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Automatic Listing of Important 
Observational Statements I 

P E T R H A I E K 

The theory of automatic listing of important observational statements (the ALIOS theory) 
is a part of applied mathematical logic which introduces and studies general notions of abstract 
semantics and of objective epistemology from the point of view of applications to computer 
programmes processing observational data and formulating observational statements. 

0. INTRODUCTION 

I present here a theory which can be considered as a part of applied mathematical 
logic. To specify the subject of this theory, I shall try to explain (i) what is to be 
described (what are the basic notions of the theory) and (ii) why or how it should 
be described, i.e. I shall sketch the motivation of our study. 

(i) Our first question reads: What sentences can be stated by a research worker 
and what is their meaning"] (By the way, this, question is treated in the so-called 
extensional semantic, which could be said to be a classical part of mathematical 
logic; but our treatment will be a little unusual.) Our second question reads: what is 
the aim, matter of interest, intention or orientation of the research worker! Hence, 
we shall pay attention to the fact that the research worker holds some statements 
as important (relevant) and some not, that he tries to find the meaning of some sen
tences, i.e. the research worker solves problems. 

(ii) The main motivation of our considerations is not the interest to find and 
appropriate general philosophical explication of the family of notions sketched 
above (even if the question of philosophical adequacy cannot be fully ignored). We 
are led by the observation that if we succeed in formalizing the mentioned notions 
in a way understandable to the computer then the computer can automatically per
form a certain (not unimportant) part of the process of scientific research. Our defini
tions are adequate at least in some cases, maybe in many; whenever they are adequate, 
the computer can help considerably. 



The present theory is an attempt to state a theoretical extract and find a generaliza
tion of papers on the GUHA method (written by myself and others, see [6] —[11]). 
We shall formulate the main idea of that method; but let us first recall the distinction 
between observational and theoretical terms and sentences (see [H])*, which will be 
useful for our purpose. Observational terms and sentences must be decidable (effecti
vely evaluable or verifiable); not theoretical ones. Theoretical sentences are related 
with observational ones by means of some correspondence rules. 

Using this we may (re)formulate the main idea of the GUHA method as the aim 
to obtain automatically all the important observational statements concerning 
the given observational data.** The computer can be delegated both the systematical 
formulation and the evaluation of observational sentences, i.e. we let the computer 
know (besides others) observational data, the syntax of the observational language 
and evaluating procedures***. The computer provides a systematic list of all the 
statements important from the point of view of the given problem and of the given 
data. Particular versions of the GUHA method differ by various particular definitions 
of accepted observational data, sentences and their meanings and by criteria of 
relevance. 

In the present paper, we do not propose any new version of the GUHA method 
(particular versions serve as examples) but we shall try to formulate notions relevant 
for each possible version in a form as general as possible; we shall also investigate 
the relations of these notions. 

Our programme could be perhaps classified as an epistemological our heuristical 
study, but with the following reservations: As far as epistemology is concerned, one 
has to think of "epistemology without a knowing subject" (see Popper [5]f). And 

* Carnap writes b.o. the following: In discussions on the methodology of science, it is custom
ary and useful to divide the language of science into two parts, the observation language and 
theoretical language. The observation language uses terms designating observable properties 
and relations for the description of observable things or events. The theoretical language, on the 
other hand, contains terms which may refer to unobservable events, unobservable aspects or 
features of events, e.g. to micro-particles (...) in physics, to drives and potentials (...) in psycho
logy, etc. (Note that Carnap uses the word "observational" in the compound term "observational 
vocabulary".) 

** In the papers on the GUHA method, one speaks of automatically obtaining all the import-
tant hypotheses from given experimental material; I consider the present formulation to be more 
exact and more general. For, first, observational data need not be of experimental nature; and, 
secondly, all the existing forms of the GUHA method find in fact certain observational statements 
true (in some sense) for observed objects. The hypothesis then is that the same or similar state
ments hold in general and one has stressed the fact that GUHA offers hypotheses that must be 
submitted to further verification. Thus one is led to some correspondence rules. 

*** The computer could also be told some correspondence rules enabling it to formulate some 
theoretical statements; this possibility is not discussed in the present paper. The formulation of 
theoretical statements on the basis of observational ones remains the task of the research worker. 

f Popper claims that there are "two different senses of knowledge or of thought: knowledge 
or thought in the subjective sense, consisting of a state of mind or of consciousness or a dispositon 



when one speaks on heuristics in connection with computers, one always supposes — 189 
as far as I know — that the computer should imitate the behavior of a solver in 
a problem situation; however, here we do not want simulation but replacement. 
This means that the task of the computer is not to look for a solution but to find 
one; it should not imitate the research worker's more or less casual asking of questions 
and finding of answers but replace it by a systematic list. 

I have not succeeded in finding a comprehensive name for the presented theory; 
but our guiding idea — Automatic Listing of Important Observational Statements — 
enables us to form a readable abbreviations ALIOS. I offer this abbreviation as 
a temporary name for the new theory. 

The paper is divided into two parts. In §§ 1 — 6 we take the notion of a sentence and 
its meaning for granted (by the definition of a semantic system from § l) and we 
do not provide sentences with any structure. We define problems and their solutions 
and consider various notions of worth of a solution. In §§ 7 —10 we study the structure 
of sentences and the ways in which sentences take meanings. The functor calculi 
defined there generalize the predicate calculus; they enable us to illustrate notions 
from the first part in detail and also to derive some theoretical consequences. (The 
concluding § 11 contains some remarks.) 

I gave a short communication on the ALIOS theory at the IV International Congress 
for Logic, Methodology and Philosophy of Science (Bucharest 1971, see [11]). 
Various preliminary versions of this paper were presented in the seminar of applica
tions of mathematical logic at the Faculty of Mathematics and Physics of the Charles 
University, Prague. I thank the members of this seminar for their patience. I also 
wish to express my gratitude to my colleagues Doc. Dr. J. Becvaf, Dr. I. M. Havel, 
Dr. T. Havranek, Dr. J. Polivka and Dr. Z. Rene for their numerous stimulating 
remarks on the Czech version of the present paper and to Mrs. C Vondrejs for her 
kind help with the translation into English. 

