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Contributions to Automatic Construction 
and Optimalization of Identification Keys 

KAMILA BENDOVA 

In this paper an attempt is made to give a mathematical description of an identification key 
with special regard to keys in current use in biology. Such mathematical object is to serve for the 
study of problems in constructing keys and of criteria for their evaluation and mutual comparison. 
The aim of the study is to discover possibilities for developing algorithms on the basis of which 
a computer could construct suitable keys or improve those already established. 

The present problem may be consider as a part of an extensive complex of questions 
involving various aspects relating to classification (i.e. mapping, distribution) in the 
broadest sense of the term. A mathematical solution of these problems becomes 
indispensable for science, technology and economic coordination. The practical 
results in the construction of biological identification keys would with small modi
fications be applicable in various other fields, such as economical catalogization, 
accelerated sorting of data, efficient storage and distribution. 

In view of the possible applications it is useful, before attempting the mathematical 
description, to state what an identification key is and what can reasonably be expected 
from it in order to avoid possible misunderstanding and confusion with seemingly 
alike structures. Hierarchical classification will be mentioned in the following mainly 
for the purpose of stressing differences in concepts. In other respects the comments 
do not claim either precision or completeness. 

The basic difference between a hierarchical classification and an identification key 
is evident if only intuitively to any scientic worker, at least in biology where both 
systems are in current use. However, this intuition fails when we have to construct 
and to suggest a mathematical description of artificial systems (i.e. hierarchical 
classifications and identification keys) which in substance means following certain 
criteria chosen beforehand. Confusion in viewpoints and requirements, lack of pre
cision of the criteria as well as erroneous interpretation of the results often lead to 
a sceptical attitude among biologists. 



484 Therefore, we shall briefly state what is understood in science in general and in 
biology in particular by the concepts of hierarchical classifications and identification 
keys, what basic requirements need be fulfilled and what are the normal criteria of 
their suitability. 

Hierarchical classification is a means for structuring and ordering our knowledge. 
Its objective is to arrange some beforehand defined empirical (i.e.potentially open 
or infinite) set of objects, i.e. the animal kingdom, into a system with descending 
hierarchy in such a way that any object is uniquely fixable at whatever hierarchical 
level and that its position on one level uniquely determines its place on all higher 
levels. Mathematically speaking each level represents the covering of the whole set 
by pairwise disjoint subsets. On the hierarchically highest level the covering consists 
of one element only. The levels are linearly ordered, each set of this system is either 
included in the set on a higher level or is disjoint with it. 

The arrangment into subsets is done on the basis of a defined set of properties. 
However, and this is significant for a hierarchical classification, allocation to the 
corresponding set is not necessarily bound to the presence of a property or a group 
of properties. The determinant criterion of classification is the high degree of similar
ity between the elements of the same sets. "Similarity" being a subjective criterion is 
difficult to describe in exact terms; sufficient to say that the degree of similarity is 
given by the whole set and that some sets need not be defined explicitly but only as 
classes grouping elements of similar nature. 

A hierarchical classification already implicitly supposes a concept of that knowledge 
for which hierarchization is done. In order to allow at all investigation of the in
tuitively estimated degree of similarity a group of preferred properties has to be 
separated and it must be decided which attributes are fundamental in respect of 
a given concept (e.g. evolution theory) and which are secondary. In judging hierar
chical classifications the aspect of economy is subsidiary to the requirement that all 
corresponding subsets (and associated concepts) of the same hierarchical type be on 
one hierarchical level. From a purely formal point of view, one may speak of a ten
dency to place all the minimal subsets (e.g. species) of a system (or at least large 
subsystems) of a hierarchical classification on the same level. 

Two characteristic features of a hierarchical classification are connected with the 
foregoing statement. One is the admissibility of a hierarchically higher concept (or 
a whole series of them) containing a single lower concept. The other feature is the 
admissibility and virtually almost inevitability of a nondyadic division. A hierarchical 
classification generally is not regarded as a means, a merely technical tool, but rather 
as the result and essential component of a complex and long-lasting process of 
cognition. Direct allocation of a particular object on a higher hierarchical level might 
be an entirely nontrivial achievement which takes into the consideration the inter
relationship of the whole system and requires technically demanding and thorough 
investigation of the given object (e.g. study of discrete phase of ontogenesis). In 
practice this is not done since, as already known, for unique allocation of an 



object in the whole system of the hierarchical classification it is sufficient to place it 
on the lowest hierarchical level (in biology this means assignement to a particular 
species). It is only on this hierarchical level where each subset has to be fully deter
mined by a specific combination of properties (conjunction of properties or of their 
negations), in other words that any object be clearly and independently identifiable 
and, if possible, in a mechanical and simple manner. 

An identification key is the very instrument for this purpose. It prescribes a mechan
ical procedures which applied to any object leads to its identification, i.e. assigns to it 
just one species (subset). The identification key is secondary in the sense that it 
assumes an already existing hierarchical classification (or generally any classification) 
of a given empirical complex, in other words a system of subsets (OTU's - operation
al taxonomic units, in biology corresponding species) presenting a disjointed 
covering of the whole complex with a finite set of properties by which this covering 
can be fully defined. Whenever in the following, for the sake of briefness, "species" 
is mentioned, it means the corresponding subset of the covering determined by the 
characteristic function which is defined on the given set of properties, i.e. for each 
property it is true that all elements of the subset have this property or all elements 
of the subset do not have this property. In the identification of an unknown object it 
would be highly impractical but in principle possible to investigate first the course 
of the characteristic function and then to go through the list of species until the 
respective species with the same characteristic function is found. The identification 
key operates according to the following principle: If an element has or has not 
a certain property the list of relevant species is reduced. For such a reduced list we 
chose another property which divides the list again. Finally, only one species is left — 
the one we were looking for. It can be seen that the identification key divides the given 
complex in a similar manner as a hierarchical classification. The result is a hierarchical 
system ending in the same subsets (species) allowing to identify through such steps 
any unknown object in terms of the species. This morphological similarity precisely 
is the source of confusion. However, the two types of division substantially differ 
both in the objectives and requirements. Instead of proper hierarchization in the 
sense of a given concept of knowledge the aim of identification key is the fast identi
fication of an unknown object. Properties therefore are not judged by their "impor
tance" but by their "suitability" for division. Furthermore the individual identifica
tion steps have to be independent of each other, i.e. each subset of the system must 
uniquely be defined by the relevant properties contrary to hierarchical classification 
where similarity classes occur. This implies (again in contrast to hierarchical clas
sification) that each identification key can be transformed into a dyadic one. Finally, 
it is clear, that, for the sake of economy, ineffective steps are to be avoided. Con
sequently, it is not necessary that the species occur on the same level. 

