KYBERNETIKA --- VOLUME 9 (1973), NUMBER 6

Some Further Remarks on the Index of Context-Free Languages

A. B. CREMERS, K. WEISS

Let \varkappa be a complexity measure for grammars. The following problem is investigated: Do there exist such context-free languages L that no context-free grammar generating L can be minimal both according to \varkappa and according to the index? For a set of well known complexity measures the answer is in the affirmative.

1. THE INDEX OF GRAMMARS AND LANGUAGES

Let G = (N, T, P, S) be a context-free grammar (CFG), where N is the set of nonterminal symbols, T the set of terminal symbols, $P \subset N \times (N \cup T)^*$ the set of productions and S in N the start variable. Let ε denote the empty word and L(G) the language generated by G.

Following [1], we now define the index of G. Let F be a derivation of a word w in $(N \cup T)^*$ according to G:

 $F: S = w_0 \Rightarrow^* w_1 \Rightarrow^* \ldots \Rightarrow^* w_n = w$.

We define

Ind $(F) = \max \{l(d(w_i)) \mid 0 \leq i \leq n\},\$

where d(w) is the word obtained from w by deleting all terminal symbols, and for a word w, l(w) denotes the length of w;

Ind $(w) = \min \{ \operatorname{Ind} (F) \mid F \text{ is a derivation of } w \text{ according to } G \}$; Ind $(G) = \max \{ \operatorname{Ind} (w) \mid w \text{ in } L(G) \}$, Ind $(L) = \min \{ \operatorname{Ind} (G) \mid L = L(G) \}$.

In [5] the existence of a context-free language (CFL) of infinite index is proved and in [3] a hierarchy of context-free languages is established with respect to the index. This gives rise to the question how this hierarchy is related to well known complexity hierarchies of context-free languages. To this end, we collate in Section 2 the definitions of several complexity measures for grammars, as introduced in [2]. In Section 3 we show that, for a CFG, the requirements of simplicity with respect to such a complexity measure and with respect to the index are in general in conflict.

2. COMPLEXITY MEASURES FOR GRAMMARS

Let G = (N, T, P, S) be a CFG. A binary relation \succ on N is defined as follows. For A, B in N the relation $A \succ B$ holds, iff there exist x, y in $(N \cup T)^*$ such that $A \rightarrow xBy$ is a production in P. Let \succ^* denote the reflexive and transitive closure of the relation \succ . The nonterminal symbols A and B are said to be equivalent, shortly $A \equiv B$, iff both $A \succ^* B$ and $B \succ^* A$ holds. Each equivalence class of N according to \equiv is called grammatical level of G (cf. [2]). For a grammatical level Q of G, let

Depth
$$(Q) = \operatorname{card}(Q)$$

A grammatical level Q is termed nontrivial if Depth (Q) > 1. We define

> Depth $(G) = \max \{ \text{Depth}(Q) | Q \text{ is a grammatical level of } G \}$, Lev (G) = the number of grammatical levels of G, NLev (G) = the number of nontrivial grammatical levels of G, Var (G) = card(N), Prod (G) = card(P).

Let \varkappa_{γ} be a complexity measure defined for a class γ of grammars and L a language which can be generated by a grammar in γ .

Then we define

$$\varkappa_{\gamma}(L) = \min \left\{ \varkappa_{\gamma}(G) \mid G \text{ in } \gamma, \ L = L(G) \right\}$$

If a complexity measure \varkappa is defined for all CFG's and CFL's, respectively, we mostly omit the subscript of \varkappa .

3. INCOMPATIBILITY OF THE INDEX AND GRUSKA'S COMPLEXITY MEASURES

Let \varkappa be one of Gruska's complexity measures of Section 2. In the following, we study the question whether there are CFL's *L* such that no CFG generating *L* can be minimal both according to \varkappa and according to the index. As it will be shown in this section, the answer to this question is in the affirmative for each complexity criterion of Section 2.