Part I — Problems and solutions 

1. BASIC NOTIONS 

We adopt Frege's theory of names and their meanings (see [2] — Introduction). 
In this theory, sentences are particular names — names with particular meanings. 
One usually considers two possible meanings of sentences, namely truth and false
hood. In many-valued logical systems one considers more abstract truth values. Here 
we assume that sentences take values from a set of abstract values; these values may, 
but need not be considered truth values. (See examples in § 8.) We use sentences to 
speak about something; the meaning (value) of a sentence is dependent on this 

to behave or to react, and knowledge in an objective sense, consisting of problems, theories and 
arguments as such." 



"something". For the present, we are not interested in how this dependence is mana
ged; we only keep in mind that the meaning is a function of sentences and, in addition, 
of some non-linguistical entities, which will be called models. We are led to the fol
lowing definition: 

1.1. Definition. A semantical system is a quadruple <5 = (Sent, 9JJ, V, Val}, where 
Sent, 9JI, Vare non-empty sets and Va7 is a mapping of the cartesian product Sent x 9tR 
into V. We write | cp\M instead of Val(cp, M) for cp e Sent and Me £01; | <p\M is read 
"the value of the sentence cp in the model M". If V0 £ Vand Me SOUhen TrVo(M) = 
= {cp e Sent; \\<p\\M e V0} is the set of all the sentences V0-true in M. A sentence cp 
is a V0-tautology (in S) if | cp\\M e V0 for each M e 9J{. Sentences cp, \j/ are V0-equivalent 
(in S) if | | < p | | M

e F 0 o ||iA||M6V0 for each Me 9JJ; they are strongly equivalent 
(in ®) if |<p|M = | ^ | | M for each Me SOt. 

1.2. Discussion. We shall explain the relation of the notions just defined to the 
considerations of § 0; we shall further formulate intuitive assumptions that should 
be satisfied when a semantical system is to be called observational and when auto
matic listing of important observational statements is to be meaningful; finally, we 
are led to some new notions. 

(1) We imagine that the research worker has a semantical system at his disposal; 
i.e., he is able to express an arbitrary sentence (p e Sent and having observational 
data Me 9JI he is able to determine ||<p||M- If one wants to call S an observational 
semantical system then it is necessary that the function Val is calculable (in a sense). 
We further assume that the research worker has a non-empty set V0 £ Vof designat
ed values; having expressed cp he wants to know whether |<j»|M e V0 or not. A sentence 
cp can be V0-asserted (V0-stated), i.e. having expressed (pronounced) cp one wants 
to say that the M-value of cp is in V0. (This is a natural generalization of the classical 
case where V = {true, false); a sentence is asserted if having expressed it one wants 
to say that it is true.)* 

(2) Intuitive assumptions on the size of Sent. It is quite big (a human being would 
not be able to pronounce all of its elements in a reasonable time); sometimes we 
allow Sent to be infinite and sometimes (thinking of a computer) we assume that it is 
not too big (the computer can pass through it or generate it in a reasonable time; 
but we do not assume that the computer can generate e.g. all the subsets of Sent 
in a reasonable time). We further assume that, given cp and M the computer calculates 
IMU Quickly. (For examples see the GUHA-papers and also Part II of the present 
paper.) 

* Imagine a situation (in a research centre) in which "the correlation coefficient of the 
quantities Fu F2" is a K0-asserted sentence (a I^-statement) where V0 — (0-9, 1>. Evidently, 
instead of K0-asserting this one can assert ({)7-«e}-assert) the sentence "the correlation coeffi
cient of Fu F2 lies in the interval <0-9, 1>", but, at any rate, one need not do it. 



(3) A V0-true sentence need not be important from the point of view of the data M, 
e.g. if we know it to be a V0-tautology. We assume that the research worker (or the 
computer) has a (big) set F £ Sent of relevant questions. F is usually defined in 
a syntactical way; but, for the present, we do not take any account of this. (We 
continue to assume that he has observational data Me 9ft.) His aim is (at a certain 
stage of his research) to know F n TrVo (M), i.e. all the relevant questions that can 
be converted into V0-statements (about M). The set F n TrVo(M) is to be presented 
in a reasonable (economical) way; the mere list would be too long and therefore of 
little use. One can make use of the fact that some sentences are immediate consequen
ces of others; knowing that q>,,..., q>n e TrVo(M) one sees at glance that also a certain 
(p is in TrVo(M). So we look for a set X £ TrVo(M) such that each <p e F n TrVo(M) 
either belongs to X or is an immediate consequence of some sentences in X. Such 
an X will be called a solution of our problem. 

(4) We are obliged to spell out what determines a problem, whose solution has 
just been described. Given a fixed semantical system S, a problem is given (a) by 
a set V0 of designated values, (b) by a set F of relevant questions and (c) by a notion 
of immediate consequence (i.e. by what we admit to see at glance). We shall investigate 
relations of immediate consequence, both syntactically (without any respect to the 
values) and semantically (with respect to the values; this leads to the notion of V0-
soundness). 

(5) It follows from our intuitive assumptions that the research worker not using 
a device like a computer can find only a (small) subset X of TrVo(M) and has (sees) 
sentences immediately following from X. But he does not know whether he has 
(sees) the whole of F n TrVo(M), i.e. whether X is a solution. This is why the com
puter is indispensable for finding solutions. 

We now formulate exact (formal) definitions. 

1.3. Definition. Let Sent be a non-empty set. A relation of immediate consequence 
(i.e.) on Sent is an arbitrary set IC £ Sent x tyfi„(Sent) (we use tyfin(Sent) to denote 
the set of all finite subsets of Sent). If IC is a relation of i.e. on Sent then the pair 
L = (Sent, IC} is called a syntactical system. We write cpICe instead of (q>, e> e IC 
and read this "<p is an immediate consequence of e". Let X £ Sent and let cp e Sent. 
<p is said to immediately follow from X (denotation: q> eIC(X)) if either <p e l or 
there is a finite e £ X such that cpICe. A sequence (pl,..., (pn of sentences is a proof 
from X in L if for each i = 1, . . . , n either <p(eX or <p; immediately follows from 
{</»!,..., <p,-i}. A sentence <p is provable from X if it is a member of some proof 
from X. 

1.4. Definition. Let S = (Sent, 9ft, V, Val} be a semantical system, let IC be 
a relation of i.e. on Sent and let V0 zV .IC is said to be V0-sound w.r.t. S if, for 
each (peSent, ee^fin(Sent) and M e 9ft, cpICe and (V<p e e) (|i/<|MeV0) implies 
\W\\MeV0. 



