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Completing Linear Differential Games
by State Dependent Strategies

PEASEL ) o

PavoL BRUNOVSKY

This paper deals with sufficient conditions for the completion of a linear differential game
at a given time. A known condition is shown to be equivalent to a simpler one which is easier
to apply.

1. PRELIMINARIES

In this paper, we shall deal with differential games, givén b;y a differential equation
1) x=Al)x+u—wv,

(where x, u, ve R", A(t) is locally integrable n x n), two convex compact sets P,
E < R" (the control domains) and a convex closed set G < R" (the target set).*
We shall denote the two players by the same letters as their control domains, namely 2
(pursuer) and & (evader). Given any point (1o, Xo), the aim of the pursuer (evader)
is to choose at any instant its control parameter u € P (ve E) so that the solution
of (1) stafting at xo for t = t,, reaches G as soon (as Jate) as possible.

By a P-control (&-control) we shall understand any measurable function with
values in P(E). As in [1] by a strategy of 2(&) we shall understand any upper semi-
continuous set valued function U(t, x) (V(, x)) defined on R**! with values being
closed convex subsets of P(E).

Given any initial point (to, x,), we consider as an outcome of the game under the
strategies U, V of 2, & respectively any trajectory of the multivalued differential
equation

@) % e Aty x + U(t, x) — V(t, x) 4?0.2/{7?%

* Let us note that the results of this paper remain true if we allow P, E to vary upper semicon-
tinuously with ¢.



starting at x, for ¢t = t,. Note that our assumption guarantees that such a trajectory
exists and also that every trajectory can be extended for all ¢ > t, (cf. [2]).

We shall say that 2 can complete the game (starting from (z,, x,)) at T by the
strategy U, if every solution of (2) under V(1, x) = E (i.e. any solution of the equation
% € A(f) x + U(t, x) — v(t) for any &-control (r)), starting at x, for ¢ = 1,, satisfies
x(T) € G. We shall be interested in sufficient conditions for completing a game.

Let us make some comments concerning our strategy concept. As it is known from simple
examples (cf. e.g. [3], [4]), one cannot get through with considering continuous strategies only.
However, if discontinuous strategies are used (which corresponds to substituting discontinuous

- functions of u and » into (1)), difficulties arise in the definition and existence of solution.

A general way to deal with these difficulties is to define the strategy and outcome (trajectory)
of the game by some approximation scheme (cf. [4] or [5, 6]), which is a rather complicated
apparatus. Sometimes however (cf. [1]) one can work directly with “exact” discontinuous strategies
by using Fillipov’s concept of solution [7]. As it is shown in [8, 9], this concept leads to an equi-
valent multivalued differential equation. In order to avoid this construction (for the details
of which the reader is referred to [8, 9]) we have defined (following [1]) the strategy directly as
a set-valued function.

Also let us note that unlike in [4— 6, 10— 15] our strategies are independent from all information
of the present and past of the game except of the present state (i.e. the variable x) of the game.
There are certain reasons which we do not want to go into in this paper to consider (for the game
studied in this paper) all the other information about the past and present of the game as un-
necessary.

Finally, let us remark that the definition of completion can be equivalently re-
placed by any of the following two ones:

(i) for any &-control v(t), any solution x(t) of the equation % e A(r) x + U(t, x) —
— o(f) starting at x, for t = t,, satisfies x(T) € G,

(ii) for any strategy V(t, x), any solution x({) of (2) starting at x, for ¢ = t,, satisfies
x(T) eG.

2. KRASOVSKI’'S CONDITION FOR THE EXISTENCE
OF A COMPLETING STRATEGY

For a convex set C = R" denote by h¢: D(C) —» R the support function of C,

ie. ho(W) = sup (¥, x> and D(C) = { | sup <y, x) < }. Here (x,y) means
xeC xeC
the scalar product.

