# An Axiomatic Characterization of Generalized Directed-divergence 

Pl. Kanappan, P. N. Rathie

A characterization theorem for the generalized directed-divergence defined in (1.1) is proved by assuming a set of five postulates (2.1)-(2.5).

## 1. INTRODUCTION

Let $P=\left(p_{n}, \ldots, p_{n}\right), Q=\left(q_{1}, \ldots, q_{n}\right), R=\left(r_{1}, \ldots, r_{n}\right), p_{i}, q_{i}, r_{i} \geqq 0, \sum_{i=1}^{n} p_{i}=$ $=\sum_{i=1}^{n} q_{i}=\sum_{i=1}^{n} r_{i}=1$ be three finite discrete probability distributions. Then we define the generalized directed-divergence by the expression, (refer [1]),

$$
\begin{equation*}
I_{n}\left(p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{n} ; r_{1}, \ldots, r_{n}\right)=\sum_{i=1}^{n} p_{i} \log \left(q_{i} \mid r_{i}\right) \tag{1.1}
\end{equation*}
$$

Here the convention $0 \log 0=0$ is followed and logarithms will be to the base 2 . Also whenever $q_{i}$ or $r_{i}$ is zero then the corresponding $p_{i}$ is also zero and $\log \left(q_{i} \mid r_{i}\right)$ is to be taken as $\left(\log q_{i}-\log r_{i}\right)$.

For $n=2,(1.1)$ takes the following form:

$$
\begin{gather*}
I_{2}(p, 1-p ; q, 1-q ; r, 1-r)=  \tag{1.2}\\
=p \log (q / r)+(1-p) \log \{(1-q) /(1-r)\}
\end{gather*}
$$

for $p, q, r \in K$, where $K=] 0,1[\times] 0,1[\times] 0,1\left[\cup\{(0, y, z)\} \cup\left\{\left(1, y^{\prime}, z^{\prime}\right)\right\}\right.$, with $y, z \in[0,1)$ and $y^{\prime}, z^{\prime} \in(0,1]$.
For $P \equiv Q$,(1.1) reduces to the ordinary measure of directed-divergence ([5], [7]) as given below:

$$
\begin{equation*}
I_{n}\left(p_{1}, \ldots, p_{n} ; r_{1}, \ldots, r_{n}\right)=\sum_{i=1}^{n} p_{i} \log \left(p_{i} / r_{i}\right) \tag{1.3}
\end{equation*}
$$

An axiomatic characterization of (1.3) was given earlier in [2] and that its theorem lacks mathematical rigour was pointed out by us in [6].

In this paper, we will prove a characterization theorem for the generalized directeddivergence defined in (1.1) by assuming a set of five postulates.

A more general measure, called the generalized directed-divergence of type $\beta$, was discussed and characterized through axioms by us in [4]. The characterization theorem in [4] was proved entirely on different lines than those of the present paper.

## 2. POSTULATES

In this section we give a set of five postulates which will be used in the next section to establish a characterization theorem for the generalized directed-divergence.

Postulate 1 (Recursivity).

$$
\left.\begin{array}{l}
\qquad I_{n}\left(p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{n} ; r_{1}, \ldots, r_{n}\right)=  \tag{2.1}\\
=I_{n-1}\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n} ; q_{1}+q_{2}, q_{3}, \ldots, q_{n} ; r_{1}+r_{2}, r_{3}, \ldots, r_{n}\right)+ \\
+\left(p_{1}+p_{2}\right) I_{2}\left[p_{1} /\left(p_{1}+p_{2}\right), p_{2} /\left(p_{1}+p_{2}\right) ; q_{1} /\left(q_{1}+q_{2}\right), q_{2} /\left(q_{1}+q_{2}\right)\right. \\
\left.r_{1} /\left(r_{1}+r_{2}\right), r_{2} /\left(r_{1}+r_{2}\right)\right]
\end{array}\right\}
$$

Postulate 2 (Symmetry).

$$
\begin{equation*}
I_{3}\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right)=I_{3}\left(p_{a}, p_{b}, p_{c} ; q_{a}, q_{b}, q_{c} ; r_{a}, r_{b}, r_{c}\right) \tag{2.2}
\end{equation*}
$$

where $\{a, b, c\}$ is an arbitrary permutation of $\{1,2,3\}$.

