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Programming Means for Simulation of Logical 
Networks III 

EVZEN KlNDLER 

The present paper is the last part of a serie, containing the information which could lead the 
non-computer-oriented investigators in logics and neurophysiology to simulate their subjects 
on computers. This part is oriented to the third generation computers: it presents how one can 
introduce the conceptions of neurons and of the logical network into the third generation lan
guages and how the users can call the interpretation of such conceptions for the pourpose of 
simulation. The examples are formulated in SIMULA 67. Baside that information the present 
part contains the conclusions corresponding to all the three parts. 

5. INTRODUCING OF FACILITIES FOR SIMULATION OF LOGICAL 
NETWORKS INTO SOFTWARE OF THIRD 
GENERATION COMPUTERS 

5.1. The computers of the third generation form the last type of computers which 
can be seriously considered in the time when this paper is written. During the develop
ment of the computers in the last decade of years certain influences (new demands 
and new discoveries) have caused that the type of the second generation has become 
unmodern and unprogressive. Although the third generation of the computers 
exists for a time which is relatively small (about six years against 10 years for the 
second generation), one can consider the type of the third generation already nowa
days: a certain property of the third generation computers that they solve the con
tradiction between the facilities of the second generation computers and the advan
tages which were present in the computers of the first generation but have dissapear 
in the second generation (see further), seems to assure the type of the third generation 
to be actual still a few future years. 

The third generation of computers have the following typical properies: the 
electronical circuits of the computers are based on integrated elements; the memory 
is organized in several levels, regarding the time of writing or reading an information 
(access time): there is a small memory with access time of nanoseconds, then there 



is an internal memory with access time of about one microsecond (realized usually 
as a monolitical memory), there is an external memory "with random access" and 
a slow external memory. The random access memory is usually realized as a magnetic 
disc unit (the access time for one case does not depend on the preceding access), 
while the slow external memory is formed by several magnetic tape as in the second 
generation (it is not a random access one because every access time depends on the 
preceding access). The capacity of the monolitical memory is about ten times greater 
that of the core memory in the second generation (almost 100 000 words). The super-
fast memory working in nanosecond time can store about 200 words. The random 
access external memory can contain millions of words while the magnetic tape one 
has its capacity depending on the length of the tape and on the number of units 
(ordinarily its capacity is more than 2 millions of words). The memory is organized 
(structured) also in logical aspects differently as in the preceding generations: the 
word has about 50 bits but it can be divided in two half-words, each of which can 
be devided in two quarter; every quarter can be divided in bytes which correspond 
to alphanumerical symbols and can be divided into bits. The words can be composed 
to pages, the pages can be grouped to chapters. The computers have wired in their 
hardware the facilities for operation with all the terms of the described hierarchy. 

The third generation computers are facilitated by time shearing and by multi
programming. It permits parallel work of independent programs in the same com
puter. If one program is interrupted (e.g. as it must halt until the magnetic disc 
memory gives it an information) another program which is prepared runs in the fast 
elecronic units so that these units — the most expansive parts of the computer — are 
well used in every microsecond. If a program is prepared to go on never a situation 
becomes that it might halt for a long time if another program works without inter
ruption: the time shearing circuits cause that every program can access its run in 
a short time (e.g. 20 milliseconds) if it signalizes that it is prepared. 

The time shearing admits that the computer can have a great number (hundreds) 
of input/output units. The typical unit of that type for the third generation is the 
terminal. It is a simple tool which can accept the information from a human and 
send them to the computer and which can receive information from the computer 
and display them to be acceptable for humans. Thus the terminals use to be electrical 
typewriters or electronic displays with a keyboard, eventually with a joined simple 
reader of a paper medium (tape, cards). The connection between the terminals and 
the computers can be thousands km long and it is often realized through standard 
telefone networks. The operating systems of the computers of the third generation 
have facilities for contacts between the terminals and the computer, specially those 
which admit storing of various informations in the disc memory even for many days. 

5.2. The programming languages of the third generation are designed to be 
universal. Of course a certain universality of programming languages has existed 
in the first generation algorithmic languages: in an algorithmic language one can 



describe any computing process which can be realized in an automatic computer. 
The concept of universality of the third generation languages is rather more general: 
they would admit to introduce any consistent expression means by which we should 
like to describe the computing processes. The solution of that target has been solved 
by various languages which use diverse technical means (see e.g. [23], [24] and [25], 
eventually by the discussion in [12] concerning the subjects of the last two mentioned 
publications), but the main principle is always the same. The translator from such 
a third generation programming language is very complicated but if it has been 
realized introduction of any class of expression means (for example of those for 
simulation of certain systems) need no special translator. Moreover their introduction 
can be done by means of other suitable means introducted before even in case that 
these have not been realized in the original third generation language. 