Denote by W(z, T} (t £ T) the set of all points x € R" with the following property:
For any &-control v(r) there is a 2-control u(t) such that every solution x(t) of (1)
with u = u(f), v = o(r) starting at x for t = =, satisfies x(T) € G. This set is used
in [1, 10] and it is shown there that x € W(z, T) if and only of for all § € D(G)

@) XI5 < hoh) + j "The(=X(T, ) 9) — e~ X(T; ) )] de



where prime denotes transpose, X(1, 7} is the fundamental matrix of the equation
% = A(f) x such that X(z, 7) is the unity matrix.

In [1] it is proven that if x, € W(to, T), the game can be completed at T provided
the sets W(z, T) are stable for t € [to, T, i.e. for every x € W(r, T), & sufficiently
small and any &-control v(z) there is 2 2-control u(1) such that the solution of (1)
with u = u(t), v = o) starting at x for # = 7, satisfies x(t) e W(t, T) for t € [, © + 4].
The completion of the game can be accomplished by the extremal strategy

P if xeW(zr,T),
@ Ul x) = {Ue(t, x) if x¢ WEt, T;,

where
Ut,x) = {ue P|<q(t,x) — x, ud = hp(q(t, x) — x)}

and q(t, x) is the projection of x onto W(1, T) i.c. the unique point g e W(t, T)
satisfying [x — g| = min |x — y|, |.| being the Euclidean norm.
YW (2,7

The stability condition is not a very practical one. In [1] a following sufficient
condition for the stability of the sets W(t, T) is given:
For every (1, x), t, < © £ T, for which

5 (1, x) = max [Y, X(T, 1) x> — he() +
YeD(G)nS

T J' Tl =X(T, ) ¥ = h(=X(T, 1) $)] dt > 0

(S being the unit sphere) the maximum is achieved for a unique = y*(t, x) € R".

We shall refer to this condition as Condition C.

In section 3, we shall prove that this condition is equivalent to another one, which
is simpler and easier to apply. In section 4, we apply it to a well known example.
The problem of optimality of the completing strategy is discussed in section 5.

We conclude this section by giving a (different to [1]) proof of the completion
of the game for the case of condition C being satisfied. The strategy used here
is somewhat different to the strategy (4). We first prove two lemmas, the second
of which is a modification of [10, Theorem 1.3].

Lemma 1. Let X < R”, Y< RY, f:X x Y — R! be continuous and let x, be an
interior point of X. Let there be a neighbourhood U = X of x, such that for every
x < U the set Z(x) of points y €Y such that f(x, y) = ¢(x) = max f(x, y) is non-

yeY

empty. Assume that Z(xo) = {y,} and that for any sequence {x;, y,} of points from
X X Y such that y, > ye R\ Y or |y| = o0, f(%, y) = — 0. Then,

lim ( sup |y — yo|) = 0.
yeZ(x)

x—Xo



Proof. Assume the contrary. Then, there is a sequence x, — Xo, i = ¥* + Vo
such that ykeZ(xk). From the last assumption of the lemma and the continuity
of f it follows that y*eY and f(xo, ¥*) = ¢@(xo). Thus, y* = y, contrary to our
assumption.

Lemma 2. Let the assumptions of Lemma 1 be satisfled and let 0f [0x exist and
be continuous over X x Y. Then (0¢[0x)(xo) exists and is equal to (8f8x) (X, Yo)-

Proof. We have for sufficiently small |h[:
@(xo + h) — @(xo) = ma;(f(xo +hy)— max f(xo, y) = J{xo + b i) = /(%> Yo) =
ye ye
= f(xo + B, yi) = f(x0» yi) + [(X0 ¥) — f(%0» o)

<% (o + 90y
ox
where y, € Z(xo + h), 9€(0, 1). From Lemma 1 we obtain
) . af
(6) im(l) sup [B]™* (p(xo + k) — @(x,) — g;(xo, Vo) B) £ 0.
On the other hand we have
(P(xo + h) - (9(xo) =f(xo + h, ,Vh) —f(x(h yo) = f(xo + h, J’h) ‘f(xo + h, yO) +
7]
+ f(Xo + h, )’o) - f(xo, J’o) 2 é(xov YO) h+ U(h)

which gives the opposite inequality to (6). This proves the lemma.
Denote

{t, Y. x) = b X(T, ) x> — h(y) + j T X(T 0+ (= X/(T, 1) ¥)] o

for € D(G). Then, &(t, x) = max ot, ¥, x), where Sis is the unit sphere in R".
WeD(G)nS

Theorem 1. Assume that Condition C holds. Then, for every (to, Xo) such that
Xo € W(to, T), the game can be completed at T by the strategy
> : P if xeWl(ty, T),
o) Ut ) = Joxe o)
. U*(t,x) if xeW(t, T)
where .

