KYBERNETIKA - VOLUME 10 (1974), NUMBER 1

A Graphical Way to Solve the Boolean Matrix Equations AX=B and XA=B

U. J. NIEMINEN

A graphical way to find all the solutions of the Boolean matrix equations AX = B and XA = B is proposed and an example is given.

1. INTRODUCTION AND BASIC CONCEPTS

As shown by Ledley in [2, pp. 448-484] and in [3, 479-494], the determination of the solutions for the Boolean matrix equations AX = B and XA = B has important applications to switching theory and logical problems. A way to find all the solutions is given in the books cited above. Recently, Rudeanu [4] has derived a complete solution to the equations AX = B and XA = B in parametric form. In this paper we apply a well known graphtheoretic representation of a Boolean matrix to find a graphical way to determine the complete solution to the equations AX = B and XA = B. We assume that the reader is familiar with the basic concepts in graph theory.

By a Boolean matrix $Q = [q_{ij}]$ we shall mean in this paper a (0, 1)-matrix. The join of two Boolean $n \times m$ matrices A and B is the matrix $[a_{ij} \cup b_{ij}]$, and the product of the matrices C and D of orders $n \times p$ and $p \times m$, respectively, is an $n \times m$ matrix $CD = [\bigcup c_{ij}d_{sj}]$. Further, A^{T} is the transpose of A and A' the complement of A, i.e. $A^{T} = [a_{ji}]$ and $A' = [a'_{ij}]$. $A \ge B$ if and only if $a_{ij} \ge b_{ij}$ for any index pair ij.

It is well known that with every $m \times n$ Boolean matrix Q one can naturally associate a bipartite graph $G_b(Q)$ as follows (see e.g. Hedetniemi [1]): The set of vertices $V(G_b(Q))$ of $G_b(Q)$ consists of two disjoint subsets $\{u_i \mid i = 1, ..., m\}$ and $\{v_j \mid j = 1, ..., n\}$ which correspond to the rows and columns of Q, respectively. An edge (u_i, v_j) joining u_i and v_j , belongs to the edge set $E(G_b(Q))$ only if $q_{ij} = 1$

in Q. Conversely, every bipartite graph G_b can be translated into a Boolean matrix according to the rules above.

In the following we shall concentrate on the equation AX = B. As known, the solution of XA = B is analogous to that of AX = B.

2. THE BOOLEAN MATRIX EQUATION AX = B

Consider the product of two Boolean matrices A and B, and let the vertex sets of the bipartite graphs $G_b(A)$ and $G_b(B)$ be $V(G_b(A)) = \{u_{Ai} \mid i = 1, ..., m\} \cup$ $\cup \{v_{As} \mid s = 1, ..., k\}$ and $V(G_b(B)) = \{u_{Bs} \mid s = 1, ..., k\} \cup \{v_{Bj} \mid j = 1, ..., n\}$. Let us draw the bipartite graphs $G_b(A)$ and $G_b(B)$ such that the vertices in the sets $\{v_{As}\}$ and $\{u_{Bs}\}$ are common, and denote the graph thus obtained by $G_b(A) G_b(B)$. Then, according to the formula $AB = [\bigcup a_{is}b_{sj}]$, in the bipartite graph $G_b(AB)$ a vertex u_{ABi} is connected by an edge to a vertex v_{ABj} if and only if there is a path of length two from u_{Ai} to v_{Bi} in the graph $G_b(A) B_b(B)$. As an illustration, see the graphs of Fig. 1. This graphical form of the product of two Boolean matrices can be applied to the determination of a complete solution to AX = B.

As shown in the literature, the equation AX = B has a solution if and only if the matrix $(A^{T}B')'$ is a solution to AX = B, i.e. $A(A^{T}B')' = B$. Moreover, the solutions of AX = B form a join semilattice, denoted by $L_0(X)$, where $(A^TB')'$ is the greatest element. Hence, if AQ = B, $Q \cup (A^TB')' = (A^TB')'$. Thus, in order to obtain the complete set of solutions, one needs to determine the greatest element and the minimum elements of the semilattice $L_{o}(X)$, if such exist. First we consider a direct way to determine the graph $G_b((A^TB'))$, and the matrix (A^TB') as well, and then we show an obvious way to find all the solutions of AX = B.

Assume that the equation AX = B has a solution. Now clearly a bipartite graph $G_b(X_0)$ corresponds to the greatest solution of AX = B, if in the graph $G_b(A) G_b(X'_0)$ every vertex u_{Ai} , corresponding to u_{Bi} in $G_b(B)$, is connected by a path of length

two to every vertex $v_{X_0'j}$, corresponding to v_{Bj} in $G_b(B)$, for which $(u_{Bi}, v_{Bj}) \notin E(G_b(B))$, i.e. $(u_{Bi}, v_{Bj}) \in E(G_b(B'))$. Thus the following simple rule can be obtained to find the graph $G_b(X'_0)$:

Rule 1. Connect in $G_b(X'_0)$ the vertices $\Gamma u_{Ai} = \{v_{Ai_1}, \dots, v_{Ai_r}\} = \{u_{X_0'i_1}, \dots, u_{X_0'i_r}\}, u_{Ai} \in V(G_b(A))$, to all the vertices $v_{X_0'j}$ for which $(u_{Bi}, v_{Bj}) \in E(G_b(B'))$.

It should be noted that the matrix X_0 determined by the rule above does not give any indication of the non-consistency of the equation AX = B.