1.5. Definition. Let S = {Sent, 2)J, V, VaY) be a semantical system. An <5-problem 
is a triple P = <E, V0, IC} where 0 4= F £ Senf, 0 4= V0 £ V and IC is a relation 
of i.e. on Sent V0-sound w.r.t. S. Let, in addition, M e 931; a solution of P i n Mis an 
arbitrary X £ TrYo(M) such that F n Tiy0(AT) £ 7C(X). 

1.6. Discussion. We shall answer some questions concerning the adequacy of the 
notions just defined with respect to observational semantical systems and to automatic 
listing of important observational statements. 

(1) Let a semantical system 6 and an ©-problem P be given. If <pICe, do we really 
see it at glance? Or do we see {cp; cpICe}? Of course, this does not follow from the 
mathematical definitions and must be separately guaranteed in each particular case. 
But we realize that our motivation does not allow us to replace immediate consequence 
in the definition of a solution by provability; given q> and e, one can in reasonable 
cases hardly suppose that we can see at glance whether q> is provable from e. 

(2) Is it reasonable to suppose IC to be V0-sound? (The research worker perhaps 
only believes IC to be V0-sound.) The assumption of V0-soundness is indispensable 
for further theory. The reader should imagine that the nature of IC is logical and 
mathematical rather than empirical. On the other hand, note that one can force IC 
to be V0-sound by diminishing SU£; simply omit each M such that, for some <p and e, 
we have cpICe, e £ TrVo(M) and <p 4= TrVo(M). Provided the resulting set is non
empty, we obtain a new semantical system for which the given IC in V0-sound. This 
leads us to the following question: 

(3) What is W.1 Our definition of a semantical system concerned two aspects; 
wo concentrate sometimes on the former, sometimes on the latter. We think of 9ft 
as 

— the set of possible families of observational data, 
— the set of possible computer inputs. 

(4) What does each programme for automatic listing of important observational 
data (each GUHA-method, if you want) look like? The programme presupposes 
a fixed observational semantical system <g>. The input consists of (a) a particular 
model M (observational data) and (b) a parameter p determining a problem P(p) = 
= (F(p), V0(p), IC(p)y. Hence, given p, the programme understands what the pro
blem is. 

The output is a solution X(M, p) of P(p) in M. 

(5) What statements are important? Solutions are sets of sentences and as such 
can be compared according to various criteria; in particular, we can define various 
conditions for solutions to be optimal. Each criterion can be represented by a (partial) 
quasi-ordering «< of the set Sent (see § 3 for definition, if necessary); given M a n d p, 
the programme should find a solution as good (small) w.r.t. -< as possible. (Since 
the computer cannot pass through various solutions but must construct one solution 
(and also since -< need not have any least element) one can find the best solution only 



in some particular cases.) Given an S, {P(p), P parameter} and the programme deter- 193 
mining X(M, p), we say that a sentence <p is an important statement on M if (p e 
e X(M, p). (In particular cases this definition can be made independent of the pro
gramme.) The chosen criterion -< and the quality of the programme determine to 
what extent this notion of importance is adequate. We see that we are forced to 
compare solutions, e.g. w.r.t. inclusion or w.r.t. cardinality. 

2. PROPERTIES OF SYNTACTICAL SYSTEMS; INDEPENDENCE 

We shall first consider the possibility of changing a relation of immediate con
sequence without changing the corresponding operation associating with each set X 
the set of all sentences that follow immediately from X. (Note that cpICX is not the 
same as cp elC(X)l) (We shall see e.g. in 5.4 that it is desirable to make the relation 
of i.e. as small as possible.) Then we shall be interested in £ -minimal and card-
minimal sets of sentences having various properties*. Such a property is e.g. — given 
a relation of i.e. — "to be a solution of an ©-problem P" or — more generally and 
more syntactically — "to be Y-sufficient" (Ya set of sentences, see below). We shall 
introduce two notions of independence for sets of sentences and establish their rela
tion to one another and to the notions of minimality among Y-sufficient sets (Yfixed). 
Finally we summarize consequences of the established facts for solutions of ^-pro
blems (Theorem 2.30). 

2.1. Definition. A pair <<p, e> where e = {(f>u ..., (p„) will be sometimes denoted 

by- " '" '—- (cf. the usual way of expressing deduction rules). Hence cpICe means the 
9 

same as ^ILII^IE e ic. 

2.2. Definition. Let 1CU IC2 be relations of i.e. on a set Sent. ICX and IC2 are said 
to be equivalent if ICX(X) = IC2(X) for each X £ Sent (i.e. if the same sentences 
immediately follow from X in the sense of ICt as in the sense of IC2.) 

In the sequel we assume that an arbitrary syntactical system L = (Sent, IC} is 
fixed. 

2.3. Theorem. There is a £-largest and a £ -least relation of i.e. equivalent to IC. 

Proof. Put (plCe *> <p e v (3e0 E e) (cpICe0); then IC SIC and hence IC(X) £ 
£ IC(X) for each X. If cp eIC(X) then cp e X v (3e <= X) (cpICe), hence cpeX w 

* Xis a ^.-minimal set with a property 0> if Xhas the property 9> and no proper subset of X 
has the property 0>; Xis. a card-minimal^set with the property 0> if X has the property & and no set 
of smaller cardinality has the property 0>. 



v (3e £ X) (3e0 £ e) (q>ICe0), hence cp e X v (3e0 £ X) ((pICe0) and consequently 
<p e JC(Z). So we have 1C(X) = IC(X) for each X. Suppose that JCX $ JC, i.e. there 
are <p, e such that <pJCje but <p <£ e and there is no e0 £ e such that cpICe0. Con
sequently, (p e JCj(e) — JC(e). We see that IC is the £-largest relation of i.e. equi
valent to IC. 

Now put cpIC°eo (pICe& <p f e& "1 (3e0 <= e) (q>ICe0); then one verifies easily 
that IC° £ IC and that IC° is equivalent to JC. Suppose that JC° $ JC,, i.e. there 
are cp, e such that q>IC°e and not q>IC,e. Then either there is a e0 £ e such that (pIC,e0, 
hence cp e JCj(e0) but cp <£ IC°(e0) = JC(e0), or there is no such e0 and then q> e IC(e) 
but cp $ JCj(e). We see that JC° is the £-least relation of i.e. equivalent to JC. 