U*(t, x) = {ue P| Y*(t, x), ud = —hpo(=X'(T, £) Y*(1, x)) -

Proof. First of all we have to prove that U(t, x) is actually a strategy, i.e. that
U(t, x) is upper semicontinuous. To do this, assume {(t,, x)} = (to, Xo). Without



loss of generality we may assume that the sequence {¥/*(t,, xi)} is convergent. We
prove Y*(to, Xo) = lim y*(1,, x).
k- o0 E

Assume the contrary. Then, from the unicity of §*(to, xo) and the continuity of @
in y it follows that for sufficiently large k, o(f, ¥*(ti, Xi), Xi) < (ty, Y*(t0, Xo), %)
contrary to our assumption. Taking now a convergent sequence of points {wk}
from U(t,, x;) one sees easily that its limit has to lie in U(to, Xo), which proves the
upper semicontinuity of U.

Now, take any &-control »(f) and any point (z, &) such that &¢ W(z, T), ie.
&(z, £) > 0. Denote by x(t) the solution of % € A(t) x + U(t, x) — v(t) satisfying
x(r) = & From the continuity of & it follows that &(t, x(t)) > 0 for te [z, 7 + 1],
# > 0. Therefore, ¥*(z, x(1)) is unique for te [z, + #] and, consequently, & is
differentiable at the points (¢, x(?)), t € [1, 7 + #]. Hence, by Lemma 2,

% o1, x(1)) = 58; o{t, x(1)) (1) + 5 o1, x(1) =
= X(T, ) y*(t, x(1)), A1) x(1) = o(1)> = he( =X (T £) (1, (1)) —
— (X(T, ) (1, x(1)), A x(£)) + hp(—X(T; ) ¥*(3, x(2)) —
— h(=X(T, 1) y*(t, x(1)) £ 0

for allmost all te[r, t + n]. Conscquently, ®(t, x(r)) is nonincreasing whenever
@(t, x(£)) > 0. But from this it follows obviously that ®(to, x(t5)) < 0 implies
®(t, x(t)) s O for ¢ = ,. This proves the theorem, since (T, x(T)) = 0 if and only
if xeG.

3. AN EQUIVALENT CONDITION

Let U, ¥V = R” be two non-empty convex closed sets and let K < R” be a convex
cone with vertex 0. We say that V is convexly contained in U with respect to K,
if Kn D(U) = K~ D(V) and the function k() = hy(y) — hy(¥) is convex on
Q = K n D(U). If K = R" we say that V is convexly contained in U.

For K = R" and given U, V denote

(8) ZW) = {x | <y, x> S kW) + ]} for yeDU),
Z, = IIIEQU) Zc(l/’) = N Zc(w) .

yeD(U)nS

Note that Z_ is a convex set.

Proposition 1. V is convexly contained in U if and only if for every ¢ > 0, all
boundary points of the sets Z. are regular.



For the proof we need two lemmas:

Lemma 3. Let M, N < R" be two convex closed sets such that N £ ¢ and all
boundary points of N are regular. Then, all boundary points of the set M + N
are regular.

Proof. Every boundary point z of M + N satisfies <\, ) = hpr5(Wo) for some
Voe S and z = x + y, where x, y are boundary points of M, N respectively and
oy Xy = hpg{Wo)s (o, ¥> = hy(io). Since y is a regular boundary point of N,
we have for every Y€ S \ {o}:

Ky 2> = K x) + Ky < hy (W) + hy(¥) = hyran(¥)
q.e.d.

For C = R" convex, denote 4(C) the set of such i € R" for which h(y) = {y, x)
for some xe C.

Lemma 4. Let C < R", C % R" be convex closed. Then, A(C) contains the relative
interior of D(C).