Let γ denote a class of grammars and $\Gamma = \{L = L(G) \mid G \text{ in } \gamma\}$. For a complexity

measure \varkappa_{γ} defined on γ and a language L in Γ let

$$\varkappa_{\gamma}^{-1}(L) = \{ G \in \gamma \mid L = L(G), \ \varkappa_{\gamma}(G) = \varkappa_{\gamma}(L) \}$$

Definition. Two complexity measures $\varkappa_{\gamma,1}$ and $\varkappa_{\gamma,2}$ are said to be compatible iff

$$\varkappa_{\gamma,1}^{-1}(L) \cap \varkappa_{\gamma,2}^{-1}(L) \neq \emptyset$$

for each L in Γ .

Let c and lin denote the class of all context-free grammars and the class of all linear grammars, respectively.

The proofs of the results in this section are based on the following consideration: Clearly, for each linear language L, Ind (L) = 1 holds; furthermore, Ind (G) = 1iff G is a linear grammar. Thence, in order to show that a complexity measure \varkappa and Ind are incompatible, it is sufficient to construct a linear language L such that for a nonnegative integer n both $\varkappa_{c}(L) \leq n$ and $\varkappa_{lin}(L) > n$ holds.

Theorem 1.

(1) Var and Ind are incompatible.

(2) Lev and Ind are incompatible.

Proof. Let $R = \{b\}^* a\{b\}^* a\{b\}^* a\{b\}^* a$. R is also written in the form

 $R = R_1 R_2$

where $R_1 = \{b\}^*$ and $R_2 = a\{b\}^* a\{b\}^* a\{b\}^* a$ and

 $R = R_3 a R_4 a R_5 a R_6 a$

where

$$R_i = \{b\}^*, \quad 3 \leq i \leq 6$$
.

(1) R is generated by the following grammar:

$$G_1 = (\{S, A\}, \{a, b\}, \{S \to AaAaAaAa, A \to bA, A \to \varepsilon\}, S).$$

Thence, $\operatorname{Var}(R) \leq 2$.

Next we show that $\operatorname{Var}_{\operatorname{lin}}(R) > 2$.

Assume $\operatorname{Var}_{\operatorname{lin}}(R) = 1$. Let G_2 be a linear grammar with only one variable S generating R. For a word $x = x_1 x_2 \dots x_n$ of arbitrary length, x_i in $\{a, b\}$, let q(x) denote the number of indices *i* such that $x_i \neq x_{i+1}$. Clearly, for all *w* in R, $q(w) \leq 7$ holds.

If $S \to \beta_1 S \beta_2$ is a production in G_2 , then $q(\beta_1) = q(\beta_2) = 0$. Otherwise, a word $\beta_1^8 w \beta_2^8$ could be generated which does not belong to R. But then we may conclude that β_1 is in $\{b\}^*$ and $\beta_2 = \varepsilon$. Thence, by productions of the form $S \to \beta_1 S \beta_2$ only R_1 is generated. Therefore, $R \neq L(G_2)$.

Assume Var_{lin} (R) = 2 and let G_3 be a linear grammar for R with only two variables S and A. If $S \equiv A$ then for all $\beta_1, \beta_2, \beta_3, \beta_4$ in T^* with $S \Rightarrow^* \beta_1 A \beta_2$ and $A \Rightarrow^* \beta_3 S \beta_4, \beta_1 \beta_3$ in $\{b\}^*$ and $\beta_2 \beta_4 = \varepsilon$ holds. Furthermore, if $A \to \alpha_1 A \alpha_2$ and $S \to \gamma_1 S \gamma_2$ are productions of G_3 , then $\alpha_1 \gamma_1$ is in $\{b\}^*$ and $\alpha_2 \gamma_2 = \varepsilon$. Thence, only R_1 is generated by the productions considered so far. If $S \neq A$, then $R_4 a R_5 a R_6$ must be generated by productions of the form $A \to \alpha_1 A \alpha_2$ and $A \to \gamma$ where $\alpha_1, \alpha_2, \gamma$ in T^* ; but this is impossible. Therefore, Var_{lin} (R) > 2.

(2) Since $R = L(G_1)$, Lev $(R) \leq 2$ holds.

