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Finding a Spanning Tree of a Graph with 
Maximal Number of Terminal Vertices 

BOHDAN ZELINKA 

In [1] V. G. Vizing proposes the problem of finding an algorithm for finding a spanning tree 
of a given finite graph which would have the maximal number of terminal vertices. Here we shall 
give such an algorithm. 

At first we shall define some concepts and prove some theorems. We shall always 
consider finite undirected graphs without loops and multiple edges. The given problem 
is closely connected with the problem of finding the most economical communication 
network. If some spanning tree has the maximal number of. terminal vertices, it has 
the minimal number of the vertices of degree greater than one; this is a relevant re
quirement for the simplicity of a communication network in the sense of practical 
applications. 

Let G be a graph with the vertex set V. For each set S <= Vwe shall define the neigh
bourhood N(S) of S as the subset of V - S consisting of vertices which are joined 
with at least one vertex of S. The cardinality of the neighbourhood N(S) of S is called 
the degree of S and denoted by Q(S). It follows from this definition that Q(<J>) = Q(V) = 
= 0 and if S is a one-element set {u}, where ueV, then Q(S) is equal to the degree 
of u in the usual sense. This degree will be denoted by Q(U) rather than Q({U}). 

Theorem 1. Let G be a finite graph with the vertex set V of the cardinality n. Let 
r = max^(S). Then there exists a set S0 c Vsuch that |S0 | = n — r* Q(S0) = r. 
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Proof. Let S be some subset of Vsuch that Q(S) = r. This means that the neigh
bourhood N(S) of S has the cardinality r; as N(S) c V — S, we have |S| + r <; n, 
thus [S| g n - r. If |S | = n - r, the proof is finished. If |S| < n - r, then |S u 
u N(S)\ < n and there exists at least one vertex of Vwhich is neither in S, nor in N(S). 

* \S0\ denotes the cardinality of S0. 



Let M be such a vertex, let P be the shortest path joining u with a vertex of S, let / 
be the length of P. As u $ N(S), we have / 2: 2. Let the vertices of P in the direction 
from a vertex of S to M be t>0, t?., . . . , t>j = M. We have u0 e S, vx e N(S). If some _j 
were in S for 1 _» i :_ f, the subpath of P joining u; with M would be a path of the 
length / — 1 joining u with a vertex of S, which is a contradiction with the minimality 
of /. If some vt were in N(S) for 2 ^ i ^ /, then the subpath of P joining t>; with u 
together with the edge joining vt with a vertex of S would form a path of the length 
/ - i + 1, which is again a contradiction with the minimality of /. Denote S' = S u 
u {t><,...,»,_!}. The set S' has the cardinality greater than S. Any element of N(S) 
different from vx is also in N(S') and moreover ueN(S'). Therefore |At(S')| 2: r, 
thus, as r is maximal, |JV(S')| = Q(S) = r. If \S'\ = n — r, the proof is finished, if 
not, we proceed by the same way as in the preceding case and obtain a set of greater 
cardinality than S' and of the degree r. After a finite number of such steps we must 
obtain a set S0 with \S0\ = n — r, Q(S0) = r. 

Now let (_(G) be the set of all subsets of the vertex set Vof G which induce connected 
subgraphs of G. 

Theorem 2. Let G be a finite graph with the vertex set Vof the cardinality n. Let 

r = max Q(S) , SeG(G). 

Then there exists a set S 0 e £(G) such that |S0 | = n — r, Q(S0) = r. 

P roof is the same as the proof of Theorem 1. Here if Se (f(G), then also S' = 
= S u {»,.,...,-,_,.} e£(G). 

Theorem 3. Lef G be a finite graph with the vertex set V. Let 

r = max Q(S) , S e £(G) . 

Then if Q(S0) = r for some S0 e S(G), then S0 contains no terminal vertices of G. 

Proof. Assume that S0 contains a terminal vertex u of G, i.e., a vertex of the 
degree 1. As S0 induces a connected subgraph of G, the vertex v joined with u by an 
edge in G belongs to S0. Therefore u is joined with no vertex of N(SQ), which means 
N(S0) c N(S0 — {M}). Moreover, N(S0 — {u}) contains u and therefore Q(S0 — 
— {u}) = r + 1, which is a contradiction with the maximality of r. 

Theorem 4. Let G be a finite graph with the vertex set Vof the cardinality at least 3. 
The maximal number of terminal vertices of a spanning tree of G is equal to the 
maximal degree of a subset of the vertex set of G inducing a connected subgraph 
ofG. 

Proof. Let us denote the maximal number of terminal vertices of a spanning tree 
of G by r, the maximal degree of a subset of V inducing a connected subgraph of G 



by r'. According to Theorem 2 there exists a set S c: Vinducing a connected subgraph 
of G and such that Q(S) = r', S u JV(S) = V. Choose an arbitrary spanning tree 7" 
of the subgraph of G induced by S. At each vertex of N(S) choose an edge joining this 
vertex with a vertex of S. Add these edges to the spanning tree V. The resulting 
graph is evidently a spanning tree of G and all vertices of JV(S) are its terminal vertices. 
As |JV(S)| = e(S) = r', we have r' = r. Now let T be a spanning tree of G with r 
terminal vertices. Let S0 be the set of inner vertices of T (vertices whose degree is 
different from 1). The set S0 induces a subtree in T, therefore it induces also a con
nected subgraph in G. Each terminal vertex of T is joined with some vertex of S, 
therefore it belongs to N(S) and |iV(S)| ^ r, thus Q(S) = r and -' ^ r. From the 
inequalities r' _ r, r' = r we obtain r' = r. 

Now we see that to find a spanning tree of G with the maximal number of vertices 
means to find a set S e (£(G) with the maximal degree and such that S u N(S) = V. 
When looking for such a set we take the sets with s smaller cardinality sooner than the 
sets with a greater cardinality. Further, we take into account that for each set S e (£(G) 
we have Q(S) ^ £ Q(U) — 2|S| + 2, because the subgraph of G induced by S is con-
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nected, and thus it contains at least \S\ — 1 edges. Obviously we take into account 
also Theorem 3. 

We can describe an algorithm. 

Algorithm. Let a finite connected graph G with the vertex set V be given, |V| = n. 
Let £(G) be the set of all subsets of V which induce connected subgraphs of G. We 
shall use two variables k and R which are both integers. 

(A) Pu t fe := 1, R : = 0. 

(B) By ffli denote the set of all one-element subsets of V Find Q(S) for each S e fflt. 
Go to (C). 

(C) If e(S) = n - k for some Sefflk, go to (E), else put k : = k + 1, R : = 
: = max Q(S) and go to (D). 
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(D) By fflk denote the set of all subsets S of V for which 

S e <£(G), 

\S\ = k, 

S n { u e V | e ( " ) = 1} = 0 , 

^ e(«) = R + 2k -2. 
u<=S 

Find e(S) for each Sefflk;if for some sets S, S' from 9Mfc the inequality £ e(") > 
> £ e(") holds, then take S sooner than S'. Go to (C). 

ueS' 

(E) Take a set S e fflk for which Q(S) = n — k. Choose a spanning tree T of the 



subgraph of G induced by S. At each vertex of N(S) choose an edge joining it with 

a vertex of S and add this edge to T. The resulting graph is the required spanning tree. 

If we want to obtain all spanning trees of G with the maximal number of terminal 

vertices, we do (E) in all possible ways. 
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