Postulate 3 (Derivative). Let

$$
\begin{equation*}
f(p, q, r)=I_{2}(p, 1-p ; q, 1-q ; r, 1-r) \tag{2.3}
\end{equation*}
$$

for all $(p, q, r) \in K$ where $K$ is as given in (1.2). Also let $f$ have continuous first partial derivatives with respect to all the three variables $p, q, r \in(0,1)$.

Postulate 4 (Nullity).

$$
\begin{equation*}
f(p, p, p)=0 \quad \text { for } p \in(0,1) \tag{2.4}
\end{equation*}
$$

Postulate 5 (Normalization).

$$
\begin{equation*}
f\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)=\frac{1}{3} \quad \text { and } \quad f\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)=0 \tag{2.5}
\end{equation*}
$$

## 3. CHARACTERIZATION THEOREM

In this section we will prove the following theorem:

Theorem. The only function $I_{n}$ satisfying the postulates 1 to 5 is the generalized directed-divergence given by (1.1).

Proof. The proof of the theorem depends on the following lemmas.

Lemma 1. $I_{2}$ is symmetric.
Proof. The postulate 1 for $n=3, p_{1}+p_{2}, q_{1}+q_{2}, r_{1}+r_{2}>0$, give

$$
\begin{gather*}
I_{3}\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right)=  \tag{3.1}\\
=I_{2}\left(p_{1}+p_{2}, p_{3} ; q_{1}+q_{2}, q_{3} ; r_{1}+r_{2}, r_{3}\right)+ \\
+\left(p_{1}+p_{2}\right) I_{2}\left[p_{1} /\left(p_{1}+p_{2}\right), p_{2} /\left(p_{1}+p_{2}\right) ;\right. \\
\\
\left.\frac{q_{1}}{q_{1}+q_{2}}, \frac{q_{2}}{q_{1}+q_{2}} ; \frac{r_{1}}{r_{1}+r_{2}}, \frac{r_{2}}{r_{1}+r_{2}}\right],
\end{gather*}
$$

and

$$
\begin{gather*}
\text { (3.2) } I_{3}\left(p_{2}, p_{1}, p_{3} ; q_{2}, q_{1}, q_{3} ; r_{2}, r_{1}, r_{3}\right)=  \tag{3.2}\\
=I_{2}\left(p_{2}+p_{1}, p_{3} ; q_{2}+q_{1}, q_{3} ; r_{2}+r_{1}, r_{3}\right)+ \\
+\left(p_{2}+p_{1}\right) I_{2}\left[p_{2} /\left(p_{2}+p_{1}\right), p_{1} /\left(p_{2}+p_{1}\right) ; \frac{q_{2}}{q_{1}+q_{2}}, \frac{q_{1}}{q_{1}+q_{2}} ; \frac{r_{2}}{r_{1}+r_{2}}, \frac{r_{1}}{r_{1}+r_{2}}\right]
\end{gather*}
$$

Thus postulate $2,(3.1)$ and (3.2) prove lemma 1 , which is equivalent to

$$
\begin{equation*}
f(p, q, r)=f(1-p, 1-q, 1-r) \tag{3.3}
\end{equation*}
$$

for $(p, q, r) \in K$.
In particular, (3.3) gives

$$
\begin{equation*}
f(0,0,0)=f(1,1,1) \tag{3.4}
\end{equation*}
$$

Lemma 2. $f$ defined by (2.3) satisfies the functional equation

$$
\begin{align*}
& f(x, y, z)+(1-x) f\left(\frac{x}{1-u}, \frac{y}{1-v}, \frac{z}{1-w}\right)=  \tag{3.5}\\
& =f(u, v, w)+(1-u) f\left(\frac{u}{1-x}, \frac{v}{1-y}, \frac{w}{1-z}\right)
\end{align*}
$$

for $x, y, z, u, v, w \in[0,1[$ with $x+u, y+v, z+w \in] 0,1]$ and that

$$
\begin{equation*}
f(x, y, z)=x \log \frac{y}{z}+(1-x) \log \frac{1-y}{1-z} \tag{3.6}
\end{equation*}
$$

for $(x, y, z) \in K$.
Proof. The postulate 2 gives

$$
\begin{gather*}
I_{3}\left(x_{1}, x_{2}, x_{3} ; y_{1}, y_{2}, y_{3} ; z_{1}, z_{2}, z_{3}\right)=  \tag{3.7}\\
=I_{3}\left(x_{2}, x_{3}, x_{1} ; y_{2}, y_{3}, y_{1} ; z_{2}, z_{3}, z_{1}\right)=I_{3}\left(x_{3}, x_{1}, x_{2} ; y_{3}, y_{1}, y_{2} ; z_{3}, z_{2}, z_{1}\right) .
\end{gather*}
$$

