KYBERNETIKA — VOLUME ¢ (1973), NUMBER 4

An Axiomatic Characterization of Generalized
Directed-divergence

PL. KANAPPAN, P. N. RATHIE

A characterization theorem for the generalized directed-divergence defined in (1.1) is proved
by assuming a set of five postulates (2.1)—(2.5).

1. INTRODUCTION

Let P =(py, .o by @=(d1-v )y R=(rp,--sma) Pis 45 7120, pri =
n n i=

=Yg =
i=1 i=

r; = 1 be three finite discrete probability distributions. Then we define
1 .
the generalized directed-divergence by the expression, (refer [17),

n
(1.1 R A S AR PN AL I CHIOR

Here the convention 0 log 0 = 0 is followed and logarithms will be to the base 2.
Also whenever g; or r; is zero then the corresponding p; is also zero and log (ql- | ;)
is to be taken as (log ¢; — log ry).

Forn =2, (1.]) takes the following form:
(1.2) Lpl=pigl—qrl—r=
= plog(g/r) + (1 ~ p)log {(1 ~ /(1 — 1},

for p, g, re K, where K = 10, 1] x 10, 1] x 10, 1[ U {(0, y, 2)} U {(1, ¥, 2)}, with
y,z€[0,1)and y', 2’ € (0, 1].

For P = @, (1.1) reduces to the ordinary measure of directed-divergence ([5], [7]) as
given below:

(1.3) L(Dys ooy P Pty oees 1) =._Z1 p:log (p,fr)).



An axiomatic characterization of (1.3) was given earlier in [2] and that its theorem 331
lacks mathematical rigour was pointed out by us in [6].

In this paper, we will prove a characterization theorem for the generalized directed-
divergence defined in (1.1) by assuming a set of five postulates.

A more general measure, called the generalized directed-divergence of type f,
was discussed and characterized through axioms by us in [4]. The characterization
theorem in [4] was proved entirely on different lines than those of the present paper.

2. POSTULATES

In this section we give a set of five postulates which will be used in the next section
to establish a characterization theorem for the generalized directed-divergence.

Postulate 1 (Recursivity).

(1) LPis oo Pa Q1 o oos i Fs oo T =
=L (Dy+ Pas Pas oo Pas @1 F Q2 Q3o vos a3 Fi + Tas T3 aeees 1) +
+ (p1 + P2 LIp (01 + P2)s P2f(ps + P2)s uf(as + 42)s 42/(ds + 42);
rif(ry + o), raf(ry + 7)1,

for py + P2y gy + gy 1y + 7, > 0.

Postulate 2 (Symmetry).
(22) L1 P2s P35 41 420 935 715 725 73) = 13(Pas Pos Des das Qoo G5 Far T 1)
where {a, b, c} is an arbitrary permutation of {1, 2, 3}.

Postulate 3 (Derivative). Let

(23) f(par) =Lp,1 - p;g. 1 — g3 1 —71),

for all (p, g, r) € K where K is as given in (1.2). Also let f have continuous first partial
derivatives with respect to all the three variables p, g, r € (0, 1).

Postulate 4 (Nullity).
24 f(p.p.p) =0 for pe(0,1).

Postulate 5 (Normalization).

(29) /G4 =1 and f3,34,1)=0.
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In this section we will prove the following theorem:

Theorem. The only function I, satisfying the postulates 1 to 5 is the generalized
directed-divergence given by (1.1).

Proof. The proof of the theorem depends on the following lemmas.
Lemma 1. I, is symmetric.
Proof. The postulate 1 for n = 3, p; + p,, gy + g, ¥y + ¥, > 0, give

6y . I3(p1s P2y P33 Qs 2 435 715 T2y 13) =
=Ly(pr + P2 P33 dy + 42, 453 P+ T T3)

+{p +p)1s [Pl/([’l + p2), p2f(py + p2) 3

9, 4 . " T2 ]
4+ 42 g1+ qy 1+ Tt
and
(3.2) I3(P2y P1» P33 92> 41> 435 F2s Tis ¥3) =

=12(Pz + Py P3ids + 44,9337 + "urs) +

qa q LTI "y
+(p2 + p)I [p/(p + 1), pif(p2 + p1); - , ; . :l
: R R o ' qy+4q; 91+ 4qy ryt+ry Pty

Thus postulate 2, (3.1) and (3.2) prove lemma 1, which is equivalent to
(33) fp,a.r)y=f1—p1—4q,1-7),

for (p,q,r)eK.
In particular, (3.3) gives

(34 £(0,0,0) = f(1,1,1).