We show that $\text{Lev}_{\text{lin}}(R) > 2$:

Clearly, Lev_{Iin} (R) > 1. Assume Lev_{Iin} (R) = 2. Then there is a linear grammar G_4 generating R. Let $N_1 = \{S = A_0, A_1, ..., A_n\}$ and $N_2 = \{B_1, ..., B_m\}$ be the equivalence classes of nonterminal symbols of G_4 according to \equiv . If $A_i \to \alpha A_j\beta$, $0 \leq i \leq n, 1 \leq j \leq n$, is a production of G_4 , then α is in $\{b\}^*$ and $\beta = \varepsilon$ holds. Thence, $R_4 a R_5 a R_6$ must be generated by productions whose left-hand sides are in N_2 , i.e. productions of the form $B_i \to \alpha' B_j \beta'$ and $B_i \to \gamma$. Since $\alpha' \beta'$ must be in $\{b\}^*$ we get a contradiction. Therefore, Lev_{Iin} (R) > 2.

Theorem 2. Depth and Ind are incompatible.

Proof. Let $R = \{\{b\}^* a\{b\}^* a\{b\}^* a\{b\}^* a\}^+ a$. R is a regular language, therefore Depth (R) = 1. (For a set of words M, M^+ denotes the ε -free catenation closure of M.)

In the following, we show that $\text{Depth}_{\text{lin}}(R) > 1$:

Assume that there is a linear grammar G = (N, T, P, S) such that Depth (G) = 1and R = L(G). Let $N = \{S = A_1, ..., A_n\}$. G is a sequential grammar, i.e.

 $A_i \succ^* A_j$ implies $i \leq j$, $1 \leq i \leq n$.

At first we consider productions of the form

$$A_i \rightarrow \alpha_{ii} A_i \beta_{ij}$$
,

 $1 \leq i \leq n, 1 \leq j \leq n_i$. Let $l_a(w)$ denote the number of occurrences of a in a word w.

Assertion 1. For each production $A_i \rightarrow \alpha_{ij}A_i\beta_{ij}$ there is a nonnegative integer q such that

$$l_a(\alpha_{ij}\beta_{ij}) = 4q \; .$$

Proof. Let x_1 in R be so that there is a derivation of x_1 according to G in which the production $A_1 \rightarrow \alpha_{i1}A_i\beta_{i1}$ is applied:

$$A_1 \Rightarrow^* \alpha A_i \beta \Rightarrow \alpha \alpha_{ij} A_i \beta_{ij} \beta \Rightarrow^* \alpha \alpha_{ij} \gamma_i \beta_{ij} \beta = x_1$$
.

Since for each x in R there is a nonnegative integer k with $l_a(x) = 4k + 1$, there

exists an i_0 such that

$$l_a(\gamma_i) = 4i_0 + 1 - l_a(\alpha\beta) - l_a(\alpha_{ij}\beta_{ij}) \cdot$$

For $x_2 = \alpha \alpha_{ij} \alpha_{ij} \gamma_i \beta_{ij} \beta_{ij} \beta$ we have

$$l_a(x_2) = 4i_0 + 1 + l_a(\alpha_{ij}\beta_{ij})$$
.

Since x_2 is in R there exists a j_0 such that $l_a(x_2) = 4j_0 + 1$. Thence,

$$j_0 = i_0 + \frac{l_a(\alpha_{ij}\beta_{ij})}{4}.$$

This proves Assertion 1.

In the sequel, we consider words of the form

$$\mathbf{x} = (b^l a)^{4m} a \; .$$

Let $A \to \beta_1 A \beta_2$ be a production of G with $l_a(\beta_1 \beta_2) > 0$. Then $l_a(\beta_1 \beta_2) \ge 4$ by Assertion 1; so either β_1 or β_2 or both can be written in the form

uabⁿ¹av

where u and v are in T^* .