2.4. Denotation. JC denotes the £-largest relation of i.e. equivalent to JC and JC° 
denotes the £-least relation of i.e. equivalent to JC. 

2.5. Definition. JC is regular if 

(V<p e Sent) (Ve e ^ / ;„(Senf)) [(<p e e v (3e0 c e) (<pJCe0)) =* <pJCe] ; 

JC is prime if 

(V<p e Sent) (Ve e ^ ( S e n i ) ) [(<p e e v (3e0 c e) (<pJCe0)) => ~| (<?JCe)] . 

2.6. Lemma. (1) The following are equivalent: (a) JC is regular, (b) JC = IC, (c) 
IC = JCj for some relation JCj of i.e. on Sen;'. (2) Also the following are equivalent: 
(a) JC is prime, (b) JC = JC°, (c) IC = (IC,)0 for some relation JCj of i.e. on Sent. 

2.7. Definition. Let E £ Sent. The restriction of IC to E is the relation IC n 
n (E x ^ / ;„(E)); it is denoted by JC f E. 

2.8. Lemma. (1) JC f" E is a relation of i.e. on E. (2) The following holds for each 
sequence s: s is an JC-proof from X containing only elements of E iff s is an (JC Is E)-
proof from X. 

2.9. Definition. JC is transitive if 

(yx) £ Sent) (IC(IC(X)) = IC(X)). 

2.10. Theorem. JC is transitive iff the following holds for each <p 6 Sent and X £ 
Sent: (p is provable from X o (<p e X v (3e £ X) (<pIC(e)). 

The proof is easy and can be left to the reader. 

2.11. Definition. Let X, Y £ Sent. X is Y-sufficient if Y £ IC(X). (When necessary, 
one says that X is Y-sufficient w.r.t. JC.) 



2.12. Remark. Let S = (Sent, M, V, VaT) be a semantical system, let P = 
= <E, V0, 7C> be an ©-problem and let Me SOT be a particular model. Then X S 
c TrVo(M) is a solution of P iff X is (F n TrKo(M))-sufficient. 

2.13. Lemma. (1) X is 7C(X)-sufficient. (2) If X is £=-minimal Y-sufficient and if 
V £= Z £= /C(X) then X is £=-minimal Z-sufficient. 

2.14. Definition. X is weakly independent if 

(V<peX)( /C(X- {</>}) * /COO); 

X is strongly independent if 

(V<peX)(<^JC(X -{<?}) . 

2.15. Remark. (1) Evidently, X is weakly independent iff X is £=-minimal 
7C(X)-sufficient; X is strongly independent iff X is £=-minimal X-sufficient. (2) If 
ICU IC2 are equivalent relations of i.e. then the notion of weak independence w.r.t. 
ICt coincides with the notion of weak independence w.r.t. IC2; similarly for strong 
independence, sufficiency etc. 

2.16. Lemma. If X is strongly independent then X is weakly independent. 

2.17. Remark. The last inplication cannot be converted: Let Sent = {1,2,3}, 
IC = {•£, | } (schematically: 1 -> 2 -> 3), X = {1,2}. Then X is weakly independent 
but not strongly independent. 

2.18. Lemma. If X is £=-minimal Y-sufficient then X is weakly independent. 

Proof. By Lemma 2.13 (2), X is £-minimal 7C(X)-sufficient; the lemma follows 

by the remark 2.15 (1). 

2.19. Lemma. If Sent is finite then each Y-sufficient set X contains an X0 £= X 
which is £=-minimal Y-sufficient (and hence weakly independent). 

2.20. Remark. (1) One can easily show that the assumption that Sent is finite is 
necessary. (2) A Y-sufficient set need not contain a strongly independent Y-sufficient 
subset: see the example in 2.17. 

2.21. Lemma. Each subset of a strongly independent set is strongly independent. 

2.22. Remark. The analogous statement concerning weak independence is not 
valid. Let Sent = {1, 2, 3, 4, 5} and let IC = {£, \, ^}. Then {l, 2, 3} is weakly 
independent but {1,2} is not. 



2.23. Lemma. Let Sent be finite. The following are equivalent: 

(i) For each Y each Y-sufficient set contains a strongly independent Y-sufficient 
subset. 

(ii) For each X, X is strongly independent iff X weakly independent. 

Proof, (ii) => (i) by Lemma 2.19. We prove (i) => (ii). If X is weakly independent 
then X is £-minimal 7C(^)-sufficient; if X0 S X is strongly independent and IC(X)-
sufficient (it exists by (i)) then we have X0 = X and X is strongly independent. 

2.24. Lemma. If IC is transitive then, for each X, X is strongly independent iff Y 
is weakly independent. 

Proof. If X is not strongly independent then there is a cpeX such that <p e 
eIC(X - {<p}), hence IC(X - {<p}) = IC(IC(X - {?})) 2 IC(X), hence IC(X) = 
= IC(X — {q>}) and X is not weakly independent. 

2.25. Remark. Note that a card-minimal Y-sufficient set need not be strongly 
independent even if strongly independent Y-sufficient sets exist. Let Sent = Y = 
= {1, 2, 3, 4}, IC = {f, f, §}. Then {1, 2} is a card-minimal Y-sufficient set which 
is not strongly independent and {1, 3, 4} is strongly independent and Y-sufficient. 
If Sent is finite then of course each card-minimal Y-sufficient set is £-minimal 
Y-sufficient and therefore weakly independent. 

We now recall semantical systems, problems and their solutions. Let @ = 
= (Sent, 9Ji, V, Vol} be a semantical system, let P = <E, V0, IC} be an S-problem 
and let M e 9R. 

2.27. Definition. Under the denotation just introduced, a solution X is direct 
if X E F. 

A direct solution contains only some relevant questions with good values. But it is 
reasonable to consider also indirect solutions containing also some "auxiliary 
questions" (with good values) taken from a set Q £ Sent (of auxiliary questions). 
Theoretically, we can restrict ourselves to some "standard cases". Looking for a direct 
solution we may assume that F = Sent; and looking for an indirect solution with 
auxiliary questions taken from Q we may assume F n Q = Sent. We define: 

2.28. Definition. Let Sent0 £ Sent, 0 * Sent0. (a) If S = <Senf, SB, V, VaJ} 
is a semantical system we put 

S r Sent0 = (Sent0, SK, V, Val ^(Sent0 x 9K)> . 