In summarizing the above comments it can be stated that, notwithstanding the 
analogy between the two systems, natural hierarchical classification (and in certain 
aspects also "artificial" one) represents some sort of compendium of our knowledge 



about the given complex of objects. On the other hand, a key is a mere technical means 
for a fast and reliable orientation in this compendium. As one cannot dispense of the 
source document in compiling a register, so thus one need beforehand a hierarchical 
classification for the construction of an identification key. On the contrary, a key like 
a register follows, in subdividing and sorting out the given material, completely dif
ferent criteria. A hierarchical classification assigns to the object a system of sets 
which clarify its nature and its place in the complex; a key assigns to it a certain se
quence of steps aligning it with identical (in the sense of classification) objects. It 
should be added that our choice of terminology is adjusted to the purely auxiliary 
character of the system. 

These problems were discussed in greater detail in order to avoid misunderstanding 
as well as to elucidate the merits of the criteria applied to the material. Criteria of 
"economy" were on purpose not specified as their precise formulation is an essential 
part of the present work. Here it should only be mentioned that contrary to the cur
rent biologist's concept certain restrictions were adopted beforehand in the formula
tion of the problem. In the first place only dyadic keys will be considered. Owing to 
the convertibility of all keys into dyadic ones, already mentioned above, most of the 
results obtained can in principle be applied also to nondyadic keys. Furthermore no 
attention will be paid to differences in the frequency of occurrence of a given species 
or to the difficulties in examining individual properties. 

This work is divided into two parts: the first deals with mathematical description 
of a key, formulation of criteria for comparison and some partial results concerning 
the error of a partition. At the end of the first part, it will be shown what are the 
possibilities for the key construction. In the second part a possible method applicable 
in the automatic construction and optimalization of keys is suggested. 

The present work belongs to the field of problems dealt with on the seminar about 
the applications of mathematical logic on the Mathematico-physical faculty of Charles 
University in years 1970 — 71.1 should like to present my thanks to all the participants 
for the many suggestions and useful criticism which substantially helped to put this 
paper into the present form. Above all I express my profound gratitude to Dr Petr 
Hajek the leader of the seminar on whose iniciative this investigation was started for 
his outstanding help, continuous encouragement and support. 

1. NOTATION 

/ In this section we shall summarize some known notions from logic and the theory 
of partially ordered sets useful for our purpose. 

A language consists of (l) unary predicate symbols Pu ..., P„, (2) one individual 
variable (which can, for shortness, be ommited), (3) logical connectives and (4) 
quantifiers. 

o 
We adopt the usual notion of formulas, A £; x pt ~ a n empty conjunction - is 

i = i 



also a formula. Thus an elementary conjunction is each formula A Et x Pi where 
i = l 

e; e {0, 1}, 0 x P = 1 P, 1 x P = P and k ^ 0. 
A model (semantic unary model of the type n) is a finite non-empty set E and n 

predicates 9>
1,...,3P„ (properties). We write Jl = <E, SPU ..., &„}. We can also 

assign to each predicate SP^ a function vt mapping E into the two-elements set {0, 1} 
such that vt(e) = 1 if SP^e) and vt(e) = 0 if non SP-^e) for each e e E. Then we mean 
by a model Ji the set E with the functions vu ..., v„. 

The satisfaction is defined as usual; in our particular case an elementary conjunction 
* k 

A e; x P ; is satisfied by e in Ji (we write Jt V A £; x ^;[ e]) if ^ i ( e ) a s s 0 0 n a s 

i = 1 i = 1 

e; = 1 and non ^ ( e ) as soon as e; = 0. 

1.1. Definition. A rree is a partially ordered set (V <) with the following properties: 
1) Vis finite and non-empty; 
2) (Vx e V) ({y; y 5| x} is linearly ordered); 
3) (3zeV)(VxeV)(z < x). 

Remark. By 3) there is a least element; it will be called the root fcF. 

1.2. Definition. We say that a tree Vis a dyadic tree if 

(Vx e V) (x #= ky => (3! j e V) (x || y & {z; z < x} = {w; w < y})). 

1.3. Definition. The canonical tree (U, =) is a set of all finite sequences of zeros 
and ones with the natural partial ordering of sequences: 

<a! , . . . , ak}, <&.,.. . , b , > e U - > 

=> « f l l , . . . , aft> < <fc.,..., fe;> = fc ^ / &(Vi ^ fc) (a; = bt)). 

Remark. Let (U, g ) be the canonical tree and let V c u. We shall always suppose 
that Vis partially ordered by the natural partial ordering. 

1.4. Definition. Let (U, <) be the canonical tree, a = <a1; ..., ak}, b = <fe., . . . 
..., bj>. We define: 

1) the composition a*b = <a t , . . . , a^, fox, ..., b(> (in particular, we write a * 0 = 
= a*<0> = <ax, ...,a fc,0>, A * 1 = a * < l > = < a 1 , . . . , f l t o l » ; 

2) the meet a A b = <c t, ..., cft> if a = <cl5 ..., cft, aft + 1, ..., ak} & b = <c :, . . . 
•••> cft, 6ft+1, ..., i>,> &ah+1 4= fcft+1. 

3) the function nexf: if a < b i.e. b = <a l5 ..., ak, bk+ u ..., b,} then next (a, b) = 

= h+v 
We call 

a) 0 the roof (obviously 0 is the least element); 



488 b) a * 0, a * 1 the successors of a; 
c) Pr(d) = (ax, ..., ak_!> the predecessor of a; 
d) d(a) = <al5 ..., %_!, at> where 0 = 1 and I = 0 the neighbour of a; 
e) |a | the norm of a if a = <a1; ..., a.a|>. 

1.5. Definition. Let (U, ^ ) be the canonical tree. We say that V £ U is a segment 
of the canonical tree if 

1) Vis a finite and non-empty subset of U; 
2) (Vx 6 V) (Vy e U) (y <x^yeV); 
3) (Vx6 7 ) ( x * 0 - » d ( x ) e 7 ) . 

Remark. A segment of the canonical tree is obviously a dyadic tree. 

1.6. Lemma. Every dyadic tree is isomorphic to some segment of a canonical tree. 

By the term dyadic tree we understand in the following a segment of a canonical 
tree. 

Remark. Let Vbe a dyadic tree. Then elements of V (i.e. vertices of the canonical 
tree) are of two kinds: 

1) Vertices ueV such that u * 0 e V and u * 1 e V. We call them nodes of V; 
2) vertices ueV such that u * 0 $ V and u*\$V. We call them vertices of V and 

we denote the set of all vertices of Vby V(V). 

2. KEYS AND CRITERIA — DEFINITIONS 

The problem presented in this section deals with a mathematical description of 
identification key as particularly known in biology. To the biologist a key represents 
a book with an organized system of questions and references arranged in chains each 
terminated in the taxon (name of OTU - operational taxonomic unit) identifying 
the individual. The answer to a question refers to another question; each taxon has 
its own sequence or, in other words, only one sequence of answers corresponds to 
a particular taxon. 

The dyadic key with its questions and two references to another question is similar 
to a dyadic tree where questions are assigned to nodes and references to edges. 