Lemma 2. f defined by (2.3) satisfies the functional equation

(3:5) f(x,y,z)+(1—x)f(l_jvu,T%_v,ljw)=

u v w
..f(u,v,w)+(1—-u)f<1 _x,l_y,l_z)



forx, y,z,u, 0, we [0, [ withx + u, y + v,z + we |0, 1] and that 333

(3:6) f(x, y,z):xlogz+(1—x)log11_y, o
z -z
for (x,y,z) e K.
Proof. The postulate 2 gives
(3-7) 13(x1,x2, X35 Y1y Y25 YVas Z15 Z2s 23) =

= Ia(xz’ X3, X135 Va5 V35 Y15 22, Z3» Zl) = 13(x3, X15 X253 Y35 Y1s Y25 Z35 Z25 Zl) .
The equations (3.7), (2.3) (3.3) and the postulate 1 yield,

(39)

z
Sy 4 X0 91 + Yoo 20+ 22) + (%1 + xz)f(xlj(x1 + xp),—2 ,,_J‘_) =
Yyit+y 2t 2

= (x4, y1.21) + (1 — xl)f(xz/(l - xy), 22 _EZ_> -

1—x, 1—12

4
= f(xz, Y2, Zz) + (1 - xz) f (xll(l - xz): 1 ,—1),
L=y, 11—z,

for Xy, X, ¥1s V2 21, 22€ [0, 1), Xy + X3, ¥y + Vs, 2y + 2, €(0,1] and with the
convention of section 1.

From the second and third equation pairs in (3.8), we see that f satisfies the func-
tional equation (3.5).

Let f; denote the partial derivative of f with respect to the first variable. Then
differentiating partially the first and third equation pairs in (3.8) with respect to x,
we get

(3'9) filxy + X0, ¥0 + yao 20 + Zz) +

+ f[xlf(xl + xy), —2 Z1 ] S

yit+y: zi+ 22

1 Zy A -
=fi [:xl/(xl + xz)’ s ‘—'—:l =f l:’ﬁ/(l - xz), s ——] B
Yoty Z1t+ 2 1—y, 1 -2,
for x,, yy, z; € (0, 1), %3, 5, 2, €[0, 1) and x; + x,, yy + 2.2y + 2, €(0, 1].
Now differentiating partially with respect to x, the first and second equation
pairs in (3.8), we have
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(3.10) Filey + 20,90 + Y2z + 22} +

+f[x1/(x1 + x), —22 L :|‘ {xdfer + x3)} =

y1+y2’21+22

-/ [xl/(xl +x), 21 ] s l:xZ/(l ) Yz ]

Y1+,V2,21+Zz I—yl,l—z1

for x5, ¥, 22 E(O: D), xp yi5 21 €[0, 1), x4 + X3, yy + ¥y, 2 + 2, €(0, l].
Thus subtracting (3.10) from (3.9), we have
(3.11)

h [xl/_(x1 b ] +1, [xz/(l — a2 sz] -

> s
Yi+ VY2 Z+ 2z L=y, 1 -2z

z

- [xll(l — ), 2 —ﬁ]

1-y,"1~z

for xy, X5, ¥4, Y25 21, 22 € (0, 1) wtih x; + X5, ¥y + ¥y, 21 + 25 € (0, 1].

Substituting x; = xuf(1 + x + xu),x, = x/(1 + x + xu), y; = yo(1 + y + yv),
x,=yJ(1 +y + yv), zy = 2w[(1 + z + zw), and z, = z[(1 + z + zw) in (3.11),
the equation (3.11) takes the following form:

G.12) f, [u/(l ) :’r - :r” W] + /i [x/'(l +x), -2 _L] -

1+y 14z

-7 [ux/(l +ux), L]

1+Uy’l+wz

for x, y, z, u, v, w € (0, ).
Define

(3.13) F(x,y,z):fi[x/(1+x), y |z -:l, for x,y,z¢(0, w),

14+y 1+:z
so that (3.12) reduces to
(3.14)  F(u, v, w) + F(x, y, z) = F(xu, yv, zw), for x,y,z,u,v,we(0, ).