(b) If in addition P = <F, V0, IC) is an S-problem we put 

P [• Sent0 = <F n Sent0, V0, IC [" Sent0) . 



(Obviously, S (̂  Senf0 is a semantical system and P [• Sent0 is an ( S Is Sent0)-
problem.) 

2.29. Theorem. Let S = <Senr, M, V, Va/> be a semantical system, let P = 
= <F, V0, JC> be an S-problem, let MeM and let X £ Sent (1) l i s a direct 
solution of the S-problem P in M iff X is a solution of the ( S f F)-problem P ["* F 
in M. (2) X is a solution of the S-problem P i n M a n d X = F r\ Q iff X is a solution 
of the ( S Is (F u o.))-problem pf(Fn Q) in M 

Proof. Obvious, cf. 2.8. 

2.30. Theorem. ( S , P, Sent, F, M have their usual meanings.) (1) If Sent is finite 
then each solution of P in M contains a £ -minimal solution, (b) If X is an £ -minimal 
solution of P in M then X is weakly independent. (3) If F = Sent then a solution 
of P in Mis £-minimal iff it is weakly independent. (4) If X is a strongly independent 
direct solution then it is £-minimal. 

Proof. (1) follows from 2.19, (2) follows from 2.18. (3) Suppose that F = Sent 
and I is a (direct) weakly independent solution. Hence IC(X) 3 TrVo(M), i.e. 
1C(X) = TrVo(M) and IC(X - { < ? } ) * TrVo(M) for each cp. (4) If 9 e l £ F n 
n TrVo(M) and if X is strongly independent then <p £IC(X — {<?>}), hence Jf — {<p} 
is not a solution. 

2.31. Remark. The inplication in (2) cannot be generally converted; a weakly 
independent solution need not be £-minimal since it is possible that there is a cp e X 
such that X — {cp} is a solution and the difference IC(X) — IC(X — {cp}) consists 
only from some sentences not in F. Similarly, a strongly independent solution can be 
diminished by omitting an arbitrary cp $ F, provided X — {cp} is (F n TrVo(M)) — 
sufficient. 

3. QUASIORDERINGS 

In the present section we recall and introduce some notions concerning quasi-
ordered sets and mention their properties used in the sequel. Since this section is 
auxiliary from our point of view we shall give no proofs. But the reader can supply 
the proofs with ease. 

3.1. Definition. A quasiordering on a set A is any reflexive and transitive relation 
on A. (I.e., R £ A2 is a quasiordering on A iff (Vx e A) (<x, x> 6 R) and (Vx, y, zeA). 
• («*, J>> e R & <y, z> e R ) => <x, z> e R).) We write x ^Ry instead of <x, y} e R, 
x<Ry instead of <x, j> e R & {y, x> £ R and x=Ry instead of <x, j>>eR& 
& <J;> x> e R. A quasiordered set is a pair <A, R> where R is a quasiordering on A. 

Let R be a quasiordering on A. R is an ordering if (Vx, y e A) (x =R y => y = y) 



''antisymmetry). R is a linear quasiordering if (Vx, y e A) (x <.R y v y g R x) 
(linearity). R is a //near ordering if it is a liner quasiordering and an ordering. R is an 
equivalence if (Vx, v e A) (x <R y => x =R y) (symmetry). 

Let R be a quasiordering on A and let x e A. The R-segment determined by x is the 
set SegR (x) = {y e A; y <R x}. A set X c A is an R-segment if there is an x 6 A 
such that X = SegR (x). SegR denotes the set of all the R-segments. 

3.2. Lemma. R is linear iff SegR is linearly ordered by inclusion. 

3.3. Definition. Let A be a set. A monotone covering of A is an arbitrary system 
of non-empty subsets of A linearly ordered by the includion whose union is A. 

3.4. Remark. If A is finite then a system G of nonempty subsets of A linearly 
ordered by the inclusion is a monotone covering of A iff A e G. 

3.5. Theorem. Let A be a finite set. (1) if R is a linear quasiordering on A then 
SegR is a monotone covering of A. (2) If G is a monotone covering of A then there 
is a uniquely determined linear quasiordering R on A such that G = SegR. 

3.6. Definition. Let R be a quasiordering on A. The relation ER defined by the 
condition <x, y> e ER o x =Ry is (obviously an equivalence and is) called the 
canonical equivalence on <A, R>. 

3.7. Definition. Let R be a quasiordering on A. Put xR = {y e A; y =Rx}, 
A/R = {xR; x e A} and for u,ve AJR define 

(u, v} e R o (3x, y e A) (w = xR & v = yR & x <R y). 

3.8. Theorem. If <A, R> is a quasiordered set then <A/R, R> is an ordered set. 

3.9. Definition. Let R, S be quasiorderings on A. S extends RifR^S.S extends R 
conservatively if S extends R and ER = Es. (Then we have R £ S~.) 

3.10. Theorem. Every quasiordering can be extended conservatively to a linear 
quasiordering. 

(The proof is easy under the assumption that A is finite. For infinite sets one needs 
some additional axioms of Set Theory, e.g. the axiom of choice - the theorem is 
equivalent to the so-called Order Extension Principle.) 

3.11. Definition. Let R be a quasiordering on A and let S be a linear ordering on 
A . S is coherent with R if 

(a) (Vx, veA ) (x <R y=>x<sy), 



(b) (Vx, y, z e A) ((x = Ry&x<,sz<,sy)^x = Ry=Rz) 

(i.e., each xR is an interval in S). 

3.12. Theorem. Let A be finite, let G be a monotone covering of A and let S be 
a linear ordering on A . S is coherent with the linear quasiordering determined by G 
iff each X e G is an S-segment. 

3.13. Theorem. For each quasiordering R on A there is a linear ordering S on A 
coherent with R. 

(Hint: Associate with each u e AJR a linear ordering Sa on u. Let Q be a linear 
quasiordering extending R conservatively. One takes for S the direct sum of the 
ordered sets <u, S> using the ordered set <A /2, Q>. See the remark following 3.10.) 