If $r = \max \{l(\beta) \mid A \to \beta \text{ is a production of } G\}$ then $n_1 < r$. Consequently, if a production $A \to \beta_1 A \beta_2$ with $l_a(\beta_1 \beta_2) > 0$ is applied in a derivation of a word $x = (b^l a)^{4m} a$ according to G, then l < r holds. Let

$$\begin{array}{l} P_1 = \left\{ A_i \rightarrow \bar{\alpha}_{ij} A_i \bar{\beta}_{ij} \text{ in } P \mid l_a(\bar{\alpha}_{ij} \bar{\beta}_{ij}) = 0 \right\}, \\ P_2 = \left\{ A_i \rightarrow \xi_{ij} A_j \eta_{ij} \text{ in } P \mid 1 \leq i \leq j \leq n \right\}, \\ P_3 = \left\{ A_i \rightarrow \gamma \text{ in } P \mid \gamma \text{ in } T^* \right\} \end{array}$$

and let

$$k = \sum_{\mathbf{P}_2} l_a(\xi_{ij}\eta_{ij}) \,.$$

Consider $x = (b^r a)^{4(k+r)} a$. By the above remark, no production $A \to \beta_1 A \beta_2$ with $l_a(\beta_1\beta_2) > 0$ can be applied in a derivation of x. Since G is assumed to be linear and sequential, each production of P_2 can only be applied once in a derivation according to G. Hence, any word generated by productions in $P_1 \cup P_2 \cup P_3$ contains at most k + r occurrences of a.

Clearly, by the above construction

$$x = (b^r a)^{4(k+r)} a$$

is not in L(G); but x in R, a contradiction. This proves Theorem 2.

Corollary 3. NLev and Ind are incompatible.

Proof. Let R be as in the proof of Theorem 2. Clearly, NLev(R) = 0. Since Depth_{lin}(R) > 1, also NLev(R) > 0 holds.

Theorem 4. Prod and Ind are incompatible.

Proof. Let $L = \{a^i \mid 0 \le i \le 10\}.$

L can be generated by the following grammar

$$G = \left(\{S, A\}, \{a\}, \{S \to A^{10}, A \to a, A \to \varepsilon\}, S\right).$$

Thence, $\operatorname{Prod}(L) \leq 3$.

We show that $\operatorname{Prod}_{\operatorname{lin}}(L) > 3$.

Assume $\operatorname{Prod}_{\operatorname{lin}}(L) = 3$ and let G be a linear grammar with $\operatorname{Prod}(G) = 3$ generating L. For no nonterminal symbol A, $A \Rightarrow^* \alpha A \beta$ holds. Therefore, the set of productions of G is of one of the following forms:

(1)	$S \rightarrow \alpha_1 A \beta_1$,	$A \rightarrow \alpha_2 B \beta_2$,	$B \rightarrow \gamma$,
(2.1)	$S \rightarrow \alpha_1 A \beta_1$,	$A \rightarrow \gamma_1$,	$A \rightarrow \gamma_2$,
(2.2)	$S \rightarrow \alpha_1 A \beta_1$,	$S \rightarrow \gamma_1$,	$A \rightarrow \gamma_2$,
(2.3)	$S \rightarrow \alpha_1 A \beta_1$,	$S \rightarrow \alpha_2 A \beta_2$,	$A \rightarrow \gamma_1$,
(3)	$S \rightarrow \gamma_1$,	$S \rightarrow \gamma_2$,	$S \rightarrow \gamma_3$

where all α_i , β_i , γ_i are in T^* .

But no one of these production sets can generate L, a contradiction. This proves Theorem 4.

(Received February 21, 1973.)

REFERENCES

- Brainerd, B.: An Analog of a Theorem about Context-Free Languages. Information and Control 11 (1968), 561-567.
- [2] Gruska, J.: Some Classifications of Context-Free Languages. Information and Control 14 (1969), 152-173.
- [3] Gruska, J.: A Few Remarks on the Index of Context-Free Grammars and Languages. Information and Control 19 (1971), 216-223.
- [4] Jones, N. D.: A Note on the Index of a Context-Free Language. Information and Control 16 (1970), 201-202.
- [5] Salomaa, A.: On the Index of Context-Free Grammars and Languages. Information and Control 14 (1969), 474-477.

Dr. A. B. Cremers, University of Southern California, Computer Science Program; Los Angeles, Cal. 90007. U.S.A.

K. Weiss, Universität Karlsruhe, Institut für Informatik I; Postfach 6380, 75 Karlsruhe 1. BRD.