Proof follows from [18, Theorem 2.3.4 and Corollary 2.3.5.3].

Lemma 5. Let f be convex and lower semicontinuous on a convex set D. Then,
for every ye D, limf((1 — ) x + 2y) = f(x).
a0

Proof. From f((1 — 2) x + Ay) < (1 — ) f(x) + Af(y) we have
iiirlx)f((l —Ax+ Ay < Ljil?) [(1 = 2fx)+ Af(»)] =fx).

The opposite inequality follows from the lower semicontinuity of f.

Proof of proposition 1. Assume that ¥ is convexly contained in U. Then, for
every ¢ 2 0, k() + c|| is a convex and homogeneous function defined on the
convex cone D(U) and, therefore, its closure is the support function of some convex
closed set Y (cf. [18, Theorem 13.2]).

We prove ¥ = Z,. Since Y < Z, (/) forall ye D(U), also Y= N Z(Y) = Z..
weD(U)
The converse inclusion follows from the obvious fact, that, h, () < k(Y) + c|y]
for all e D(U).
The regularity of the boundary points of Z, follows now from Z, = Z, + B,
and Lemma 3, where B, = {x [ |x] < ¢}

For the proof of the reverse implication of the proposition, we first prove

hz.w(¥) = hz () for ¢ > 0. Obviously, h, () £ hz(¥). Thus, {¥ | hz.qy(¥) <
< w0} D(Z.). First, we prove the equality hzc(m(l/l) = hg () for all y € A(Z,).




Let Y€ 4(C) N S. Then, there is a point x, e Z, such that {y, xo> = hz (o).

Since Z,= () Z[y) and x, is a boundary point of Z,, there is a sequence
eD(U)nS

{¥.} e D(U)wm fS']such that @(0Z{W), Xo) — 0 where 0Z, stands for the boundary

of Z,. Passing to a subsequence if necessary we may assume §, — y¥, l//*l = 1.

Obviously, x, € Z(§*) and {Y*, xo> = hy (¥*). But from the regularity of x, it

follows Yy == yr*.

Thus, x4 € dZ(o), and, consequently, {¥g, Xo) = hz_yo(¥o)-

Now, take any point Y, D(Z.). We take another point ¥, from the relative
interior of D(Z,). Then, y; = (1 — 2) Yo + A, is also contained in the relative
interior of D(Z,) (and thus, by lemma 4, in 4(Z,)) for all 1€ (0, 1]. hy, hy, by, as
support functions are convex and lower semicontinuous (cf. [18, Theorem 13.27)
which by Lemma 5 implies

by (o) = lim bz (Y1) = Lim hz,n(¥) = lim hy(¥,) —
A0 A0 . -0
— lm; hy(¥) +llir;1 ] = hu(io) — hy(Wo) + cltho| = hzgo(Wo) -

As a consequence we obtain that hz (W) = k() + c[y| is convex for every
¢ > 0, which is possible only if k is convex q.e.d.

Proposition 2. Let V be convexly contained in U with respect to K. Then, AV is
convexly contained in U with respect to K for all A e [0, 1].

Proof. Since both hy(¥) — h(¢) and (1 — 2) by () are convex on D(U) N K,
the same is true for hy(y) — hy(¥) = hy(y) — 1 hy(¥) = hy() — hy(¥) +
+ (1 — 2) hy(y), qed.

Theorem 2. Condition C is satisfied if and only if for every v € [t,, T}, the function
.
©) [ x w0 - m-x g e agw
is convex, i.e. if F(x) is convexly contained in Q(t), where

F(gp =N {x [ ¥, x> éfhE(—X'(T, 0y dt},

YeRn

T
0 =G6+n {x | <. x> gf ho(—=X'(T, 1) ) dt}.
Yer™ .

Proof. We note first that the sets {x|®(z,x) < c} are convex, the sets
{x] ®(r, x) = ¢} being their boundaries. Condition C says the same as that all
boundary points of the set {x | ®(r, x) < c} are regular.