4. LINEARLY ORDERED SYNTACTICAL SYSTEMS 

We shall now pay attention to the fact that one often needs a linear ordering of the 
set of sentences, e.g. when the computer is to generate sentences in certain order or 
since one wants to have a fixed list of all the sentences in order to be able to decide 
quickly whether a given sentence is in a given sublist (e.g. in a solution). We are led 
to the notion of a linearly ordered syntactical system (briefly, l.o. syntactical system); 
for l.o. syntactical systems we define a notion of an increasingly independent set 
and find conditions under which this notion coincides with the notion of a strongly 
independent set. Finally we introduce a notion of a l.o. S-problem; consequences 
of our considerations for l.o. S-problems are summarized in Theorem 4.9. 

4.1. Definition. A l.o. syntactical system is a triple (Sent, IC, S> where (Sent, IC} 
is a syntactical system and S is a linear ordering of Sent. 

4.2. Definition. Let (Sent, IC, S> be a l.o. syntactical system. A set I c Sent 
is increasingly independent if there is no cpeX that follows immediately from the 
preceding elements of X, i.e. if (\/q> eX)(q> $IC((X — {cp}) n Segs(<p)). 

4.3. Lemma. (1) Any subset of an increasingly independent set is increasingly 
independent. (2) If X is strongly independent then X is increasingly independent. 

4.4. Theorem. Let Sent be finite. For each Y £ Sent there is a ^-minimal X £ Y 
such that X is increasingly independent and Y-sufficient. 

Proof. S orders Yinto a'finite sequence cpu ..., <pn. We define X0 inductively as 
follows: <pt eX0; for i > 1 let (pteX0<i> (pi$IC(X0 n {q>u .-.., (p^^. Clearly, X0 

is increasingly independent and Y-sufficient. The theorem follows by 4.3 (1). 



200 4.5. It is not true that each Y-sufficient subset X of Y contains an increasingly 
independent Y-sufficient set: Let Y = Sent {1, 2, 3} and let 1C = {$, f} . Then {1, 2} 
is £ -minimal Y-sufficient but does not contain any increasingly independent Y-suffi
cient set. 

4.6. Definition. Let IC be a relation of i.e. on Sent and let e be a finite subset 
of Sent, e is said to be relevant for IC if there is a <p e e such that <p/C(e — {<p}). 
Let {Sent, IC, S> be a l.o. syntactical system. IC is said to be S-admissible if no set 
relevant for IC is increasingly independent. 

4.7. Theorem. Let {Sent, IC, S> be a l.o. syntactical system. IC si S-admissible 
iff the following holds for each X £ Sent: 

(*) X is increasingly independent o X is strongly independent. 

Proof. («^) Let e be relevant for/C, then e is not strongly independent and, by (*), 
e is not increasingly independent. Hence/C is S-admissible. (=>) Let IC be S-admissible. 
Suppose that X is a set of sentences that is not strongly independent, i.e. there is 
a finite e £ X and a <p e e such that <p/C(e — {cp}). This e is relevant for IC and, by 
the S-admissibility of IC, e is not increasingly independent. Hence X is not increasingly 
independent either. 

4.8. Definition. Let S be a semantical system. A l.o. Q-problem is a quadruple 
P = <E, V0, /C, S> where <E, V0,JC> is an 8-problem and S is a linear ordering 
of Sent. (Consequently, <Se«f, IC, S> is a l.o. syntactical system.) 

4.9. Theorem. Let S = {Sent, 9ft, V, Va/> be a semantical system, let Sent 
be finite, let P be a l.o. S-problem and let Me 9ft. (1) There is an increasingly inde
pendent direct solution of P in M * (2) If IC is S-admissible then each increasingly 
independent solution of P in M is strongly independent. 

Proof. The theorem follows by 4.4 and by 4.7. 

5. PAIRS OF PROBLEMS; HIERARCHICAL PROBLEMS 

Let S be a semantical system, let P be an S-problem or a l.o. S-problem and let 
0 4= Senf0 £ Sent. Put S 0 = S Is Sent0, P0 = P {• Sent0.** Our first question 
(question schema) reads: Under which conditions can a "good" solution of the (l.o.) 
S0-problem P0 be extended to a "good" solution of the (l.o.) S-problem PI We shall 

* By a solution of a l.o. ©-problem <F, V0, IC, 5> we mean a solution of the problem 
<F, K0. icy. 

** If P = <F, K0, /C, 5> then P f Se«?0 evidently means <F n S<?«/0, V0, IC [" Se/tfo, 5 n 

n (5e«r0)>; P Is Sen/,, is then a l.o. (@ ^ 5e«/0)-problem. 



give an answer for £ -minimal and for increasingly independent solutions. The pro
cess of finding a solution of a partial problem and extending it to a solution of a greater 
problem can be iterated. This leads to the definition of a hierarchical problem. 

In the present section we assume Sent to be finite. Let M e 9ft be given. 

5.1. Theorem. Under the above conditions, suppose that the following holds: 

(*) (V<p, e) ((cpICe &cpe Sent0) => e £ Sent0) . 

Then each £-minimal solution of the ®0-problem P 0 can be extended to a £-minimal 
solution of the ®-problem P. 

Proof. Let X0 be a £-minimal solution of P0 . Let Xt be a ^-minimal subset of 
TrVo(M) n (Sent - Sent0) such that X 0 n l , is (F n TrFo(M))-sufficient. (Note 
that e.g. X0 u (TrVo(M) n (Sent - Sent0)) is (E n TrFo(M))-sufficient.) We prove 
that X0 u Xi is £-minimal (F n TrKo(M))-sufficient. Suppose not. Then there is 
a (peX0^X1 such that, for each ij/e F n TrVo(M), \p eIC((X0 u Xt) - {<?}). 
This (p cannot be in X1 by the definition of Xu hence (p 6 X0 . But X0 is a ^-minimal 
solution of P0, i.e. there is a i/r e F n TrKo(M) n Se«f0 such that i/r £IC(C0 - {<?}). 
Given such a i/f, there is a e0 — X0 £ {<p} and e t — Xlt et non-empty, such that 
ij/IC(e0 u ea). This contradicts (*). 

