be a language. If $s, t \in V^{*}$ are such strings that $s \Rightarrow$ $\Rightarrow t(E(V, L))$ then we put $|(s, t)|=\min \{|q| ;(p, q) \in E(V, L), s \Rightarrow t(\{(p, q)\})\}$. If $s, t \in V^{*}$ are strings and $\left(t_{i}\right)_{i=0}^{p}$ and s-derivation of t in $E(V, L)$ then we put $\left\|\left(t_{i}\right)_{i=0}^{p}\right\|=$ $=0$ if $p=0$ and $\left\|\left(t_{i}\right)_{i=0}^{p}\right\|=\max \left\{\left|\left(t_{i-1}, t_{i}\right)\right| ; i=1,2, \ldots, p\right\}$ otherwise. The integer $\left\|\left(t_{i}\right)_{i=0}^{p}\right\|$ is called the norm of the s-derivation $\left(t_{i}\right)_{i=0}^{p}$ of t in $E(V, L)$. If $s, t \in V^{*}$ are such strings that $s \Rightarrow^{*} t(E(V, L))$ then we define the norm $\|(s, t)\|$ of the ordered pair (s, t) to be the minimum of norms of all s-derivations of t in $E(V, L)$. If $t \in L$ then we put $\|t\|=\min \left\{\|(s, t)\| ; s \in B(V, L), s \Rightarrow^{*} t(E(V, L))\right\}$; the integer $\|t\|$ is called the norm of t.
11. Lemma. Let (V, L) be a language. Then, for each $t \in L$, there exists a string $s \in B(V, L)$ and an s-derivation of t in $E(V, L)$ such that the norm of this s-derivation is equal to $\|t\|$.

Indeed, there exists such an element $s \in B(V, L)$ that $\|(s, t)\|=\|t\|$. It means the existence of such an s-derivation of t in $E(V, L)$ that its norm is equal to $\|t\|$.
12. Definition. Let (V, L) be a language. Then we put $X(V, L)=\{(y, x) ;(y, x) \in$ $\in E(V, L),|x|>\|t\|$ for each $t \in L\}, Z(V, L)=E(V, L)-X(V, L)$.
13. Corollary. Let (V, L) be a language. Then, for each $t \in L$, there exists at least one element $s \in B(V, L)$ such that $s \Rightarrow^{*} t(Z(V, L))$.

Proof. According to 11 , there exists a string $s \in B(V, L)$ and an s-derivation $\left(t_{i}\right)_{i=0}^{p}$ of t in $E(V, L)$ such that $\left\|\left(t_{i}\right)_{i=0}^{p}\right\|=\|t\|$. It follows from 10 that $\left|\left(t_{i-1}, t_{i}\right)\right| \leqq$ $\leqq\|t\|$ for $i=1,2, \ldots, p$. Thus, for each $i=1,2, \ldots, p$, there exists an element $\left(p_{i}, q_{i}\right) \in E(\dot{V}, L)$ such that $t_{i-1} \Rightarrow t_{i}\left(\left\{\left(p_{i}, q_{i}\right)\right\}\right)$ and $\left|q_{i}\right|=\left|\left(t_{i-1}, t_{i}\right)\right| \leqq\|t\|$. It follows $\left(p_{i}, q_{i}\right) \in Z(V, L)$ for $i=1,2, \ldots, p$ and $s \Rightarrow^{*} t(Z(V, L))$.
14. Definitions. Let (V, L) be a language. We put $K(V, L)=\langle V, B(V, L), Z(V, L)\rangle$.
15. Theorem. Let (V, L) be a language. Then $\mathscr{L}(K(V, L))=L$.

Proof. According to $13, L \subseteq \mathscr{L}(K(V, L))$.
Let $V(n)$ denote the following assertion: If $t \in \mathscr{L}(K(V, L))$ and there exists an element $s \in B(V, L)$ and an s-derivation of t of length n in $Z(V, L)$ then $t \in L$.

If $t \in \mathscr{L}(K(V, L))$ and there exists an element $s \in B(V, L)$ and an s-derivation of t of length 0 in $Z(V, L)$ then $t=s \in B(V, L) \subseteq L$. Thus $V(0)$ holds true.

Let $m \geqq 0$ be an integer and suppose that $V(m)$ holds true. Let us have $t \in \mathscr{L}(K(V, L)), s \in B(V, L)$ and an s-derivation $\left(t_{i}\right)_{i=0}^{m+1}$ of t of length $m+1$ in $Z(V, L)$. Then $t_{m} \in L$ according to $V(m)$. Further, $t_{m} \Rightarrow t(Z(V, L))$ which means the existence of strings $u, v, x, y \in V^{*}$ such that $t_{m}=u y v, u x v=t,(y, x) \in Z(V, L) \subseteq E(V, L)$. It implies $y>x(V, L)$, thus, $t \in L$. We have proved that $V(m)$ implies $V(m+1)$.
It follows that $V(n)$ holds true for $n=0,1,2, \ldots$ It means $\mathscr{L}(K(V, L)) \subseteq L$.
16. Definition. Let (V, L) be a language. Then it is called finitely semigenerated if the sets $V, B(V, L), Z(V, L)$ are finite.
17. Lemma. Let (V, L) be a finitely semigenerated language such that $\Lambda \notin L, U$ an arbitrary finite set. Then $(V, L) \cap\left(U, U^{*}\right)$ is a context-sensitive language.