The facilities of the third generation language are not commonly known as e.g. 
those of the algorithmical ones. Thus it would not be suitable to write about a general 
language of the third generation computers in the next text, as the conclusions 
would be very unclear and vague. Therefore we have determined to express all the 
considerations in the language SIMULA 67 which is a typical one for the third 
generation family of the programming languages; moreover it has been implemented 
for various computers and it is an enlargement of the commonly known algorithmic 
language ALGOL 60. Our considerations can be translated for other third generation 
language simply according to their meaning. 

5.3. To realize the described process enriching the programming language needs 
in the language SIMULA 67 (see [26]) two levels. In the first level the computer 
reflects definition of a new concept; in the second one the computer reflects an 
interpretation of the concept in a certain subject. We see the levels correspond to 
similar levels in logics and noetics but in the third generation languages there are 
all the affairs more simple because the computer as well the language are not able 
of the reflection of themselves: the definitions and the interpretations thus do not 
concern themselves and the obstacles with diagonal processes etc. because always 
there is a metalanguage in which the basic programming language is described, 
unaccessible by the same programming language. The definition of a new concept 
is called the declaration of a new class in the terminology of SIMULA 67 because 
it is understood so that any interpretations of the concept form a class described 
by certain programming facilities (see further). But there is no list or set of the 
interpretations of the concept: in the third generation languages there are the facilities 
to handle with the sets but it is not dependent at the class notion (see further). To use 
the name class has only meaning for the imagination, regarding to the implemention 
in the computer it would be better called concept. The class can be defined „from 
nothing" or by a specialization of a class declared before. The first type of declaration 
is a limit case of the second one as it can be considered that the declared class is 
a specialialization of a class of all the subjects (it reflects the concept of the entity 



with no properties — as there is no possibility to do a diagonal process it leads 
to no contradictions). If there is a class A declared before and if B is a new class risen 
as a specialization of A we say that B is a subclass of A. The declaration of B has the 
following form in SIMULA 67: 

A class B parameters; the description of the parameters; 
begin program pattern end 

The further details about all the facilities of such declarations are presented in [26] 
but also in [25] and [27]. 

5.4. If the programmer wish to form an ,,interpretation" of a ,,concept" introduced 
by a class declaration, he must use an expression new A where A is the name of the 
concept (the same, introduced after the word class in the class declaration defining 
the same concept. The mentioned expression can occur in situations which are 
similar to those of occuring of arithmetic expressions (see more detailly also [25], 
[26], [27]). Specially we can let the mentioned expression assign (more exactly: 
the reference value of the mentioned expression) to a reference variable (which is 
e.g. B); the same process can be explicated that we can assign a new name B to the 
"created" interpretation of the concept A. Thus we must introduce before the con
vention that B means a name for an interpretation of A by a declaration ref (A) B 
which is analogue to any type declaration of ALGOL 60 (see e.g. [6]) and the new 
interpretation of the concept A with its name B is performed by a statement B : -
: - new A where the sign : — is analogue to the assignment sign : = of ALGOL 60. 
By the declaration ref (A) B no interpretation is created! 

5.5. There are introduced a priori certain classes which meet the programmer 
often. Thus SIMULA 67 posess the classes for handling with sets and with processes. 
The means are introduced exactly in [26] for both the types of handling while in [25] 
and [27] there are recognizable certain precessors of the introduced classes in the 
development of SIMULA 67. We need not to explain the introduced facilities while 
the intuitive meaning is clear from the phrases which their application forms and the 
exact description is presented in the mentioned publications (it is too long as to be 
presented in this paper). Let us only mention that the space has no meaning and 
no importance in SIMULA 67 while the space as a delimiter between two words 
is in the same language replaced by a point. 

5.6. In order to introduce a neuron and a logical network we must introduce 
their classes. But it is suitable to declare before it also the class of signals which 
go through the logical network. It is done by the following declaration: 

link class signal; begin integer information end; 

where the class link is the class of objects which can be elements of sets. The attribute 
information denotes the proper value which can be carried by the instants (inter-



pretations) of the declared concept. If A is a name of such an instant we can identify 
its information by an expression A.information where the point is to be read as 
a space or a saxon genitive postposition. Now we can define the class of neurons: 

process class neuron {delay); boolean delay; 
begin ref {signal) output, auxiliary output; ref {head) input; 

input:— new head; output:— new signal; 
auxiliary output:— new signal; 

passivate; cycle: inner; if ~\ delay then 
output, information : = auxiliary output, information; 
hold (1); output, information : = auxiliary output, information; 
go to cycle 

end neuron; 