5.2. Theorem. Let now P be a l.o. S-problem with a linear ordering S and suppose 
that the following holds: 

(V<p, i/r e Sen?) ((i> e Seni*0 & <p <; s i>) => <p e Sent0) 

(i.e., Sent0 is a segment). Then each increasingly independent solution of P 0 can be 
extended to an increasingly independent solution of P. 

Proof. Let X0 be an increasingly independent solution of P 0 and let Sent — 
— Sent0 = {<p1; ..., cpn} (order in S). Define by induction: 

<p,eX1 o (PieTry0(M)& <pl^IC(X0 u (Xt n { p . , . . . . p.- , .})). 

Evidently, Z 0 u Xl is a solution of P; it is increasingly independent since each sen
tence in X0 S-precedes each sentence in Xv 

5.3. Corollary. If, moreover, IC is S-admissible then each strongly independent 
solution of P0 can be extended to a strongly independent solution of P. (See 4.7.) 

5.4. Definition. Let ® = (Sent, 9ft, V, Val} be a semantical system. A hierarchical 
^-problem is a quadruple P = <F, V0, IC, H} where <F, V0,7C> is an S-problem 
(denoted by P°) and If is a monotone covering of Sent. A solution of P in M e 9H is 
a system {X,,; h e if} such that (Vh, h' e H)(h £ h' => Xh S Xh) and that, for each 
h e H, Xh is a solution of the (® Is h)-problem P° ["• h. (-X^r is then obviously a solu
tion of P°.) 



5.5. Discussion. The definition of a hierarchical problem and of its solution is 
motivated by two things: (1) We imagine that the computer will successively con
struct the sets Xh for increasing h; the programme will thus have the form of a cycle 
with the parameter h. If it is necessary (e.g. for some technical or financial reasons) 
to break the computation and if h is the last processed value of the parameter then 
we have a solution of P° [" h. (If a programme has not this form then it is possible 
that we do not know anything before the computer stops or at least that we do not 
know for what subset of F n TrVo(M) our results are sufficient.) (2) The interpretation 
of results is also divided by a hierarchical solution into a series of subtasks, namely 
interpretations of various sets Xh as solutions of problems P° Is h. 

5.6. Definition. A solutoin X = {Xh; h e H} of a hierarchical problem P in Me sJJl 
is locally weakly independent if each Xh is weakly independent. X is locally ^-mini
mal if each Xk is a <= -minimal solution of P° ^ h in M. X is globally ^-minimal 
if XSe„, is a c-minimal solution of P°. Analogously for locally and globally card-
minimal. 

5.7. Definition. A linearly ordered hierarchical problem is a quintuple P = 
= <F, V0, IC, H, S> where <F, V0, IC, H> is a hierarchical problem, <F, V0, IC, S> 
is a l.o. problem and S is coherent with the linear quasiordering given by H. 

Hence each h is a segment in S (cf. 3.2). It is natural to suppose this; recall that we 
imagine S as defining a fixed list of Sent and H as defining stages in processing the 
problem; so our stages consist in processing some segments of Sent. 

We shall use Theorems 5.1 and 5.2 for the formulation of some conditions sufficient 
for the existence of "locally" good solutions. We first define two quasiorderings 
determined by a relation of immediate consequence. 

5.8. Definition. Let {Sent, JC> be a syntactical system. The quasiordering R[C 

induced by IC is the least quasiordering containing the relation QIC defined on Sent 
by the following condition: 

<[<p,^yeQIC*>(le)(ipiC(evj{<p})). 

The quasiordering R™c weakly induced by IC is the least quasiordering containing 
the relation QJc defined on Sent by the following condition: 

<<p, «A> e Qw *> (3e) (WC(e u {cp}) & 1 (<pIC(e u {ip}))) . 

We write cp ^IC\j/ instead of cp f^Rlc \\i and cp r^Jc instead of cp ^RIC™ $• 

5.9. Theorem. Let S be a,semantical system and let P — <F, V0, IC, Jf> be a hierar
chical S-problem. Denote by RH the quasiordering determined by H. If RIC c R H 

and if X is a solution of P° «= <F, V0, ICy in a Me 2R then {X n h; h e H} is a solu
tion of P i n M 



Proof. Let cp e F n h n TrVo(M). We show that cpeIC(X n h). Certainly, 
<p eIC(X), i.e. either (p e X and then cp e IC(X n /?), or there is an e c JC such that 
cpICe. If e = {cpu ..., cp„} then (pu ..., <pn <JC cp, hence cpu ..., cp„ g R a cp, hence 
<pu ..., cphe h and consequently q> eIC(X n h). 

We are interested not only in existence of a locally good solution but also in the 
possibility of its successive construction. This means that, given a h e H and its 
immediate successor h' e H (i.e. h c h' and there is no h* e H such that h c h* c 7t'), 
XA- should be definable from Xft, S [̂  h', P Is h' an M. The following theorem 5.10 
together with Remark 5.11 show that under certain conditions this requirement can 
be satisfied. 

5.10. Theorem. Let S be a semantical system, let P = <E, V0, IC, H) be a hierar
chical problem and let R/c £ RH. Suppose that a system {Xh; h e H} of sets of 
sentences has the following properties: (l) For the least h0 in H, Xho is some £ -
minimal solution of the (<3 Is h0)-problem P° [• h0. (2) For h, h' e H, if h' is the imme
diate successor of h then (Xh- — Xh) = Z is some £-minima] subset of h! — h such 
that I j u Z i s a solution of the (S [̂  h')-problem P° [• h'. Then {Xh; h e H} is 
a locally £ -minimal (and hence locally weakly independent) solution of the pro
blem P. 

The p roo f is by induction on the elements of H and follows easily from the proof 
of Theorem 5.L One must only realize that if h e H, q> e H, cpICe and q> = {cpu ... 
..., cpn} then q>u ..., cpn <IC cp, i.e. (pu ..., (pn <;K/f cp and consequently <pu ..., cpne k. 

5.11. Remark. The proof 5.1 also shows that the assumption R/c £ RH implies 
the existence of a solution satisfying conditions (1) and (2) of 5.10. 

5.12. Theorem. Let S be a semantical system, let P = <F, V0, IC, H, S> be a l.o. 
hierarchical problem and let Me 9Jt. Then there is a solution {Xh; he H} of P which 
is increasingly independent (i.e. XSent and therefore each Xh is increasingly indepen
dent). If IC is S-admissible then this solution is strongly independent. 