Proof. If (V, L) is a finitely semigenerated language then $L=\mathscr{L}(K(V, L))$ according to 15 and $K(V, L)=\langle V, B(V, L), Z(V, L)\rangle$ is a special grammar according to 16 . We put $H=\langle V, V \cap U, B(V, L), Z(V, L)\rangle$. Then H is a grammar with the following properties: $(y, x) \in Z(V, L)$ implies $|y| \leqq|x|$ and $\mathscr{L}(H)=\mathscr{L}(K(V, L)) \cap U^{*}=$ $=L \cap U^{*}$. According to 3 (B) there exists a context-sensitive grammar $G=$ $=\langle W, V \cap U,\{\sigma\}, R\rangle$ such that $\mathscr{L}(G)=\mathscr{L}(H)-\{\Lambda\}=L \cap U^{*}-\{\Lambda\}=L \cap U^{*}$.

Thus, $(V, L) \cap\left(U, U^{*}\right)=\left(V \cap U, L \cap U^{*}\right)$ is the language generated by the contextsensitive grammar G, i.e. it is a context-sensitive language.
18. Lemma. Let (U, M) be a context-sensitive language. Then there exists a finitely semigenerated language (V, L) with the property $\Lambda \notin L$ such that $(V, L) \cap\left(U, U^{*}\right)=$ $=(U, M)$.
Proof. A) There exists a context-sensitive grammar $G=\langle W, U,\{\sigma\}, R\rangle$ such that $\mathscr{L}(G)=M$. According to 4 , we can suppose that $(y, x) \in R$ implies $y \neq x$ and the existence of strings $z \in U^{*}, u, v \in W^{*}$ such that $\sigma \Rightarrow{ }^{*} u y v(R), u x v \Rightarrow^{*} z(R)$. We put $H=\langle W,\{\sigma\}, R\rangle$. Then $\mathscr{L}(G)=\mathscr{L}(H) \cap U^{*}$. We prove that $(W, \mathscr{L}(H))$ is a finitely semigenerated language. Clearly, $\Lambda \notin \mathscr{L}(H)$.
B) First of all, as $(y, x) \in R$ implies the existence of $u, v \in W^{*}$ with the property $\sigma \Rightarrow \Rightarrow^{*} u y v(R)$, we have $u y v \in \mathscr{L}(H)$ and $y v(W, \mathscr{L}(H))$.
Further, $(y, x) \in R$ implies $y>x(W, \mathscr{L}(H))$ and $y \neq x$ follows from our hypothesis. The fact $|y| \leqq|x|$ follows from the supposition that G is context sensitive.
Thus, $(y, x) \in R$ implies $(y, x) \in E(W, \mathscr{L}(H))$ and $R \subseteq E(W, \mathscr{L}(H))$.
C) Let us have $z \in \mathscr{L}(H),|z|>1$. Then $\sigma \Rightarrow^{*} z(R)$ which implies $\sigma \Rightarrow^{*}$ $\Rightarrow^{*} z(E(W, \mathscr{L}(H))$ according to B. As $|\sigma|=1$, we have $z \notin B(W, \mathscr{L}(H))$ according to 8. Thus, $z \in B(W, \mathscr{L}(H))$ implies $|z| \leqq 1$ and $B(W, \mathscr{L}(H))$ is finite. Clearly, $\sigma \in B(W, \mathscr{L}(H))$.
D) We put $N=\max \{|x| ;(y, x) \in R\}$. Since $z \in \mathscr{L}(H)$ implies $\sigma \Rightarrow^{*} z(R)$ and $R \subseteq E(W, \mathscr{L}(H))$ according to B , we have $\|z\| \leqq N$ for each $z \in \mathscr{L}(H)$. According to $12,(y, x) \in Z(W, \mathscr{L}(H))$ implies $(y, x) \in E(W, \mathscr{L}(H))$ and the existence of a $z \in L(H)$ such that $|x| \leqq\|z\|$ which implies $|y| \leqq|x| \leqq N$. It implies the finiteness of $Z(W, \mathscr{L}(H))$.
E) It follows from C and D that $(W, \mathscr{L}(H)$) is finitely semigenerated language and that $(U, M)=(U, \dot{\mathscr{L}}(G))=\left(W \cap U, \mathscr{L}(H) \cap U^{*}\right)=(W, \mathscr{L}(H)) \cap\left(U, U^{*}\right)$.
19. Theorem. Let U be a finite set, (U, M) a language. Then the following two assertions are equivalent:
(A) (U, M) is a context-sensitive language.
(B) There exists a finitely semigenerated language (V, L) with the property $\Lambda \notin L$ such that $(V, L) \cap\left(U, U^{*}\right)=(U, M)$.
It is a consequence of 17 and 18 .
20. Remarks, definitions. We can modify the concept of a semiconfiguration in the following way: Let (V, L) be a language. For $x, y \in V^{*}$ we put $(y, x) \in \bar{E}(V, L)$ if the following conditions are satisfied: $y v(V, L), y>x(V, L), y \neq x, 1=|y| \leqq|x|$. Then x is called a strong semiconfiguration with the resultant y in the language (V, L). For $x \in L$ we put $x \in \bar{B}(V, L)$ if, for each $t \in L, t \Rightarrow{ }^{*} x(\bar{E}(V, L))$ implies $|t|=|x|$. Further, for $s, t \in V^{*}$ such that $s \Rightarrow t(\bar{E}(V, L))$, we put $[(s, t)]=\min \{|q| ;(p, q) \in$
$78 \in \bar{E}(V, L), s \Rightarrow t(\{(p, q)\})\}$. If $s, t \in V^{*}$ are strings and $\left(t_{i}\right)_{i=0}^{p}$ is an s-derivation of t in $\bar{E}(V, L)$ then we put $\llbracket\left(t_{i}\right)_{i=0}^{p} \rrbracket=0$ if $p=0$ and $\llbracket\left(t_{i}\right)_{i=0}^{p} \rrbracket=\max \left\{\left[\left(t_{i-1}, t_{i}\right)\right]\right.$; $i=1,2, \ldots, p\}$ otherwise. The integer $\llbracket\left(t_{i}\right)_{i=0}^{p} \rrbracket$ is called the strong norm of the s-derivation $\left(t_{i}\right)_{i=0}^{p}$ of t in $\bar{E}(V, L)$. If $s, t \in V^{*}$ are such strings that $s \Rightarrow^{*} t(\bar{E}(V, L))$ then we define the strong norm $\llbracket(s, t) \rrbracket$ of the ordered pair (s, t) to be the minimum of strong noms of all s-derivations of t in $\bar{E}(V, L)$. If $t \in L$ then we put $\llbracket t \rrbracket=$ $=\min \left\{\llbracket(s, t) \rrbracket ; s \in \bar{B}(V, L), s \Rightarrow^{*} t(\bar{E}(V, L))\right\}$; the integer $\llbracket t \rrbracket$ is called the strong norm of t.