The equations (3.7), (2.3) (3.3) and the postulate 1 yield,

$$
\begin{gather*}
f\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)+\left(x_{1}+x_{2}\right) f\left(x_{1} /\left(x_{1}+x_{2}\right), \frac{y_{1}}{y_{1}+y_{2}}, \frac{z_{1}}{z_{1}+z_{2}}\right)=  \tag{3.8}\\
=f\left(x_{1}, y_{1}, z_{1}\right)+\left(1-x_{1}\right) f\left(x_{2} /\left(1-x_{1}\right), \frac{y_{2}}{1-x_{2}}, \frac{z_{2}}{1-z_{1}}\right)= \\
=f\left(x_{2}, y_{2}, z_{2}\right)+\left(1-x_{2}\right) f\left(x_{1} /\left(1-x_{2}\right), \frac{y_{1}}{1-y_{2}}, \frac{z_{1}}{1-z_{2}}\right)
\end{gather*}
$$

for $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \in[0,1), x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2} \in(0,1]$ and with the convention of section 1 .

From the second and third equation pairs in (3.8), we see that $f$ satisfies the functional equation (3.5).

Let $f_{1}$ denote the partial derivative of $f$ with respect to the first variable. Then differentiating partially the first and third equation pairs in (3.8) with respect to $x_{1}$, we get

$$
\begin{equation*}
f_{1}\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)+ \tag{3.9}
\end{equation*}
$$

$$
\begin{gathered}
+f\left[x_{1} /\left(x_{1}+x_{2}\right), \frac{y_{1}}{y_{1}+y_{2}}, \frac{z_{1}}{z_{1}+z_{2}}\right]+\left\{x_{2} /\left(x_{1}+x_{2}\right)\right\}= \\
=f_{1}\left[x_{1} /\left(x_{1}+x_{2}\right), \frac{y_{1}}{y_{1}+y_{2}}, \frac{z_{1}}{z_{1}+z_{2}}\right]=f_{1}\left[x_{1} /\left(1-x_{2}\right), \frac{y_{1}}{1-y_{2}}, \frac{z_{1}}{1-z_{2}}\right]
\end{gathered}
$$

for $x_{1}, y_{1}, z_{1} \in(0,1), x_{2}, y_{2}, z_{2} \in[0,1)$ and $x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2} \in(0,1]$.
Now differentiating partially with respect to $x_{2}$ the first and second equation pairs in (3.8), we have

$$
\begin{gather*}
f_{1}\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)+  \tag{3.10}\\
+f\left[x_{1} /\left(x_{1}+x_{2}\right), \frac{y_{1}}{y_{1}+y_{2}}, \frac{z_{1}}{z_{1}+z_{2}}\right]-\left\{x_{1} /\left(x_{1}+x_{2}\right)\right\}= \\
=f_{1}\left[x_{1} /\left(x_{1}+x_{2}\right), \frac{y_{1}}{y_{1}+y_{2}}, \frac{z_{1}}{z_{1}+z_{2}}\right]=f_{1}\left[x_{2} /\left(1-x_{1}\right), \frac{y_{2}}{1-y_{1}}, \frac{z_{2}}{1-z_{1}}\right],
\end{gather*}
$$

for $x_{2}, y_{2}, z_{2} \in(0,1), x_{1}, y_{1}, z_{1} \in[0,1), x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2} \in(0,1]$.
Thus subtracting (3.10) from (3.9), we have

$$
\begin{gather*}
f_{1}\left[x_{1} /\left(x_{1}+x_{2}\right), \frac{y_{1}}{y_{1}+y_{2}}, \frac{z_{1}}{z_{1}+z_{2}}\right]+f_{1}\left[x_{2} /\left(1-x_{1}\right), \frac{y_{2}}{1-y_{1}}, \frac{z_{2}}{1-z_{1}}\right]=  \tag{3.11}\\
=f_{1}\left[x_{1} /\left(1-x_{2}\right), \frac{y_{1}}{1-y_{2}}, \frac{z_{1}}{1-z_{2}}\right],
\end{gather*}
$$

for $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \in(0,1)$ wtih $x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2} \in(0,1]$.
Substituting $x_{1}=x u /(1+x+x u), x_{2}=x /(1+x+x u), y_{1}=y v /(1+y+y v)$, $x_{2}=y /(1+y+y v), z_{1}=z w /(1+z+z w)$, and $z_{2}=z /(1+z+z w)$ in (3.11), the equation (3.11) takes the following form:

$$
\begin{gather*}
f_{1}\left[u /(1+u), \frac{v}{1+v}, \frac{w}{1+w}\right]+f_{1}\left[x /(1+x), \frac{y}{1+y}, \frac{z}{1+z}\right]=  \tag{3.12}\\
=f_{1}\left[u x /(1+u x), \frac{v y}{1+v y}, \frac{w z}{1+w z}\right],
\end{gather*}
$$

for $x, y, z, u, v, w \in(0, \infty)$.
Define
(3.13) $F(x, y, z)=f_{1}\left[x /(1+x), \frac{y}{1+y}, \frac{z}{1+z}\right]$, for $x, y, z \in(0, \infty)$,
so that (3.12) reduces to
(3.14) $F(u, v, w)+F(x, y, z)=F(x u, y v, z w)$, for $x, y, z, u, v, w \in(0, \infty)$.

Since $f_{1}$ is continuous due to postulate $3, F$ is also continuous. By letting $y=z=$ $=v=w=1$, we get from (3.14), that

$$
F(u, 1,1)=a \log u,
$$

so that, this in (3.14) for $y=z=1$ gives

$$
F(u, v, w)+a \log x=F(x u, v, w)=F(x, v, w)+a \log u,
$$

and hence

$$
\begin{aligned}
& F(u, v, w)-a \log u=F(x, v, w)-a \log x= \\
& =\text { a function of } v \text { and } w \text { alone }=A(v, w)(\text { say }) .
\end{aligned}
$$

This in (3.14) gives

$$
A(v, w)+A(y, z)=A(y v ; z w) .
$$

Repeating the above argument, it is easy to see that $A(v, w)=b \log v+c \log w$, so that the continuous solution of (3.14) is given by

$$
\begin{equation*}
F(x, y, z)=a \log x+b \log y+c \log z, \tag{3.15}
\end{equation*}
$$

for $x, y, z \in(0, \infty)$, where $a, b, c$ are arbitrary constants.
Hence (3.15) with the help of (3.13) gives
(3.17) $f_{1}(x, y, z)=a \log \{x /(1-x)\}+b \log \{y /(1-y)\}+c \log \{z /(1-z)\}$
for $x, y, z \in(0,1)$.
This on integration with respect to $x$ gives $f(x, y, z)=a[x \log x+(1-x)$. $. \log (1-x)]+b x \log \{y /(1-y)\}+c x \log \{z /(1-z)\}+g(y, z)$, for $x, y, z \in$ $\in(0,1)$, where $g$ is a function of $y$ and $z$ only, that is,

$$
\begin{equation*}
f(x, y, z)=a S(x)+b x \log \frac{y}{1-y}+c x \log \frac{z}{1-z}+g(y, z), \tag{3.17}
\end{equation*}
$$

for $x, y, z \in] 0,1[$, where $S(x)$ is the Shannon function,

$$
\begin{equation*}
S(x)=-x \log x-(1-x) \log (1-x) . \tag{3.18}
\end{equation*}
$$

For $x=y$, the postulates 1, 2, 3, 4 and 5 give due to [3] that,

$$
f(x, y, z)=x \log \frac{x}{z}+(1-x) \log \frac{1-x}{1-z},
$$

whereas (3.17) gives,

$$
f(x, x, z)=-a S(x)+b x \log \frac{x}{1-x}+c x \log \frac{z}{1-z}+g(x, z),
$$

so that, these with (3.17) yield,

$$
\begin{equation*}
f(x, y, z)=a[-S(x)+S(y)]+ \tag{3.19}
\end{equation*}
$$

$$
+b(x-y) \log \frac{y}{1-y}+c(x-y) \log \frac{z}{1-z}+y \log \frac{y}{z}+(1-y) \log \frac{1-y}{1-z}
$$

for $x, y, z \in] 0,1[$.
For $u=v=w=t$, the equation (3.5), with (3.19) becomes
(3.20) $(a+b)[t \log t+(1-y-t) \log (1-y-t)-(1-y) \log (1-y)]+$

$$
\begin{gathered}
+c[t \log t+(1-y-t) \log (1-z-t)-(1-y) \log (1-z)]+ \\
+(1-y) \log \frac{1-y}{1-z}-(1-y-t) \log \frac{1-y-t}{1-z-t}=0
\end{gathered}
$$