Before constructing a key a complex of individuals, a set of taxons (OTU's) and 
a set of properties must be given. The individuals of the same taxon are identical 
with respect to the set of properties, and two individuals of different taxons are 
discernible by some property (from our set). We shall therefore consider only a set 
which contains one representant of each taxon. Our original aim will be achieved if 
we succeed in the construction of a key distinguishing all elements of this representa
tive set. 

Let us have a set E of objects and a sequence of properties (predicates) &Xi ..., &„. 



This forms a model M = <E, 0>u..., &>„} such that objects of E are discernible in 489 
the sense of Jt, i.e. if for e l5 e2 e E is ex =)= e2 then there is a ^ such that Jt V Pj[ei] 
iSJtY ~lPj[e2]. In the following, we will always use the letter J/ for a model Ji = 
= <£,£?., ...,i?„>. 

2.1. Definition. Let (U, g ) be the canonical tree and let V £ U. Then V= Vu 
u { u e ! i ; (3DeV)(v = Pr(u))} is called the completion of V. 

2.2. Definition. / is a tree-function if D(/) ( = D ( / ) ) is a dyadic tree. 

We denote the set of vertices of D(f) to V"(/). D(/) is the set of nodes of D~(f). 

2.3. Definition. L e t / b e a tree-function into the set of predicate symbols and let Jt 
be a model. Then for w 6 D(f) we define: 

1) the conjunction corresponding to the node u and to the function / : 

k(u) = A next (v, u) x f(v) 
v<u 

where 0 x P = I P , 1 x P = P, 
2) the set of objects of A £ E by which the respective conjunction is satisfied 

in Jt: 

A{ = {eeA; Jt r k(u) [e]} , 

3) the system of subsets of / determined by the respective conjunctions: 

Ar = {Af
u;ueD(f)}. 

2.4. Definition. A tree-function / is a key for A £ E on Jt if 
1) card (A) > 1, 
2) ( V u e D ( / ) ) ( A ^ * 0 ) , 
3)(Ve6A)(3MeD(/))K = {e}), 

/ is a partial key fox A ^ E on Jt iff satisfies the conditions 1), 2). 

Remark. If / is a key then clearly k(u) is an elementary conjuction for every 

« 6 D ( / ) . 

2.5. Lemma. Let / be a partial key for A £ E on Jt. Then 

(VeeE)(31ueV(f))(eeEl). 

Proof. First we prove that for every partial key on Jt we have Jt h V k(u). 

Let D(n) = V{k(u), (u e D(f) & |«| = n ) v (u e V(/) & |n| = n)}. By induction 
using the equivalence (<p & I P ) v (<p & P) = q> it is easy to show that . # I- D(n) 
for every Jt and every n. For n > max \u\ it follows JtY \l k(u) thus (Ve) (3M) . 

«eD(/) ueV(n 



490 . (u e V(f) & e e Ef„). Let u t 4= u2 be two vertices such that e e JS;f. and e € ££, i.e. 
.# I- fc(uj) [e], ^ h /c(u2) [e]. Clearly next (ux A U2 , u t) + next (ux A U2 , U2) hence 

^# h (next (ux A u2, ut) x / ( u j A U2) ^ next (ux A U2, U2) X / ( u t A U 2 ) ) [e] 

which is a contradiction. 

The book where the key / i s written in some appropriate ordering is exactly the key 
in the biologist's sense. If we return to this original conception then for comparing 
keys — with the restrictions accepted above — three demands can be stressed: 

1) the extend of the book; 
2) the average number of steps which is necessary for identification; 
3) the maximal number of steps which is necessary for identification. 
We shall investigate how we can express these demands in the frame of our for

malization; if we can use them as criteria of suitability and which form of domain 
(resp. D(/)) must be assumed for / to be a suitable key, i.e. minimal in the sense of 
some one from the above criteria. 

2.6. Denotation. £"„ is the class of all trees with n vertices. 

Let i f be a model, card (E) = n, f a key for E. Then clearly D(f) is an element 

o f y „ . 

2.7. Lemma. Let Z e £f„, let p(Z) be the number of nodes in the tree Z. Then 
p(Z) = n - 1. 

Thus p(p(f)) which corresponds to the extend of a book is constant. This is 
implied already by the definition of a key. So we cannot consider it as a criterion of 
suitability. 

2.8. Definition. Let Z e £fn, s(Z) = £ |u|. Then we define a criterion s: 
ueV(Z) 

Y,Ze£f„^(Y^sZ m s(Y) g s(Z)). 

Remark. The criterion s is obviously a partial quasi-ordering on y „ . 

2.9. Theorem. The following three statements are equivalent: 

1) Z e £fn is minimal in £?„ in the sense of s, 
2) the vertices of Z are on the levels k and k + 1 where k = [log2 n] (we put 

L2(n) = [log2 n]), 
3)s(Z) = n ( L 2 ( n ) + . 2 ) - 2 ^ + 1. 

2.10. Theorem. The following three statements are equivalent: 

1) Ze&n is maximal in y „ in the sense of s, 



2) for every node u of Z it holds: u * 0 is a vertex or u * 1 is a vertex, 
3) s(Z) = \(n* + n-2). 

Remark. The results of 2.9 and 2.10 are known, see [2] (the question of minimal 
trees is solved less generally by finding one minimal tree). 

2.11. Definition. Let Z e S"„, d(Z) = max |M|. Then we define a criterion d: 
«eV(Z) 

Y Z G S"„ => (Y g d Z = d(Y) ^ rf(Z)). 

Remark. The criterion d is obviously a partial quasi-ordering on 5",,. The minimal 
and maximal trees in the sense of d are the same as these in the sense of S but in 
general these criteria are different. 

Thus we can consider both S which corresponds to the average number of steps 
and d which corresponds to the maximal number of steps as criteria of suitability. 
In the following we restrict ourselves to the criterion s. If we use terms good, better 
etc. we will mean good, better etc. in the sense of the criterion S. 

3. THE THEORY OF ERROR 

By Theorem 2.9 we know the best trees in the sense of criterion S. It is possible that 
in the model no key/exists the D~(f) of which is one of the best trees. Hence we shall 
try to find an optimal key on Ji, i.e. a key j such that D(j) is optimal among all 
trees D(g) where a is a key. 

For this purpose we answer two other questions: 
1) Let Ji be a model; we are constructing a key on Ji from the root and we have 

already a partial key f. Can we say something about j with respect to any key / 
which is an extension (i.e. / ^ D(f) = / ) o f /? 

2) Theorem 2.9 gives the conditions for a tree to be optimal. How are the conditions 
for a function / such that D(f) is optimal? 

3.1. Definition. Put z(n) = n(L2(n) + 2) - 2 i 2 (n ) + 1 where L2(n) = [log2 n] and 

er(a, b) = z(a) + z(b) + a + b - z(a + b). 

We call er(a, b) the error of a partition. 