the identifier delay means a logical value which is either true or false according 
to the determination whether the neuron is with delay or without it. The action 
determining the real function of the neuron is covered in this general declaration 
by the statement inner. Every neuron has its attributes output (i.e. its output signal), 
input (i.e. a set of input signals) and - for the further specializations — the attribute 
auxiliary output, with which the user does not meet. Let us introduce special neurons: 

neuron class negation; 
inspect input, first when neuron signal then 
auxiliary output, information : = 1 — information; 

neuron class identical; inspect input, first when neuron signal 
then auxiliary output, information := information; 

neuron class constant 1; 
auxiliary output, information : = 1 

neuron class constant 0; 
auxiliary output, information : = 0; 

neuron class input neuron; 
begin < instructions for reading the value which is 
assigned to the auxiliary output, information > end; 

neuron class binary neuron; 
begin inspect input, first when neuron signal 

do X\ : = information; 
inspect input, first, sue when neuron signal 

do X2 : = information; 
end; 

binary neuron class conjunction; 

begin auxiliary output, information : = XI * X2 end; 
binary neuron class disjunction; 

begin auxiliary output, information : = XI + X2 — X\ * X2 end; 

the declarations of other types of neurons differ only by other operations in the 
assignment (for auxiliary output, information) see the paragraph 2.6. One can 
introduce also the printing units which are considered to be joined to outputs from 
certain neurons; they can be declared in the following form: 



neuron class print; 
begin < instructions for printing of the input > end; 

In order to establish the whole logical network we must declare the clock of the 

network as a process which waits the described time (T) and then stops the work 

of the network: 

process class clock(T); real T; begin hold(T); stop end; 

To introduce the general concept of logical networks we can do the following 

declaration: 

head class logical network; virtual: procedure reorder; 
begin rcf (neuron) P; inner; reorder; 
for P: — first, P. sue while P none do activate P; end; 

The procedure reorder can be redeclared according to eventual demands for the 

ordering of the simulated neurons. It is described in the following part, while for 

our considerations we can assume the procedure as an empty one. The statement 

inner represents the forming of the simulated system. Thus we can present the descrip

tion of the logical network mentioned in the paragraph 2.11 (see fig. 3) as an example: 

logical network class example; 
begin ref (neuron) G8, D\, E2, E3, D4, D6, E5, El; P; 
G8 :— new input neuron (false); El:— new negation (false); 
D4. output, into (El. input); D\ :— new conjunction (true); 
G8. output, into (D\. input); El. output, into (D\. input); 
E5 :— new negation (false); D6. output, into (E5. input); 
D6 :— new identical (true); D\. output, into (D6. input); 
E2:— new negation (false); D\. output, into (E2. input); 
£3 :— new disjunction (false); E2. output, into (E3. input); 
E5. output, into (Ei. input); D4 :— new conjunction mult (true); 
G8. output, into (D4. input); E3. output, into (D4. input); 
E5. output, into (D4. input); 
for P:- G8, D\, E2, E3, D4, D6, E5, El, new print do P. into; 
P :— this example, first; 
inspect last when neuron do 
for P:— P, P. sue while P = / = this neuron do P. output, into (input); 
new clock (T). into (this example) 
end example; 

Let us mention that the class conjunction mult which performs the conduction 

of more input informations can be declared in the following way without previous 

determination of the number of terms in the conjunction: 

neuron class conjunction mult; 
begin auxiliary output, information : = 1; 
for K:— input, first, K. sue while K = / = none do inspect K 
when neuron signal do this conjunction mult, auxiliary 



output, information : = this conjuction mult, auxiliary 
output, information X information end; 

Concerning the types of the ordering we can only state that one can respect both 
the types without any distinguishing. 

6. APPENDICES 

6.1. There are various possibilities of other ordering of the printing regarding 
to the other paragrapgs of the description of the models. It is possible to introduce 
general rules for the situations which can be logically meaningful in the ordering 
of the paragraphs. We have not introduced it in the present paper as the fine details 
concerning the results are without importance for the non-computer-oriented users; 
moreover the fine details can be expressed only for the second generation languages: 
in the first generation ones they degenerate into a trivial analyzis of the sequence 
of the body of the simulation (the instruction is performed before another one iff 
it is written before it), while in the third generation languages the description needs 
to know profoundly the exact definitions of the class SIMULATION of the language 
SIMULA 67, which implies that the conclusions cannot be generalized for the other 
third generation languages. 

6.2. One can imaginate that beside the declarations of neurons in the third gener
ation (or beside the rules for program patterns in the first generation and beside the 
rules for the simulation language and its translation in the second generation) we 
can formulate the declarations (the rules) which enable to simulate the systems 
composed not only of neurons but also of elements joined with their outputs but 
performing simple statistical processing of the comming information. The principle 
would be the same only the arithmetical operations would be other, giving the result 
not as zero or one but as a number (real or integer). 