The p r o o f is by induction and uses Theorem 5.2 and the coherence of S with RH. 
(The appendix follows by Corollary 5.3.) Note that if IC is S-admissible then IC f" 
|N Sent0 is (S n Senf0)-admissible. 

5.13. Lemma. Let <Senr, IC, S> be a l.o. syntactical system. If RjC is an ordering 
and if S extends R™c then IC is S-admissible. (Consequently, if R/c is an ordering and 
if S-extends R/c then IC is S-admissible.) 

Proof. Let e be relevant for IC, i.e. let (pIC(e — {<p}) and put t/r = maxs e. 
Either cp = \p and then e is not increasingly independent or (p + ^ and ij/IC(e — {izV}), 
i.e. e is not increasingly independent either. The last possibility, <p =f= \ji and 
~]\_\j/IC(e — {ij/})~\ contradicts to the assumption since, by the definition of R7C, we 
have i/V ^ s cp which together with <p :g s \\i yields q> = \j/. (The appendix is obvious 
since RJC £ RJC.) 



5.14. Remark. Trying to satisfy the assumptions of Theorem 5.10 and Lemma 5.13 
we want RJC or R^c to be as small as possible. And we know that notions as "solution", 
"weakly independent solution", "strongly independent solution" etc. do not change 
their meanings when IC is replaced by another equivalent relation of i.e. This shows 
that it is advantageous to work with prime relations of i.e. 

6. SIMPLE SYNTACTICAL SYSTEMS 

We shall now consider a particular class of relations of i.e.; having a problem with 
a simple relation of i.e. (in the sense to be defined) one easily finds a card-minimal 
solution. (Note that the version of the GUHA-method described in [6] and [7] 
belongs to this case. See also § 9 (a) of the present paper.) 

6.1. Definition. A syntactical system L = {Sent, IC} is simple if there is a quasi-
ordering R such that 

(Wp e Sent) (VZ £ Sent) (cp e IC(X) o (3i/> e X) (# SR (p)) • 

6.2. Lemma. Suppose IC to be a prime relation of i.e. {Sent, IC} is simple iff the 
following conditions (l) and (2) hold: 

(1) (V(? 6 Sent) (Ve e ^fiB(Sent)) (cpICe => e has cardinality 1), 

(2) (V^, t// e Sent) ((plCty) •*> (<p =# ip & ip ^Ic cp). 

Proof. If IC is prime and simple then (1) obviously holds; (2) would hold if we 
replaced ^ J C by ^ R (R from Definition 6.1). We show that ^ I c is the same as = R. 
If \j/ <;K cp and \J/ + <p then (pIC{^/) and hence \j/ Sic 9- If "A = /c 9 a n d $ * 9 then 
there are tyu ..., i]/„ and e1,...,e„_1 such that \j/ = \j/1, cp = ^„ and i/^ee; and 
4/i + 1IC et for i = 1, . . . , n — 1. Then et = {xj/^, ^ ; g R ipi + 1 (i = 1, ..., n - 1) and 
hence ip SRq>. The implication [((1) & (2)) => IC simple] is obvious. 

6.3. Lemma. If {Sent, IC) is simple then IC is transitive. 

6.4. Definition. Let L = {Sent, IC} be a syntactical system. For Y £ Sent put 
Y = {ue SentjRIC; Y nu + 0} and let Y be the set of all the R^-minimal elements 
of Y. (Note that {Sent\RiC, R7c> i s a n ordered set.) 

6.5. Theorem. Let Sent be finite and let IC be a prime relation of i.e. on Sent. 
The system L = <Senr, IC} is simple iff the following holds for each X £ Y £ Sent: 
X is Y-sufficient iff X n u is non-empty for each u e Y. 

Proof. (=>) Let L be simple and suppose that X is Y-sufficient. Let u be minimal 
in T and let <p e Y n u. Since ip e IC(X), there is a cpeX such that cp!C{\j/}, hence 



\J/ <^R<p, Since u is minimal in Y we obtain \jj <LR<p, hence \j/ e u and consequently 
X n u 4= 0. Conversely, suppose (Vw e l ) ( X n a + 0 ) and let (peY. Then there is 
a veSent/Rjc such that (p e v; furthermore, there is a ue Y such that u tkjr^v-
Let \j/ eX nu. We have i/' tisic <P> i-e- <P 6 I e P O a n d hence X is Y-sufficient. 

(<=) Assume the condition for sufficiency. We show L to be simple, i.e. we prove 
cpeIC(X)o(3\l/eX)(\]/ g J C cp). Let i// g / c <p, then {t/r} is {<p, t/^}-sufficient and 
hence <p e 7C({iA}) £ JC(X). Conversely, let cp e IC(X); then X is (X u {<p})-sufficient 
and hence X contains a sentence ip such that \j/ Sic <P-

6.6. Discussion. Let Sent be finite and let IC be prime. 

(1) If L = <Senr, 7C> is simple then the following holds for each X ^ Y £ Seni: 
X is £-minimal Y-sufficient iff it contains exactly one member of each u e Y. Hence 
all the £-minimal Y-sufficient subsets of Yhave the same cardinality and therefore 
coincide with card-minimal Y-sufficient subsets of Y. 

(2) If IC is simple and RJC is an ordering then, for each Y £ Senr, there is a uni
quely determined least (both £-least and card-least) Y-sufficient subset of Y; it con
tains precisely all the minimal elements of Y. 

(3) It follows by 6.3, 2.18 and 2.24 that the described £-minimal Y-sufficient sets 
are strongly independent. If S is a linear ordering of Sent coherent with RIC (i.e. 
S extends RIC, RIC being an ordering) then IC is S-admissible (prove!) and therefore 
increasingly independent means the same as strongly independent. So we have the 
following: 

(4) If S is a semantical system and if P is a l.o. S-problem such that {Sent, IC) 
is simple and S is coherent with RIC then, for each Me 9ft, finding an increasingly 
independent (F n TrKo(Af))-sufficient subset of (F n TrYo(M)) (which is realizable 
by the computer from our point of view) one has a card-minimal direct solution of P 
in M; this solution is strongly independent. Note that, by 5.9, this solution determines 
in a natural way a solution of each hierarchical problem which results by adding to P 
a hierarchy H satisfying the condition RIC g RH. 

Remark. An example of a simple system will be considered in § 9. 
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