provided $x-y \neq 0$, which can very well be chosen like that.
For $t=1-y,(3.20)$ gives with the convention $0 \log 0=0$, that $c=-1$. For $y=0=z$, (3.20) gives $a+b=0$, provided $S(t) \neq 0$, which can be had for proper $t$. Thus

$$
\begin{aligned}
f(x, y, z)= & a\left[-S(x)+S(y)-(x-y) \log \frac{y}{1-y}\right]+ \\
& +x \log \frac{y}{z}+(1-x) \log \frac{1-y}{1-z}
\end{aligned}
$$

for $x, y, z \in] 0,1[$, that is,

$$
\begin{align*}
f(x, y, z) & =a\left[x \log \frac{x}{y}+(1-x) \log \frac{1-x}{1-y}\right]+  \tag{3.21}\\
& +x \log \frac{y}{z}+(1-x) \log \frac{1-y}{1-z}
\end{align*}
$$

for $x, y, z \in] 0,1[$.
By postulate 5, taking $x=\frac{2}{3}, y=\frac{1}{3}, z=\frac{1}{3}$ in (3.21), we get $a=0$, so that $f$ has the form given by (3.6) for $x, y, z \in] 0,1[$.

With little manipulation and the use of (3.5) and (3.21), it can be shown that, $f$ indeed has the form (3.6) for $(x, y, z) \in K$.

The proof of Lemma 2 is now complete.
Proof of the Theorem. Applying successively the postulate 1, we have

$$
\begin{equation*}
I_{n}\left(p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{n} ; r_{1}, \ldots, r_{n}\right)=\sum_{i=2}^{n} P_{i} f\left(p_{i} / P_{i}, q_{i} / Q_{i}, r_{i} / R_{i}\right) \tag{3.22}
\end{equation*}
$$

where $P_{i}=p_{1}+\ldots+p_{i}, Q_{i}=q_{1}+\ldots+q_{i}, R_{i}=r_{1}+\ldots+r_{i}$ for $i=1,2, \ldots, n$ with $P_{n}=Q_{n}=R_{n}=1$.

$$
\begin{align*}
& \quad I_{n}\left(p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{n} ; r_{1}, \ldots, r_{n}\right)=  \tag{3.23}\\
& =\sum_{i=2}^{n} P_{i}\left[\frac{p_{i}}{P_{i}} \log \left(\frac{q_{i} R_{i}}{Q_{i} r_{i}}\right)+\left(1-\frac{p_{i}}{P_{i}}\right) \log \left\{\left.\left(1-\frac{q_{i}}{Q_{i}}\right) \right\rvert\,\left(1-\frac{r_{i}}{R_{i}}\right)\right\}\right]= \\
& =\sum_{i=2}^{n} p_{i} \log \left(\frac{q_{i}}{r_{i}}\right)+\sum_{i=2}^{n} p_{i} \log \left(\frac{R_{i}}{Q_{i}}\right)+\sum_{i=2}^{n} P_{i-1} \log \left(\frac{Q_{i-1}}{R_{i-1}}\right)= \\
& =\sum_{i=2}^{n} p_{i} \log \left(\frac{q_{i}}{r_{i}}\right)+P_{1} \log \left(\frac{Q_{1}}{R_{1}}\right)=\sum_{i=2}^{n} p_{i} \log \left(\frac{q_{i}}{r_{i}}\right)
\end{align*}
$$

which proves the theorem.

## REFERENCES

[1] J. Aczel, P. Nath: Axiomatic characterizations of some measures of divergence in information. Z. Wahrscheinlichkeitstheorie verw. Geb. 21 (1972), 215-224.
[2] A. Hobson: A new theorem on Information Theory. J. Statist. Physics 1 (1969), 383-391.
[3] Pl. Kannappan, P. N. Rathie: On a characterizations of Directed-divergence. (Submitted.)
[4] Pl. Kannappan, P. N. Rathie: An application of a functional equation to Information Theory. Ann. Polon. Math. 26 (1972).
[5] S. Kullback: Information Theory and Statistics. John Wiley and Sons, New York 1959.
[6] P. N. Rathie, Pl. Kannappan: On a new characterization of directed-divergence in Information Theory. In: Trans. of the sixth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Prague, 1971. Academia, Prague 1973.
[7] A. Renyi: On measures of entropy and information. Proc. Fourth Berkeley Symposium Math. Statist. and Probability 1 (1961), 547-561.
Pl. Kannappan; Faculty of Mathematics, University of Waterloo, Waterloo, Ontario. Canada. P. N. Rathie; Department of Mathematics, M. R. Engineering College, Jaipur. India.