6.3. The initial conditions in the simulated logical networks can be introduced 
in the section before the main simulation cycle (in the third generation languages: 
after generating the neurons, i.e. before or after generating the clock). We have 
formulate no general rules for them because from the view point of applications 
the most interesting simulations concern the system which establish themselves 
the initial conditions by a certain phasis of the simulation when uniform values 
at the input come. 

6.4. We have introduced the concepts of the first and the second type of ordering 
(see 2.4 and 2.5). Though the rules of them can be satisfied manually without com
plications it would be possible to program so that the description of the system 
would be given without satisfying any rules of ordering and the computer would 
order the simulated system itself. In the second generation languages it means that 
the description must be translated into another description before translating into 
an algorithmic language. In the third generation the ordering can be performed 



as a component of the initial actions of the simulation (see the procedure reorder 
in 5.6). In the first generation languages it is difficult to present any method if the 
program for the simulation is not specially labeled so that it has formally a form 
of the second generation one. We shall present one algorithm for reordering the 
set of neurons so that they satisfy the rules of the first type of ordering (and thus 
automatically those of the first type of ordering). The algorithm is written in SIMULA 
67 because we can have use of the concepts introduced in the preceding part (namely 
the attributes of the neurons, the ordering of the neuron in the logical network), 
because we can have use of the facilities for ordered sets handling, which have been 
built in the SIMULA classes, and because the described algorithm is prepared as the 
body of the mentioned procedure reorder. 

begin ref (neuron) P, Q; ref (signal) S; 
P:— first; 
L: if P. delay then 

begin if P. sue =j— none then 
for Q :— P. sue, Q. sue while Q = / = none do 

if ~| Q. input, empty then 
for S:— Q. input, first, S. sue while S = / = none do 

if S = = P. output then 
begin Q. precede (P); P:~ Q; go to L end 

end 
else if P.prec = / = none then 

for Q :— P. prec, Q. prec while Q = / = none do 
if ~1 Q. input, empty then 

for S:— Q. input, first, S. sue while 5 = / = none do 
if S == P. output then 

begin P. precede (Q); go to L end; 
P :—• P. sue; if P = / = none then go to L; 
end reorder; 

Let us mention that the procedure reorder is related to a certain instance of a logical 
network which is a subclass of the class head of sets. To this instance must be related 
the procedures first, sue and prec if they are presented in the algorithm in connection 
with P. 

6.5. The concepts introduced in this paper can serve to describe exactly a certain 
facility of the programming system COSMO. This facility behaves for the user 
so that if he is not sure whether the simulation might not have numerical errors 
he changes the position of a certain key at the computer desc and lets the computer 
repeat the simulation. If the original results do not rather differ from the last ones 
the simulation can be accepted as exact (see [28]). It is possible to be realized as the 
simulated processes are continuous but the substance of the realization cannot 
be simply described by means of compartmental system theory and by means of the 
programming languages as well. In our terminology we can describe it exactly and 
simply by the following way: one position of the mentioned key causes that the 
compartments are processed as automata ordered as in the first type of ordering. 



The second position of the key causes that the compartments are processed as 
automata with delay ordered in the second type of ordering. This formulation 
illustrate a certain practical value of the formulated relations. 

6.6. In the paragraph 2.10 we have mentioned the possibility of using procedure 
and function facilities in the first generation languages when applying them to 
simulation of logical networks. If we transfer the results presented there for the 
second generation simulation languages we can formulate the following general 
rules: if the algorithmic language to which the compiler translates has facilities 
of procedures but does not admit the parameters the possibility of composed program 
pattern is more suitable (see par. 3.8), while if the algorithmic language admits the 
procedures with parameters the simple program patterns are more suitable. In the 
last case the program pattern form the line 

2E/5 (A3, A4) 

is translated into the following program pattern 

DISJUNCTION (A3, A4, A2) 

and the procedure DISJUNCTION is declared in the following form: 

PROCEDURE DISJUNCTION X, Y, Z 
Z = X + Y- X. Y 

while in the case of procedures without parameters the program pattern generated 
from the same line is 

XI = A3 
X3 = A4 
DISJUNCTION 
A2 = XI 

and the procedure DISJUNCTION is declared in the following form: 

PROCEDURE DISJUNCTION 
XI =X2 + X3- X2.X3 

In the third generation languages the use of procedures has no importance because 
it is better to declare an element for simulation than an element of programming. 

In the third generation languages and in a lot of the languages of the preceding 
generations there are boolean operations and types. We have not has use of these 
facilities in order to present properties of programming which would be the most 
general ones, adequately to the size of that paper. To transform the presented consider
ations so that we apply the logical or the boolean operations corresponds only 
to great simplifying of certain special cases of logical (boolean) operations considered 
in the present paper. 

(Received February 24, 1972.) 
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