As an illuminating example, consider the following consistent Boolean matrix equation

(1)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

The graphs $G_b(A)$ and $G_b(B)$ are given in Fig. 2, and the graph $G_b(X'_0)$ can be seen in the graph $G_b(A) G_b(X'_0)$ determined by Rule 1. Hence,

Consider now a way to find all the solutions of AX = B. We construct a solution matrix base, denoted by $Z_1, Z_2, ..., Z_t$, where every Z_w , w = 1, ..., t, is a Boolean matrix of the order of X and corresponds to an edge, say (u_{Bi}, v_{Bj}) , of $G_b(B)$ such that $G_b(Z_w)$ contains any edge which gives in $G_b(A) G_b(Z_w)$ a path of length two from u_{Ai} to $v_{Z_wj} (=v_{Bj})$ and no edges such that there would be a path of length two in $G_b(A) G_b(Z_w)$ determining an edge of $G_b(B')$. Since the matrix product is distributive with respect to the join operation and $AZ_w \leq B$, $A(Z_1 \cup Z_2 \cup ... \cup Z_t) = B$ according to the definition of the matrices Z_w , if $Z_w > 0$ for any w, w = 1, ..., t. Furthermore, as every $G_b(Z_w)$ contains all the edges giving in $G_b(A) G_b(Z_w)$ the edge of $G_b(B)$ which determines $G_b(Z_w), Z_1 \cup ... \cup Z_t = (A^TB')' = X_0$, the greatest element of the solution join semilattice $L_{\cup}(X)$. According to the definition of Z_w , the matrix equation AX = B is consistent if and only if $Z_w > 0$, i.e. $E(G_b(Z_w)) \neq \emptyset$, for any w, w = 1, ..., t.

A matrix Q is a solution of AX = B, if $Q \cap Z_w > 0$ for every w, and Q_0 is a minimum element of $L_{\cup}(X)$ if and only if the equation $Q_{00} \cap Z_w > 0$ does not hold for any matrix $Q_{00} < Q_0$, w = 1, ..., t.

For the determination of a matrix Z_w corresponding to an edge $(u_{Bi}, v_{Bj}) \in E(G_b(B))$ we obtain the following simple rule:

Rule 2. Connect in $G_b(Z_w)$ the vertices of $\Gamma u_{Ai} = \{v_{Ai_1}, ..., v_{Ai_r}\} = \{u_{Z_w i_1}, ..., u_{Z_w i_r}\}, u_{Ai} \in V(G_b(A))$, to $v_{Z_w j}$ and remove then the edges which belong to $G_b(X'_0)$.

Consider as an example the matrix equation in (1). Fig. 3 shows the determinations of the basis matrices Z_1 , Z_2 , and Z_3 corresponding to the edges (u_{B1}, v_{B1}) , (u_{B2}, v_{B1}) , and (u_{B2}, v_{B2}) , respectively. The dotted lines in Fig. 3 mean the edges of $G_b(X'_0)$. Since $Z_1, Z_2, Z_3 > 0$, the equation in (1) is consistent.

As one can readily check, the minimum elements of $L_{\cup}(X)$ are $X_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ and

$$X_{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad Z_{1} \cup Z_{2} \cup Z_{3} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = X_{0} = (A^{\mathsf{T}}B')'. \text{ The other solutions to } AX = B, \text{ which are between } X_{1} \text{ and } X_{0} \text{ in } L_{\cup}(X), \text{ are } X_{3} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } X_{4} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

There is an other way to construct a solution matrix base. After determining the matrices $Z_1, ..., Z_t$ defined above, we substitute the matrix Z_w , w = 1, ..., t, by a set $\{Y_{1w}, Y_{2w}, ..., Y_{sww}\}$ of matrices, where $Y_{1w} \cup ... \cup Y_{sww} = Z_w$, $Y_{tw} > 0$ and Y_{tw} contains a single one for any $k, k = 1, ..., s_w$. Every solution to AX = B is obtained by forming all possible joins (UY) of the matrices in the sets $\{Y_{1w}, ..., Y_{sww}\}$ such that $(UY) \cap Z_w > 0$ for any value of w.

In the example considered before,

REFERENCES

$$Y_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad Y_{12} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad Y_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad Y_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \text{and} \quad Y_{31} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

In the case of the equation XA = B, Rule 1 and Rule 2 can be expressed as follows:

Rule 1'. Connect in $G_b(X'_0)$ the vertices $\Gamma v_{Ai} = \{u_{Ai_1}, \dots, u_{Ai_r}\} = \{v_{X_0'i_1}, \dots, v_{X_0'i_r}\}, v_{Ai} \in V(G_b(A))$, to all the vertices $u_{X_0'j}$ for which $(u_{Bj}, u_{Bi}) \in E(G_b(B'))$.

Rule 2'. Connect in $G_b(Z_w)$ the vertices of $\Gamma v_{Aj} = \{u_{Aj_1}, \ldots, u_{Aj_r}\} = \{v_{Z_wj_1}, \ldots, v_{Z_wj_r}\}, v_{Aj} \in V(G_b(A))$, to u_{Z_wi} and remove then the edges which belong to $G_b(X'_0)$.

(Received August 6, 1973.)

U. J. Nieminen, Research assistant, Finnish Academy, Department of Technical Sciences, Lauttasaarentie 1, 00200 Helsinki 20, Finland.

^[1] S. T. Hedetniemi: Graphs of (0, 1)-matrices. In: Recent Trends in Graph Theory (ed. by M. Capobianco, J. B. Frechen, and M. Krolik). Springer-Verlag, Berlin-Heidelberg- New York 1971, 157-171.

^[2] R. S. Ledley: Digital computer and control engineering. McGraw-Hill, New York-Toronto-London 1960.

^[3] R. S. Ledley: Programming and utilizing digital computers. McGraw-Hill, New York-Toronto-London 1962.

 ^[4] S. Rudeanu: On Boolean matrix equations. Rev. Roum. Math. Pures et Appl. XVII (1972), 7, 1075-1090.