Remark. By Theorem 2.9 z(n) is s(Z) if Z e S/'n is the best key. The error of a parti
tion in the root er(card (Ef

0), card (E{)) is thus the difference between s(D(g)) and 

S(D~(j)) where j is a key which after deviding to the subsets Ef
Q, E{ is best devided and g 

is a key which is best devided already from the root. 

3.2. Theorem. Let a,beN. The function er has the following properties: 
A. er(a, b) = er(b, a). 



492 B. er(a + 1, b - l) = er(a, b) + L2(a) - L2(b - i). 
C. er(a - [a/2], [a/2]) = 0. 
D. er(a, b) ^ 0. 

E. for every model M where card (E) = n and every key j for £ on M we have 
the following: 

s(f) = s(D(j)) = z(«) + X er(card(£^ 0 ) ,card(£^ 1 ) ) -
«6D(/) 

Proof. A. Obvious. 
B. First we prove z(« + 1) = z(n) + L2(n) + 2. 

1) Let L2(n + 1) = L2(n); then 

z(n + 1) = (n + 1) (L2(n) + 2) - 2ij<"> + 1 = z(n) + L2(n) + 2 . 

2) Let L2(n + 1) = L2(n) + 1, i.e. n + 1 = 2i2<"> + 1 then z(n + 1) = (n + 1) . 
. (L2(n) + 3) - 2t2<"> + 2 = z(n) + L2(n) + 2. 

Thus we have z(a + 1) = z(a) +L2(a) + 2, z(b - l) = z(b) - L2(b - 1) - 2 
and hence er(a + 1, fe - 1) = z(a + 1) + z(fe - l) + a + b — z(a + b) = 
= er(a, b) + L2(a) - L2(b - l). 

C. 1) Let L2([a/2]) = L2(a - [a/2]) = L2(a) - 1. Then er^a^, a - [a/2]) = 
= [ A / 2 ] (L2(a) + 1) - 2t2<"> + (a - [a/2]) (L2(fl) + l) - 2 ^ + a - a(L2(a) + 
+ 2) + 2L 2 ( o ) + 1 = 0. 

2) Let L 2 ( [ A / 2 ] ) = L2(a) - 1 and L2(a - [a/2]) = L2(a). The proof is similar. 

D. First we prove: If a = b then er(a + 1, b — l) = er(a, fo). Since a = b it 
follows that L2(a) - L2(b - 1) = 0 and thus er(a + 1, b - 1) = er(a, b) + 
+ L2(a) - L2(b - 1) = er(a, b). 

Let a > b. We construct two sequences {«,•}"= 1; {b ;}"=i: fli = a, a£ + i = fl,- — 1, 
an = a + b-{(a + b)/2], bj = b, b i + i = b ; + 1, b„ = [(fl + b)/2]. Then er(an, 
b„) = 0 and clearly a,- = b,- for j = 1, ..., n. Thus er(a, b) = er(a1; &,.);> . . ._• 
^ er(a„, b„) = 0. 

E. Let j be a key, u e D(j). We denote by j " the following function: D(f) = 
= {w;u *we D(f)} and for w e D(j") isj"(w) = f(u * w). f is clearly a key for E{ 
and we have (E{){," = £/J*w. The norm ojjis defined as follows: 

| / | - s(f) - z(card (£)) = JJu\ - z(card (£)) . 

First we prove the following Lemma: Let j be a key for £. If we write erf(u) = 

= er(card ( £ ^ 0 ) , card (E^)) then 

|/| = |/°| + |j1| + *'7(0). 
Let card (£) = n. 



1) Let card (E^) = 1. Then 

-(/) = I M = - + I H = - + s(/1) + » - I' -- » + </') 
«sV(/) U6V(/) 

hence 

|j[ = s(j) - z(n) = n + s^ 1 ) - z(n - l) - z(l) + ^(n - 1, 1) - „ = 

= | / 1 | + er / (0) . 

2) Let card (E{) = 1. The proof is similar. 
3) Let card (E{) > 1 and card (E{) > 1. Then 

< / ) - S H - I H + S |«| = card(E^) + s(/°) + card(E{) + s (p ) 
ueVf/) tteV(/) ueV(/) 

"SO u&l 

hence 

| j | = s ( j ) - z ( n ) = | j ° | + | / 1 | + e r / ( 0 ) . 

Finally we prove the statement E. Let M be a model, card (E) = n, / be a key for E. 
We prove it by induction on n: 

1) Let n = 2. Then | / | = 0, erf(0) = 0. 
2) Suppose that E. holds for k < n. Let card (E£) > 1, card (E{) > 1. 
Then by the Lemma 

1/1 = l/°l + I/1! + «7(«0 = 1 erA«) + I «•/.(«) + «•/(») • 
ueD(/») ueD(/ ' ) 

Clearly for w e D(/°) we have erf0(v) = er(card ( (Eo^o) , card ((£o~)'*i)) = 
= er(card ( E o ^ o ) , card (£„"„,,,.)) = e r / 0 * t>), similarly f o r / 1 and D(/°) u Df/1) u 
u {0} = D(f) and hence | / | = £ <?>>(«). For a key / such that card (Ef

0) = 1 or 
ueD(f) 

card (E{) = 1 we proceed similarly. 

In this Theorem we see at least a partial answer on our first question. 

3.3. Corollary. Let J b e a model, let / be a key for E on J{ and let g be a partial 
key for E. If £ er9(u) > s(/) then also s(g) = £ er

a(
u) = s(f) f ° r every key g 

ueD(g) ueD(g) 

which is an extension of A. 

3.4. Theorem. 

er(a, n — a) = 0 = ael(n) 

where 

/(„) = <n - 2L2(n), 2L2(n)> if n ^ 3.2L2(")_1 

and 

7(n) = <2L2(")"1, n - 2L2(n)~1> if n g 3 .2 W " > - 1 . 



494 Proof. Let „ _ 3 . 2 L 2 « - \ W e p r o v e t h e s t a t e m e n t in five steps-

1) 2L 2 (" )-1 _ n - 2L2("> < 2L2("> and hence L2(„ - 2L2(">) = La(„) _ L T h u s 

er(n - 2 £ 2 « 2
L2(">) = 2L2(">(L2(„) + 2) - 2L2("> + 1 + 

+ (n - 2L2(">) (L2(n) + !) _ 2-*00 + „ _ „(_2(„) + 2 ) + 2
L2<"m _ 0 

2) „ - 2L2("> _ a § 2L2("> iff 2L2("> _ „ - a _ „ - 2L2(">. 
3) Let a el(n). By the symmetry of er we can suppose a _ „ — a . 
Assume er(a, „ - a) > 0. Hence by Lemma in Theorem 3.2 er(2L2(">, n _ 2

L2(">) > 
> 0 which is a contradiction with l) 

4) er(2L2("> + 1, n - 2L2(">- l) = er(2L2(">, „ - 2L2(">) + L2(n) _ (_,(„) _ l } _ 

5) Let a $l(n). Then er(a, n - a) > 0 for if a _ n — a then a > 2L2("> and hence 
„ - a < n - 2L2(">. Thus 

er(a, n - a) _ er(2L2("> + 1, n - 2L2<"> - l) = 1 . 