7



Denote Y,(t) = X(, T) {x | &z, x) < c¢}. Obviously, all boundary points of the
sets Y,(z) are also regular. Further, we have

YeD(G)nS

9= n {x|<l//,x>§hc(‘l’)+

f Lo X5, ) = he(=X(1.99) 8] + <]

for ¢ 2 0. Hence, the theorem follows from Proposition 1 if we replace U, V, Z.
by Q(1), F(x), Y,(z) respectively.

Corollary. If F(t) is convexly contained in Q(t) for all € [t,, T] then for every
Xo € W(to, T), the game can be completed at T.

Remarks. 1. If for all te [z, T], —X(T, t) E is convexly contained in —X(T, ) P
with respect to D(G) (or, equivalently, E is convexly contained in P with respect
to —X(T, t) D(G)) then F(z) is convexly contained in Q(t).

This follows from the fact that D(F(r)) = R", D(Q(r)) = D(G) and

ho¥) = hr(¥) = J‘T[h,,(»X’(T, O¥) = h(=X'(T, 1) )] &t + ho() =

= f%[h—xmr)r(‘/’) — hxer oe($)] dt + he(¥)

for all ¢ e D(G).

2. The condition (9) of Theorem 2 appeared recently in [15] where it is also used
as a sufficient condition for completing the game. However, the strategy concept
of [15] is different in that the #-strategy can depend not only on the state, but also
on a small piece of the &-control in the future.

¥

4. AN EXAMPLE

In this section, we apply the results of section 2 to the example of [11] (cf. also [107)
the pursuit-evasion game of isotropic rcckets, with a more general type of constraints.
Consider a pursuit-evasion problem, defined by two differential equations

(10) X = —ax +u,
y= By~

where x, yeR", ue P, < R", ve E; < R" (P,, E, convex compact) and «, f§ are
positive numbers. The target set is the plane x = y. By substituting x; = x, x, = x%,



X3 = ¥, X4 = y we turn (10) into the standard form

Xy = X,,
X, = —ox; +u,
X3 = X4,
Xq4 = —fPxy — v,

P={(0,u4,0,0)|uePe}, E={0,00,0)]veE).

The system being autonomous, we can without loss of generality assume T = 0,
and write X(1) = X(0, ) = X(—t, 0). Then we have for t 2 0

X(t) = [1 e)(1) 0 0

0ec¢c™ 00
00 11,1
00 0 e,
where
T t
e,(t) = j' e~ de, fi(f) = f e~Pid¢
0 ]
and

D(G) = {(x,0, — % 0) | xeR"} .
For 1 2 0 and y € D(G), Y = (3,0, =, 0), we have

he(=X' (1) ¥) — he(=X' (1)) = es(1) hp(—x) — f1(1) hgolx) -

Thus, according to Remark 1 of section 2, the game can be completed at 0 from
every point of W(—t, 0), provided the set —f,(1) E, is convexly contained in e,() P,
forevery t = 0. Since f,e, allways lies between 1 and «f~!, in virtue of proposition 2
we can replace this condition by: —max {1, «B~*} E, is convexly contained in Pj.

As a consequence, we obtain the following result:

If —max{l,ap~'} E, < int P,, then the game can be completed from every
point of R".

To prove this, we note that there is an > 0 such that

Py = —(max {l,ap~'} + n) E; < P,

and that it suffices to prove that the game can be completed from every point with
P-strategies with values from the smaller set P,. For this auxiliary game, obviously
—f1E, is convexly contained is e, P, for every ¢ so that the game can be completed
from every point of U W(—1,0). We have for every y = (x, 0, —x, 0):

20

lim y(1, x}/) =00,
T w0



i0

where

oo ¥) = j Th =X §) — he(~X'(1) 9)] dt =

- j erlt) o= ) — £u(0) heo)] dt = 0.
Since (cf. (3))
XE) W(=0) = ({5 [ ) S held) + 205 )

€S
and X(r) is bounded, we have
U (5, 0) = R",
50 .

q.e.d.

5. OPTIMALITY OF THE COMPLETING STRATEGY

So far we have not been concerned with the problem of optimality of the pursuit
strategy, in the sense of minimizing the time at which the outcome trajectories
enter G.