Since f; is continuous due to postulate 3, F is also continuous. By letting y = z =
=0 =w =1, we get from (3.14), that

F(u,1,1) = alogu,



so that, this in (3.14) for y = z = 1 gives 335
F(u, v, w) + alog x = F(xu, v, w) = F(x,v,w) + alogu,
and hence
F(u,v,w) — alogu = F(x,v,w) — alogx =
= a function of v and w alone = A(v, w) (say) .
This in (3.14) gives »
A(v, w) + A(y, z) = A(yv; zw) .

Repeating the above argument, it is easy to see that A(v, w) = blogv + clogw,
so that the continuous solution of (3.14) is given by

(3.15) F(x,y,z) = alogx + blogy + clog z,

for x, y, z € (0, o), where a, b, ¢ are arbitrary constants.

Hence (3.15) with the help of (3.13) gives

(317) fi(x, ¥, 2) = alog {x[(1 — x)} + blog {y/(1 — y)} + clog {z/(1 — z)}

forx, y,ze (0, 1).
This on integration with respect to x gives f(x, y, z) = a[xlog x + (1 — x).

Jdog (1 — x)] + bxlog {y/(t — y)} + exlog{z[(1 — 2)} + g(y, 2), for x,y,z¢€
€ (0, 1), where g is a function of y and z only, that is,

(317)  f(x,y,2) = a S(x) + bx log1 l/ 5 + cx log1 _Z - + (v, 2),

for x, y, z € 0, 1[, where S(x) is the Shannon function,
(3.18) S(x) = —xlogx — (1 — x)log(l — x).
For x = y, the postulates 1,2, 3, 4 and 5 give due to [3] that,

f(x,y,z):xlogf+(1 ~x)logl -x,
z 1 -2z

whereas (3.17) gives,

V4

f(x,x,z) = —a S(x) + bx log iL + cx log + g(x, z),
—-x . .

1—-z
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so that, these with (3.17) yield,

(3.19) S(x, 2) = a[~S(x) + S()] +
- z > 1 —_—v
+ b(x — y)log LA ox — y)log—— + y tog? + (1= y)log L
1 — y 1 -z z 1-z

forx, y,ze 0, 1[.
For u = v = w = , the equation (3.5), with (3.19) becomes
(3.20) (a+b)[tlogt+ (1 —y—t)log(l —y — 1) — (1 — y)log(1 — y)] +
+ c[tlogt + (L —y—t)log(l — z — 1) — (1 — y)log(1l — z)] +

y 1—-y—1t
—(1-y—1t)log———r
11—z ( v )Ogl— —t

=0,

+ (1 — y) log

provided x — y =+ 0, which can very well be chosen like that.

For ¢ = 1 — y, (3.20) gives with the convention 0log 0 = 0, that ¢ = —1. For
y =0 = z,(3.20) gives a + b = 0, provided S(r) = 0, which can be had for proper t.
Thus

.9 = a =50+ 50) = (s =) tog 2= T

1 —

+xlogX+(J—x)log1_y,

z 11—z
for x, y, z€ |0, 1], that is,
(3.21) fx,y,2)=a xlogf +(1 —x) Iogl i
y L—y
+x10g£+(1—x)log1_y
z —z

forx, y,ze )0, 1[.

By postulate 5, taking x = %, y = 4, z = 4 in (3.21), we get a = 0, so that f has the
form given by (3.6) for x, y, z€ 10, 1[.

With little manipulation and the use of (3.5) and (3.21), it can be shown that, f

indeed has the form (3.6) for (x, y, z) € K.
The proof of Lemma 2 is now complete.

Proof of the Theorem. Applying successively the postulate 1, we have
n
(3.22) L(Dys s Pus Qs s Qa3 15 -5 T) =§2P;f(p,-/1’f, 4./0i 1R,

where P, =p, + ...+ ppQ;=q, + ...+ g, Ry =r, + ...+ r,ifori=1,2,...,n
withP, = 0, = R, = L.



Hence (3.22) and (3.6) give

(3.23) L(Pts oeor P Qs oo Qo Pis vos Ta) =

=L fiee(E) (=R {020 -]

=37 108(&> + ipilog(R‘) + 3P, log (h) -
i i=2 . =
Q

i—-1

which proves the theorem.
(Received May 17, 1972.)
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