
K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 2

Programming Means for Simulation of Logical
Networks III

EVZEN KlNDLER

The present paper is the last part of a serie, containing the information which could lead the
non-computer-oriented investigators in logics and neurophysiology to simulate their subjects
on computers. This part is oriented to the third generation computers: it presents how one can
introduce the conceptions of neurons and of the logical network into the third generation lan
guages and how the users can call the interpretation of such conceptions for the pourpose of
simulation. The examples are formulated in SIMULA 67. Baside that information the present
part contains the conclusions corresponding to all the three parts.

5. INTRODUCING OF FACILITIES FOR SIMULATION OF LOGICAL
NETWORKS INTO SOFTWARE OF THIRD
GENERATION COMPUTERS

5.1. The computers of the third generation form the last type of computers which
can be seriously considered in the time when this paper is written. During the develop
ment of the computers in the last decade of years certain influences (new demands
and new discoveries) have caused that the type of the second generation has become
unmodern and unprogressive. Although the third generation of the computers
exists for a time which is relatively small (about six years against 10 years for the
second generation), one can consider the type of the third generation already nowa
days: a certain property of the third generation computers that they solve the con
tradiction between the facilities of the second generation computers and the advan
tages which were present in the computers of the first generation but have dissapear
in the second generation (see further), seems to assure the type of the third generation
to be actual still a few future years.

The third generation of computers have the following typical properies: the
electronical circuits of the computers are based on integrated elements; the memory
is organized in several levels, regarding the time of writing or reading an information
(access time): there is a small memory with access time of nanoseconds, then there

is an internal memory with access time of about one microsecond (realized usually
as a monolitical memory), there is an external memory "with random access" and
a slow external memory. The random access memory is usually realized as a magnetic
disc unit (the access time for one case does not depend on the preceding access),
while the slow external memory is formed by several magnetic tape as in the second
generation (it is not a random access one because every access time depends on the
preceding access). The capacity of the monolitical memory is about ten times greater
that of the core memory in the second generation (almost 100 000 words). The super-
fast memory working in nanosecond time can store about 200 words. The random
access external memory can contain millions of words while the magnetic tape one
has its capacity depending on the length of the tape and on the number of units
(ordinarily its capacity is more than 2 millions of words). The memory is organized
(structured) also in logical aspects differently as in the preceding generations: the
word has about 50 bits but it can be divided in two half-words, each of which can
be devided in two quarter; every quarter can be divided in bytes which correspond
to alphanumerical symbols and can be divided into bits. The words can be composed
to pages, the pages can be grouped to chapters. The computers have wired in their
hardware the facilities for operation with all the terms of the described hierarchy.

The third generation computers are facilitated by time shearing and by multi
programming. It permits parallel work of independent programs in the same com
puter. If one program is interrupted (e.g. as it must halt until the magnetic disc
memory gives it an information) another program which is prepared runs in the fast
elecronic units so that these units — the most expansive parts of the computer — are
well used in every microsecond. If a program is prepared to go on never a situation
becomes that it might halt for a long time if another program works without inter
ruption: the time shearing circuits cause that every program can access its run in
a short time (e.g. 20 milliseconds) if it signalizes that it is prepared.

The time shearing admits that the computer can have a great number (hundreds)
of input/output units. The typical unit of that type for the third generation is the
terminal. It is a simple tool which can accept the information from a human and
send them to the computer and which can receive information from the computer
and display them to be acceptable for humans. Thus the terminals use to be electrical
typewriters or electronic displays with a keyboard, eventually with a joined simple
reader of a paper medium (tape, cards). The connection between the terminals and
the computers can be thousands km long and it is often realized through standard
telefone networks. The operating systems of the computers of the third generation
have facilities for contacts between the terminals and the computer, specially those
which admit storing of various informations in the disc memory even for many days.

5.2. The programming languages of the third generation are designed to be
universal. Of course a certain universality of programming languages has existed
in the first generation algorithmic languages: in an algorithmic language one can

describe any computing process which can be realized in an automatic computer.
The concept of universality of the third generation languages is rather more general:
they would admit to introduce any consistent expression means by which we should
like to describe the computing processes. The solution of that target has been solved
by various languages which use diverse technical means (see e.g. [23], [24] and [25],
eventually by the discussion in [12] concerning the subjects of the last two mentioned
publications), but the main principle is always the same. The translator from such
a third generation programming language is very complicated but if it has been
realized introduction of any class of expression means (for example of those for
simulation of certain systems) need no special translator. Moreover their introduction
can be done by means of other suitable means introducted before even in case that
these have not been realized in the original third generation language.

The facilities of the third generation language are not commonly known as e.g.
those of the algorithmical ones. Thus it would not be suitable to write about a general
language of the third generation computers in the next text, as the conclusions
would be very unclear and vague. Therefore we have determined to express all the
considerations in the language SIMULA 67 which is a typical one for the third
generation family of the programming languages; moreover it has been implemented
for various computers and it is an enlargement of the commonly known algorithmic
language ALGOL 60. Our considerations can be translated for other third generation
language simply according to their meaning.