To define the optimality concept precisely we need the notion of the value of
a game. Since the definition of it is rather lengthy, we refer the reader to the papers
[4-6]. .

Given an initial point (fo, x,), we shall call a strategy U(t, x) of 2 optimal, if for
every control v(¢) every trajectory of the system X € A(f) x + U(t, x) — v(t) starting
at (to, xo) satisfies x(t) € G for some t & [to, T], where T — 1, is the value of the
game in the sense of [4—6].

In general, the strategies, (4), (7) have no relation to the optimal ones except
in a special case, described in the following J

Theorem 3. Let for all t, ' €[tg, T], t S ', W(to, t) = W(to, t') is valid and let
xo € W(te, T) N U W(to, t). Assume that Condition C is satisfied. Then, the

te[to,T)
strategy U(t, x) given by (7) is optimal and T — t, is the value of the game.

Proof. It suffices to prove that for every t e [t,, T) there is an &-control v/(t)
such that under any #-control u(r) the solution of (1) with u = u(t), v = o(r) satisfies
x(t) ¢ G for 1€ty 7). :

Since for T € [0, T), xo ¢ W(to, 7), there is a §, € S such that

(“) Yo Xo) > hW(to.r)('//t) 2 hW(m,r)('I’:)

for all te[t,, 7).



Choose v,(f) so that (X'(to, £) Vo 0(8)> = he(—X'(to, t) §.). From the upper
semicontinuity of the set {ve E | <X'(t, £) ¥, v.(t)) = hg(=X'(T, t) ) and Fillip-
pov’s implicit function lemma []6] it follows that v, can be choosen measurable.
By multiplying both sides of (3) by X'(z, T) we obtain

W(tor ©) = {x | %y = ho(X' (100 ) W) + J [ =X (102 1) ) +
+ hp(—X'(to, 7) ¥] dt forall Y e X'(x, 1,) D(G)}.
In virtue of Condition C we have

o) = he(X'(te ) ¥) + Jﬁ [= (=X (to, ) ) +

to

(=X (10, 1) )] .
Thus

Wes XD > hg(X (1, T) 1) + J‘( [—he(=X"(to, ) ¥) + (=X (10, £) Y1) ] dr .
But we have ’

+(7) = X(z. tg) %0 + f "Xt 1) [-vdt) + ()] dt

fo

Wmﬂ%m=WMo+fKJmﬁwM®+

fo

+ <X (to, 1) e(t), u()>] dt = Yoy x> + j (=Xt 0 ) +
+ (X" (tor ) Yoo u(t)p] dt > he(X' (10, 7) W) -

Consequently, x(t).¢ G. Further, using (11) we obtain by a similar computation
x(t) ¢ G for t < .

The following theorem gives a sufficient condition for the inclusion assumption
of Theorem 3.

Theorem 4. Assume that for every t € [ty, T], x€ G, ¥ € M(x),

(12) min max ¢, A() x + u —v) £0
(where M(x) is the set of all support normals to G at x) is satisfied. Then, for every
t, £ 1, from [to, T], W(to, 1) = W(to, t5).

Proof. From [17, § 3] it follows that G is selectively invariant, i.e. there is an
upper semicontinuous set-valued function U(t, x) such that all solutions of the
equation

(13) ' sed(tyx + U(t,x) — E

starting in G remain in G.

11



Assume now xo € W(ty, t,). Then, for any &-control v(f) on [to, 1,], there is a
#-control u(t) on [t,, t,] such that the solution x(f) of (1) with u = u(f), v = v(z)
passing through x, at t = ¢, satisfies x(t,) € G. Extend x(f) to the interval [t,, t,]
by taking any solution of the equation % € A(f) x + U(t, x) — () on [ty, t,] starting
at x(t,). Since this is also a solution of (13), we have x(t,) € G. Using Fillipov’s
implicit function lemma we find that there is a control u(f) e U(t, x(£)) = P such
that x() on [¢,, t,] is a solution of (1) with u = u(t), v = v(t). Thus, for v(t) we have
constructed a control u(f) such that x(t,) € G, q.e.d. .
(Received January 25, 1971.)
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