Further, we put $\bar{X}(V, L)=\{(y, x) ;(y, x) \in \bar{E}(V, L),|x|>\llbracket t \rrbracket$ for each $t \in L\}$, $\bar{Z}(V, L)=\bar{E}(V, L)-\bar{X}(V, L)$. Finally, we define $\bar{K}(V, L)=\langle V, \bar{B}(V, L), \bar{Z}(V, L)\rangle$. Similarly as in 15 we prove
21. Theorem. Let (V, L) be a language. Then $\mathscr{L}(\bar{K}(V, L))=L$.
22. Definition. Let (V, L) be a language. Then (V, L) is called strongly finitely semigenerated if the sets $V, \bar{B}(V, L), \bar{Z}(V, L)$ are finite.

Similarly as in 19 we prove
23. Theorem. Let U be a finite set, (U, M) a language. Then the following two assertions are equivalent:
(A) (U, M) is a context-free Λ-free language.
(B) There exists a strongly finitely semigenerated language (V, L) with the property $\Lambda \notin L$ such that $(V, L) \cap\left(U, U^{*}\right)=(U, M)$.

If we take into account the connection between context-free Λ-free grammars and context-free grammars described in the Theorem 1.8.1 of [1] then we obtain
24. Theorem. Let U be a finite set, (U, M) a language. Then the following two assertions are equivalent:
(A) (U, M) is a context-free language.
(B) There exists a strongly finitely semigenerated language (V, L) such that $(V, L) \cap\left(U, U^{*}\right)=(U, M)$.
(Received December 4, 1972.)

REFERENCES

[1] S. Ginsburg; The mathematical theory of context-free languages. McGraw-Hill Book Company, 1966.
[2] M. Novotný: Algebraic structures of mathematical linguistics. Bull. Math. de la Soc. Sci. Math. de la R. S. de Roumanie 12 (60) (1969), 87-101.
[3] M. Novotný: Einführung in die algebraische Linguistik. Rheinisch-Westfällisches Institut für Instrumentelle Mathematik an der Universität Bonn, 1967 (Skriptum).
[4] M. Novotný: On a class languages. Archivum Mathematicum Brno, 6 (1970), 155-170.
[5] M. Novotny: On the role of configurations in the theory of grammars. Archivum Mathematicum Brno, 6 (1970), 171-184.
[6] M. Novotný: Über endlich charakterisierbare Sprachen. Publ. Fac. Sci. Univ. J. E. Purkyně, Brno, No 468 (1965), 495-502.

RNDr. Miroslav Novotný, DrSc., Matematický ústav ČSAV - pobočka Brno (Mathematical Institute of the Czechoslovak Academy of Sciences - Branch Brno), Janáčkovo nám. 2a, 66295 Brno. Czechoslovakia.