By the symmetry of er this holds also for a < n - a. 
The proof of the case „ _ 3.2L2(">_1 is similar. 

3.5. Remark. The interval l(2k) has only one element. The length of l(n) increases 
with increasing distance of n from powers of 2, more exactly between numbers 2k 

and 2k+l, being greatest in 2k + 2k~l. The length of the interval I(2k + 2*"1) is 2 t _ 1 . 

From Theorems 3.2 and 3.4 we have an answer to the second question: 

3.6. Corollary. Let Ji be a model, j a key for E. Then D(j) is an optimal tree iff 
(Vu e D(j)) (erf(u) = 0) i.e. iff (V« 6 D(/)) (card (E„*0) e /(card (_„)))• 

4. ALGORITHMS 

We now turn our attention to the key constructing algorithms. Let Ji be a model. 
Our attempt is to construct a key / for E on Ji which is optimal among all keys 
for E on Ji i.e. such that for every key g s(g) _ s(f). 

Published algorithms - as far as known to us [2], [3] - construct so called halving 
keys. 

4.1. Definition. Sat^ (k) = {e e A; Ji V k[e]} where k is some elementary con

junction A £; x IV 
> = i 

4.2. Definition. A key j is halving if 

(Vu e D(/)) (V, = 1, .•., k) (|card (_£,„) - card (_£»i)| _ 

_ Icard (Sat£u/ P.) - card (Sat£u/ - |P,) |) . 



Algorithms constructing halving key proceed in the obvious way: they start from the 

root and assign to each node that property which devides the respective set most 

symmetrically. We shall show that the halving key need not be optimal. 

4.3. Theorem. There is a model Jt and two keys / and g for E such that / is halving 

key and g is not but g is better than/. 

e i e2 e3 e4 
es e6 e 7 e8 

Л 0 0 0 0 1 1 1 1 

Pг 0 0 0 1 1 1 1 1 

-N 0 0 0 1 1 0 0 0 

PA 1 0 0 0 0 1 0 0 

P5 
0 1 0 0 0 0 1 0 

Fig. 1. 

Proof. See fig. 1. The model Ji = <{eu ..., e8}; 0>u ..., ^>5> is given by the 

matrix (by the definition of a model we use the corresponding functions vu ..., vs). 

Two schemes represent functions / and g (the respective properties are added to 

nodes, respective objects to vertices and ordering on levels is lexicographic). Clearly/ 

is a halving key and g is not, but 

s(f) = 26 > 25 = s(g) . 

4.4. Definition. Let Jt be a model,/a partial key. We say that/ i s complete on the 

level j if 

(Vu e D(/)) (\u\ < j) & (Vu e V(f)) (card (E{) = 1 v \u\ = j) . 

I f/ is a partial key we use/ to denote an arbitrary extension off. 

We have shown that the halving key is not always optimal and that our optimal 

key need not be the halving one. This is true even if we consider the following modi-



fication of the definition of a halving key: 

(V« e D(f)) (Vi = 1, ..., k) (er(card (J&0), card (E(ml)) < 

< er(card (Sat£u/ P ;), card (Sat£u/ ~]P,))), 

since otherwise we would obtain the following false statement as a corollary: 

Let / , g be partial keys complete to the level 1 then 

( £ er/u) = er/0) < erg(0) = £ e r » ) -» (3/) (V») (S(/) < s(g)). 
ueD(f) ueD(g) 
I « I < 1 I « I < 1 

Even a weaker statement is false: 

Let Ji be a model (card E = k); f, g be partial keys complete to the level / = 
= L2(k) - 2 then 

[(V; < L2(fc) - 2) ( X erx(«) < I er9(u))] -» (3/) (V*) (s(/) < sQ,)) . 
«6D(/) ueD(<j) 
I«I<J i«i<; 

Instead, the contrary statement is true: 

4.5. Theorem. For every / there is a model Jt, a key g such that max |«| = I + 2 
ueV(g) 

and a partial key / such that (Vj <= 0 ( Z e r / ( u ) < Z erg(u)) D u t nevertheless 
«eD(/) »eO(fl) 
l « l < ; l « l < i 

(V/ ) ( S ( f l )< s ( / ) ) . 

Proof. First we prove the following 

Lemma. Let Z e £fn and let a number at assign to every vt e V(Z) (i = 1, ..., n). 

Then there is a model . # , card (E) = £ a, and a partial key / f o r E such that D(f) = 
i = i 

= Z and card (E£) = at for t>, 6 V(Z). 

Proof. For vt e V(Z) we define E„ = {ej, ..., e„.} and we put E = U E„. For the 
veV(Z) 

nodes we define E„ = {e e E; e e Eu & r e V(Z) 8c v = u}. Then for every a e Z -
- V(Z) we choose a property .^(u) such that &>w(e) iff e e EBlM. Let ^ l 5 ..., 0>u_ t be 
a sequence of all such defined properties. Then clearly Jt = <E, 0>u ..., ^,„_1> is 
a model a n d / defined by/(u) = P ; if ^ = ^ ( u ) is a partial required key. 

We now prove Theorem 4.5. 

Let Z be a tree with (2 i + 2 — 6) vertices: on the level / there are two vertices ux = 
= <1, 0, ..., 0> and u0 > 0; other vertices are on the level / + 2. By the Lemma we 
construct a model Jt' = <E, Pu ..., Pk} and a partial key/such that card (E„"0) = 4, 
card (££) = 4, card (E{) = 1 if u e V(Z) 8cu * u0 8cu * uu Clearly er^u) = 0 
for u e D(/). We choose e0 e E„"o and define a property ^": 0>(e) iff e e E{ u {e0}. 



On the model Jt" = <E, &>u ..., 0>k, 0>> we define a partial key g: g(0) = P and 
g(u) = f(u) for M e D(j) & « 4= 0. From the construction of the model J/' and defini
tion of ut we see that e0 e E*r We now have a similar situation as in Theorem 4.3: 

card (E{0) = 4 , card (££) = 4 , card (EHo) = 3 , card (E*,) = 5 . 

Thus we can choose the properties 0>k + 2, 0>k + 3, 0>k+4. for Ef
uo u Ef

ui corresponding 
to &>z, &>±, 0*5 of Theorem 4.3. On the model Jt = <E; 0>u ..., 0>k, 0>, @k+2, ... 
..., 0>k+iC> we define a key g as an extension of g such that erv(u) = 0 if u 4= 0-
Hence we have 

( j ^ / ) = > Y erX«) = 0 < l = I er?(M) 
ueD(/) «eD(g) 
l«l<J l» l< / 

but for every extension j of j err(w0) = 1 & er^Uj) = 1 thus s(^) < s(J). For 
illustration, we add schemes of the functions / and g for the case / = 2 (Fig. 2). 

Fig. 2. 

It is proposed in [3] to choose that property which allows good partition into 
two subsets for which there are good parting properties. Comparing partial keys 
with respect to their partial sums of errors is a more precise expression of this aim. 
But, we have seen that in order to get an optimal key (on J/) we must compare 
nearly the whole keys. In other words, before the construction of nearly the whole 
key is completed we cannot say if a key j with j(0) = P is optimal. 

So it seems that only two possibilities remain: 

1) To construct nearly all keys and to compare them. In this case we can use the 
theory of error (Corollary 3.3) for eliminating bad keys: if we have some key j we 



can eliminate every partial key having the sum of errors greater than the norm ofj. 
However, without considerable improvements this method would obviously not be 
technically feasible at present. Its disadvantage comes also from practical aspects: 
if we need to modify an already existing key with respect to a larger number of objects. 
If we have an optimal key f for 4 c £ on J and if we look for an optimal key 
for E we must repeat the whole process of finding an optimal key for E because the 
key for E constructed as an extension ofj need not be optimal for E. 

2) Giving up the establishment of an optimal key the alternative is the construction 
of a key satisfactory in a certain sense, a locally optimal key (with respect to some 
metric, ordering or graph). Included here are procedures of correcting already avail
able keys such as the method of transfer described in the sequel. 

5. THE METHOD OF TRANSFER 

At the end of the Section 4 we distinguished two possible kinds of procedures in 
constructing keys. In the frame of the second kind of procedures we propose a method 
of corrections of a given key. These corrections give a graph on the set of all keys 
on Jt. We shall look for the locally best key (in the sense of criterion s) with respect 
to this graph. 

The main principle is the following: 
Let us have some key j for E on Jl. By Theorem 4.3 it is possible to change in one 

node the corresponding property to another — maybe with a greater error — and to 
get in this way a better key. We shall define a key g originating from a given key j 
by a change of a property in one node and the different from j as little as possible. 

5.1. Theorem. Let (U, < ) be the canonical tree, V a non-empty subset of U such 
that 

1) (Vu, t>eV)(u A veV); 
2) (Vu, v e V) (u < v => (3z e V) (u * next (u, v) < z)) (where 0 = 1 , 1 = 0). 
Then there is a tree V isomorphic to V. 

Proof. Let veV. Then we can order the set Bv = {w; w e V& w = v] such that 
Bv = (»[ , ..., wk) and wl < w2 < ... < wk = v. Then we define a mapping i as 
follows: 

«(wi) = 0 , 

t(wj) = {(w;^) * next (w;-!, wt) , 

i(v) « t(w fc_1)*iiext(w t_i,i>). 

i is one-one and preserves the ordering: if w, z eV then either w < z and then 
i(w) < i(z) or w I z and then w A Z e V and next (w A z, w) 4= next (w A Z, Z) 
hence i(w) #= i(z). 



We now show that V' = t"Vis a tree: V is non-empty and finite subset of U. 

By the definition of t, i"{w; w e V& w < v} = {M; U < i,(v)} g V. 

Let u eV, u * E e V' where a e {0, l} . Let z = min< {v; v e V & v 2: t_ 1(u) * E}. 
Clearly next (u, w) = next (i(v), i(w)) for v,weV and hence t(z) = t(t-1(M)) * 
* next (t(t_1(M)), z) = M * e. 

Thus M * e e V'. 
This completes the proof. 

Remark. The mapping t will be very useful for our further consideration. 

In sequel, let Ji be a fixed model. Hence saying/ is a key for E we mean a key 
for E on Jt. 

Let / be a key for E. We want to define a key for A e E induced by / . 

5.2. Definition. Let / be a key for E, 0 * A c E. 
Reg (A , / ) = {M e D(/); (£„*, n A 4= 0 & E^0 n A * 0) v (u e V(f) & E£e A)} 

is the set of regular elements of D(/) with respect t o / and A. Sing (A, / ) = D(/) \ 
\ Reg (A , / ) is the set of singular elements of U. 

5.3. Theorem. The set Reg (A , / ) is isomorphic to a tree. 

Proof. We show that Reg (A , / ) satisfies the assumptions from Theorem 5.1: 
A 4= 0 implies Reg (A , / ) 4= 0- Reg (A , / ) S D(/) hence it is finite. Assume u,ve 
e Reg (A , / ) . Then clearly E{ n A 4= 0 and E£ n A 4= 0- If M < v then H A t> = 
= M e Reg (A , / ) . Similarly for v < u. If u || i> and ii + t then E!LA1;)*next(uAD,u) n 

n A ^ E „ " n A 4 = 0 and also E{„AB)*„ext(«Ai>,u) n A 4= 0 hence u A v E Reg (A , / ) . 
Let M, »e Reg (A , / ) , M < t>. Then E^next(ui;) n A = A' 4= 0 and hence there is 
a vertex w ^ w * next (M, V) such that E{, s A'. 

Thus we Reg (A , / ) . 

By Theorem 5A there is an isomorphism t of the set Reg (A , / ) onto a tree 

t"Reg(A,/). 

5.4. Definition. We define a function f [ A for A S E a n d / a key for E by letting 

D ( / 1 A) = {M e i" Reg (A , / ) ; u * 0 e t" Reg (A , / )} ; 

( / l A ) ( u ) = / ( t - 1 ( « ) ) for M e D ( / | A ) . 

5.5. Theorem. ( / | A) is a key for A. 
Proof. First we show A'flA = A n Ef-i(u). Clearly, it suffices to prove ,/// h k(u) [e] 

iff . # h kR(u) [e] for u e Reg (A, f) and for e e A where 

fcR(") = A next (w, u) x /(w) . 

weReg(A,/) 



Obviously if Jt h k(u) [e] then Jt V k\u) [e]. Let ^ / h fcK(u) [e:] and .// h ~lfc(u) . 
. [ex] for some el e A. Since u e Reg (A , j j we have Jt V kR(u) [e2] and Jl h /c(u) [e2] 
for some e2 e A. This implies the existence o f a n e Sing (A , j) such that v < u and 

Jt h next (v, u) x f(v) [ex] , 

. # h next (y, u) x j(y) [e2] 

which is a contradiction. 

We can now prove that / j A is a key for A. 
In fact 

1) for u e D ( / 1 A) we have A"fiA = E{- i(u) n A which is non-empty because 
i'l(u)e Reg (A , j) ; 

2) (Ve e A) (3D e V(/)) (E{ = {e}) hence t(v) e D(f J A) and Aftf = {e}. 

Remark. For card (A) = 1 we have D(f j A) = 0 and D(f | A) = {0}. 

Denotation. Let a 4= e are two elements of E. We denote by P a e the first predicate 
symbol P for which Jt Y P\a\ iff ^ ' h l P [ e ] (in the ordering of indices). (By the 
assumption on Jl there is always such a predicate symbol.) 

5.6. Definition. Let / be a key for A c E, e e E \ A . We define a function / e as 
follows: D(fe) = D(/) u {u} where u is the vertex such that Jl h k(u) [e]. (By 
Lemma 2.5 there is exactly one such vertex.) For v e D(f) Mfe(v) = f(v) and fe(u) = 
= Pae where E„" = {a}. 

5.7. Lemma. /„ is a key for A u {e}. 
Proof. Obvious. 

5.8. Definition. Let (U, :g) be the canonical tree, j a tree-function to the set of 
predicate symbols, v e U. We define a function s/;(j, y) (shift) as follows: 

D(sh(f, u)) = {u; u = v*q&qe D(f)} ; 

s/i(/, t>) (u) = / (g) for u e D(sh(f, v)) i.e. u = u * a . 

5.9. Lemma. Let / be a partial key for E, let g" be partial keys for the sets E{ if 
card (E{) ^ 2 & u e V(/). Then the function / = / u U s/)(ou, u) is a key for E. 

«SV(/) 
card(E„/ ,a2 

Proof. We put V'(f) = {u e V(/); card (£{) ^ 2} then 

°.(/) = D(j) u U { « * « ; « G Dfff-)} ; 
utV'(f) 

D(f) = D(j) u U {" * q; q e D(o")} . 
«eV'(/) 



We show tha t / i s a key for E: Assume u e D(/). Then either u e D(f) and Ef = Ef =f= 
*Q or u = v*q&qe D(g") and Ef = ( E ^ f #= 0. 

Let e e E. By Lemma 2.5 there is just one vertex u e V(f) such that e e Ef. Either 
card (Ef) = 1 or card (Ef) ^ 2. But then there is a key g" for Ef; q e V(g") and for 
v = u*qe D(f) we have E{ = (E£)f = {e}. 

5.10. Definition. Let / be a key for E. We say that / is transferable through the 
node u e D(f) with the help of property & if there are su s2 e {0, 1} for which 

££,„, $ S a t £ u / ( £ 2 xP)^E{. 

Denotation. Let k = A e ; x -P.- be an elementary conjunction. The formulas 
i = l 

£; x P; are called literals. We denote by k\PJQ~\ the conjunction resulting from k 
by substituting a literal Q for a literal P. 

5.11. Definition. L e t / be a key for £, l e t / be transferable through u e D(f) with 
the help of P. We define the function g resulting from f by the transfer through the 
node u with the help of P (we write g = Trf (/, u, P)) as follows: 

I. Let 
£„*„ c S a t £ u / ( 6 x P)cEf. 

We call A = Sat£u/ (e x P) — Ef*E the transferred set. 
1) g'(v) = f(v) if v e D(f) 8c (v < u v v || u v v >. u * e); 

2) g'(u) = P; 

3 ) g u * W J ( E t * £ - v A ) ; 
4) let w, > u * £ be a vertex (E{_, = {e,}) such that Sat£u/(/c(w,) [e x /(M)/E X 

x p ] - k ) = 4 j * 0 then gw' = (f [ A,)e.. Finally a = a' u s/7(gu*£", w * e) u 
u U (gWJ, w,). 

II. Let Ef
m c Sat£u/ (e x P) c £{. In this case we call A = Sat£u/ (e x P) \ ££„ 

the transferred set. (In both cases we transfer the set A from one subset of Ef to 
another.) 

1) g'(v) = / ( D ) if v e D(f) & (v < u v v || u); 

2) *'(«) = P ; 
3) 0 " * s = / i (2&. sA); 

4) let w, ^ u * £ be a vertex (Ef
K] = {e,}) such that Sat£ , (k(w}) [s x /(u)/fi x 

x PD ~ W = ^ * 0- T h e n ^ = ( / i ^ ) l> and g"*s = j " * s u U sh(g^, w,). 

Finally g = g' u sh(g"*e, u * e) u sh(g"*1, u * e). 

5.12. Lemma, g is a key for E. 

Proof. I. g' is a partial key. V(g') consists of 

1) u * E and then E„*£- = E^£- \ A #= 0; 



2) wj = u*e and then £«' = Sat£u / (k(wj) [e x /(«)/e x P]); 
3) v and then card (£*') = 1. 
Hence by Theorem 5.5 and by Lemma 5.9 g is a key for E. 

II. First we show that g"*e is a key for E^£ = £„*#s u A./"*5 is a partial key for E^£ 

and Vt(/"*5) consists of: 
1) Wj and then ££"*' = Sa.tEfM-uJk(wj)) = 4 , u {e,}; 
2) p and then card (E{"*c) = 1. 
Hence by Theorem 5.5 and by Lemma 5.9 g"*e is a key for E^£. 
Similarly as in part I. we can prove that g is a key for E. 

We shall now consider all keys for E with respect to the passing from one key to 
another by transfer. 

5.13. Definition. Let GM = {/; / is a key for E on Jt), 

R = {</, 0>; / , g 6 0 ^ & (3M £ D(/)) (3P) (fl = Trf (/, M, P))} . 

Then <G_#, P> is called the oriented graph of transfers. 

5.14. Lemma. If </, a> e R then there are uniquely determined u and P such that 
g = T r f ( / , M , P ) . 

Proof, M = min s {f;j(f) 4= ^(f)} obviously such minimum is only one; then 
P = g(u). 

Remark. If g = Trf (j, M, P) then /. = Trf (a, «,/(«)) is also a key. 

5.15. Lemma. The graph (GM, R> is not generally symmetric, i.e. it is not true that 
for every model Jt and for arbitrary keys/, g for E we have </, a> e R => <a, / > e R. 

Proof. We shall describe a model Jt = <{e,, ..., e4}, SP^, ..., ,^4> and two keys / 
and a for E such that g = Trf(L 0, P2), i.e. (f,g}eR. Nevertheless <g,f}$R 
because h = Trf (a, 0,j(M)) =# / and there is no other transfer which can change 
a(0) to / (0) . The model ^ is given by the matrix, keys j , a, h by their schemes; to 
each node we add assigned property, to each vertex the corresponding object (Fig. 3). 

5.16. Definition. A key g e GM is accessible f rom/ in (GM, R} if there is a sequence 
/;,, ..., h„ of elements of GM such that / = ht &g = hn&(Vi = 1, . . . , n - l) 
«/; , , /7 , .+ 1 > e R ) . 

5.17. Lemma. There are keys/, g such that g is not accessible f r o m / 
Proof. There is a simple model Jt where there are only two keys /and g and no 

transfer exists. Thus o is not accessible f rom/ and m o r e / is not accessible from g. 

5.18. Definition. For every f e GM we define a set Rf of all keys g e GM accessible 
f r o m / i n (GM, R). 



Remark. For every fe GM Rf is not empty and by Lemma 5A7 it can be a proper 503 
subset of GM. 

5.19. Definition. Let S = {</, g}; fge GM & </, g) e R & s(g) < s(f)} then 
(fiM, S> is called the oriented graph of improving transfers. 

el 
eг eъ eA 

Л 0 0 0 1 

Л 0 0 1 1 

Л 0 0 1 0 

Л 0 1 0 0 

ЄA e<, Є Є. 
5 

/ř1 

Fig. 3. 

<7 = Trf (/, 0, P 2 ) Żг = Trf (g, 0, ЛØ)) 

5.20. Definition. Similarly as in Definition 5.16 we define a set Sf of all keys 
g 6 Gj( accessible f rom/ in (fiM, S>. 

5.21. Definition. We say t h a t / i s a local minimum in the graph (fiM, S> if there is 
no g e GM such that </, #> 6 S. 

Let / be a key for E. We shall try to find some local minimum accessible from / 
By Lemma 5.17 we see that the best key for E need not be accessible f r o m / Since 
not even all keys accessible from / can be constructed we shall find some local mini
mum in an estimate number of steps. 

We now deduce some Lemmas for the algorithm proposed later. 

5.22. Definition. Let / be a key for E, g = Trf (/, u, P). We define a function E 
from D(f) (D(F) £ D(/)) to D(g) as follows: 

In the case I. from Definition 5.11, when E^ c e x P cr E* and A = Sat£a/(a x 
x P) — E^E is the transferred set we put 

F(v) = v for v e D(f) 8c (v ^ u v v\u v v ^ u * s) 



and 

F(v) = u * e * i(v) for v e D(f) &v = u * e, 

where t is a mapping from the definition of the function / J. (Ef^s \ A). 

In the case II., when E^£ <= £ x P c Ef and A = SatEu/(£ x P) - Ef^e is the 
transferred set we put 

F(v) = c for c e D(f) &(v ^u v v\\u) 

and 

F(o) = lu(v) for o e D(f) &v = u*s 

and 

F(u) = lu(u * e * i(t>)) for u e D(f) &v = u *c 

where t is the mapping from the definition of the function / J. (EutE \ A) and /„ 
maps the set {v; v = u} onto itself as follows: lu(v) = /„(tt * £ * a ) = i t * s* t7 . 

5.23. Lemma. L e t / be a key for E, A c E and let Ef £ A. Then ( / J, A)'M = / " . 
Proof. By the definition of i, if {v; u = v = w} £ Reg (/, A) then w = « * q .=> 

=> t(w) = t(w) * q. By Theorem 5.5 Ef$ = Ef n A = Ef hence / " and ( / | A),(,,) 

are keys for Ef. If q e D(f") then /"fa) - f(u * q) = (f J A) (t(tt * <?)) = ( / 1 A). 

• K«)*?) = (/14(B,W-

5.24. Lemma. Let / be a key for A £ E, # a key for E and D(/) s D(g) & (Vt; e 
g Of/)) (/(») = a(t,)). Then / = 3 = A = E. 

Proof. Obvious. 

5.25. Definition. Let / be a key for E, a = Trf (/, u, P), A be the transferred set. 
Then we define a set Lf

u
9 (a set of "suspicious nodes" after transfering in u) as 

follows: L{9 = {w e D(g); Ef-Hw) n A * 0} u {v e D(g); Eg
v n A 4= 0}. 

Fig. 4. Flow diagram - INPUT J( -= <£, ^ V ..., ^ > , / 0 

1. Linear ordering 2? is the extension of partial ordering of canonical tree, which is lexico
graphic on levels; 

2. s{f) = S If I; 
veV(f) 

3. D(/«) = { ? ; « * ? £ #( / ) } , / " (?) = / (« * <?), viz 3.2; 
4. | / 1 = •*(/") - *(card {Ef)), viz 3.2; 
5. Trf* ( / «, -P.) iff/is transferable through the node « with the help of Ph viz 5.10; 
6. # = T r f ( / , «, .P) viz 5.11; 
7. £y set of "suspicious nodes" with respect to / , viz 5.27; 
8. V = {v 6 L; v ^R «}. 



L:=L 

f-=9a 
_+ _} 



5.26. Lemma. Let / be a key for E, g = Trf (/, u, P). Then v e D(g) &v$ LTg => 
^(3w)(weD(f)&gv=r). 

Proof. If v || u then obviously/" = g". If v > u & v $ VV(E) then (by the definition 
of g and F) EB

V n A * 0; hence u e Lr/. 

Let t ) > u & » e W(F). Then in the case I. from Definitions 5.11 and 5.22 we have 
the following: 

1) If F(v) = v then v ^ u * e hence ET £ ET*E & Ef
u*c n A = 0. Thus we must 

show: E9
W n A = 0 = aw = fw. By the definition of #, 

(Vw ^ i>) (w e D(/") => w e D(g") & gv(w) = /"(w) & Ef £ £«) . 

By Lemma 5.24, fv = gv = Eg
v = E{ = Eg

vr\A = ^. 

2) If E(u) = w where t) = « * e * a & w = u * e * ((u) then E9
W s E^s & EJ*, n 

n A = 0. Hence we must show: Ef n A = 0 = / " = aw. By the definition of g, 
9W = ( I i ( E ^ \ > l ) y ( B ) = / • = £ ^ , \ A = £{ = £/; = E{*E&E{nA = 0 = E^n 
n A = 0. 

In the case II. we proceed similarly. 

5.27. Denotation. Let Lf be a set of "suspicious nodes" with respect to / then 

Lg = F"(Lf) u Lfg = {Lt n {v; v || u}) u {»; » ^ u} u 

u {F(v) ^ u * e; c6 D(/) <&(£/; n A + 0 v t ) e L7)} u 

u {u ^ u * e; u e D(g) &(E» n A. + 0 v ve Lf)} . 

We shall now present a flow-diagram (Fig. 4) of an algorithm for searching a local 
minimum accessible from a given key / 

From the above Lemmas we see that the algorithm searches the local minimum in 
the following way: It goes through the set Lof "suspicious nodes" (which at the be
ginning equals to the whole D(/)) and tries to construct in the node u the best im
proving transfer. If such transfer is found the algorithm tries again on the new key 
to construct the best transfer in the node u. If no improving transfer exists it proceeds 
to another element of L and u is no more a suspicious node. Through every transfer 
new suspicious nodes might be added. By Lemma 5.26 in other nodes not belonging 
to L an improving transfer cannot exist. The process ends as soon as the set L is empty, 
i.e. as soon as in no node an improving transfer can be constructed. If during some 
tree-traversing the key / is not modified then L -» 0. Thus we can estimate the length 
of the process: Consider the worst situation characterized by the following conditions 

a) at the end we get the best key with norm equal zero; 
b) during every tree-traversing maximally one transfer improving about one is 

constructed and at the same time L extends to D(/) ; 
c) in every node u we can use every property (being obviously never the case). 



Then during the whole process m.k.(n - l) transfers must be tested where m is 

the norm of original key f0, n — 1 is a number of nodes in D(j) and k is a number 

of properties. Thus the number of tested transfers in every process must be less 

than m . (n — 1) . k. 

(Received May 8, 1973.) 
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