5.3. To realize the described process enriching the programming language needs
in the language SIMULA 67 (see [26]) two levels. In the first level the computer
reflects definition of a new concept; in the second one the computer reflects an
interpretation of the concept in a certain subject. We see the levels correspond to
similar levels in logics and noetics but in the third generation languages there are
all the affairs more simple because the computer as well the language are not able
of the reflection of themselves: the definitions and the interpretations thus do not
concern themselves and the obstacles with diagonal processes etc. because always
there is a metalanguage in which the basic programming language is described,
unaccessible by the same programming language. The definition of a new concept
is called the declaration of a new class in the terminology of SIMULA 67 because
it is understood so that any interpretations of the concept form a class described
by certain programming facilities (see further). But there is no list or set of the
interpretations of the concept: in the third generation languages there are the facilities
to handle with the sets but it is not dependent at the class notion (see further). To use
the name class has only meaning for the imagination, regarding to the implemention
in the computer it would be better called concept. The class can be defined „from
nothing" or by a specialization of a class declared before. The first type of declaration
is a limit case of the second one as it can be considered that the declared class is
a specialialization of a class of all the subjects (it reflects the concept of the entity

with no properties — as there is no possibility to do a diagonal process it leads
to no contradictions). If there is a class A declared before and if B is a new class risen
as a specialization of A we say that B is a subclass of A. The declaration of B has the
following form in SIMULA 67:

A class B parameters; the description of the parameters;
begin program pattern end

The further details about all the facilities of such declarations are presented in [26]
but also in [25] and [27].

5.4. If the programmer wish to form an ,,interpretation" of a ,,concept" introduced
by a class declaration, he must use an expression new A where A is the name of the
concept (the same, introduced after the word class in the class declaration defining
the same concept. The mentioned expression can occur in situations which are
similar to those of occuring of arithmetic expressions (see more detailly also [25],
[26], [27]). Specially we can let the mentioned expression assign (more exactly:
the reference value of the mentioned expression) to a reference variable (which is
e.g. B); the same process can be explicated that we can assign a new name B to the
"created" interpretation of the concept A. Thus we must introduce before the con
vention that B means a name for an interpretation of A by a declaration ref (A) B
which is analogue to any type declaration of ALGOL 60 (see e.g. [6]) and the new
interpretation of the concept A with its name B is performed by a statement B : -
: - new A where the sign : — is analogue to the assignment sign : = of ALGOL 60.
By the declaration ref (A) B no interpretation is created!

5.5. There are introduced a priori certain classes which meet the programmer
often. Thus SIMULA 67 posess the classes for handling with sets and with processes.
The means are introduced exactly in [26] for both the types of handling while in [25]
and [27] there are recognizable certain precessors of the introduced classes in the
development of SIMULA 67. We need not to explain the introduced facilities while
the intuitive meaning is clear from the phrases which their application forms and the
exact description is presented in the mentioned publications (it is too long as to be
presented in this paper). Let us only mention that the space has no meaning and
no importance in SIMULA 67 while the space as a delimiter between two words
is in the same language replaced by a point.

5.6. In order to introduce a neuron and a logical network we must introduce
their classes. But it is suitable to declare before it also the class of signals which
go through the logical network. It is done by the following declaration:

link class signal; begin integer information end;

where the class link is the class of objects which can be elements of sets. The attribute
information denotes the proper value which can be carried by the instants (inter-

pretations) of the declared concept. If A is a name of such an instant we can identify
its information by an expression A.information where the point is to be read as
a space or a saxon genitive postposition. Now we can define the class of neurons:

process class neuron {delay); boolean delay;
begin ref {signal) output, auxiliary output; ref {head) input;

input:— new head; output:— new signal;
auxiliary output:— new signal;

passivate; cycle: inner; if ~\ delay then
output, information : = auxiliary output, information;
hold (1); output, information : = auxiliary output, information;
go to cycle

end neuron;

the identifier delay means a logical value which is either true or false according
to the determination whether the neuron is with delay or without it. The action
determining the real function of the neuron is covered in this general declaration
by the statement inner. Every neuron has its attributes output (i.e. its output signal),
input (i.e. a set of input signals) and - for the further specializations — the attribute
auxiliary output, with which the user does not meet. Let us introduce special neurons:

neuron class negation;
inspect input, first when neuron signal then
auxiliary output, information : = 1 — information;

neuron class identical; inspect input, first when neuron signal
then auxiliary output, information := information;

neuron class constant 1;
auxiliary output, information : = 1

neuron class constant 0;
auxiliary output, information : = 0;

neuron class input neuron;
begin < instructions for reading the value which is
assigned to the auxiliary output, information > end;

neuron class binary neuron;
begin inspect input, first when neuron signal

do X\ : = information;
inspect input, first, sue when neuron signal

do X2 : = information;
end;

binary neuron class conjunction;

begin auxiliary output, information : = XI * X2 end;
binary neuron class disjunction;

begin auxiliary output, information : = XI + X2 — X\ * X2 end;

the declarations of other types of neurons differ only by other operations in the
assignment (for auxiliary output, information) see the paragraph 2.6. One can
introduce also the printing units which are considered to be joined to outputs from
certain neurons; they can be declared in the following form:

neuron class print;
begin < instructions for printing of the input > end;

In order to establish the whole logical network we must declare the clock of the

network as a process which waits the described time (T) and then stops the work

of the network:

process class clock(T); real T; begin hold(T); stop end;

To introduce the general concept of logical networks we can do the following

declaration:

head class logical network; virtual: procedure reorder;
begin rcf (neuron) P; inner; reorder;
for P: — first, P. sue while P none do activate P; end;

The procedure reorder can be redeclared according to eventual demands for the

ordering of the simulated neurons. It is described in the following part, while for

our considerations we can assume the procedure as an empty one. The statement

inner represents the forming of the simulated system. Thus we can present the descrip

tion of the logical network mentioned in the paragraph 2.11 (see fig. 3) as an example:

logical network class example;
begin ref (neuron) G8, D\, E2, E3, D4, D6, E5, El; P;
G8 :— new input neuron (false); El:— new negation (false);
D4. output, into (El. input); D\ :— new conjunction (true);
G8. output, into (D\. input); El. output, into (D\. input);
E5 :— new negation (false); D6. output, into (E5. input);
D6 :— new identical (true); D\. output, into (D6. input);
E2:— new negation (false); D\. output, into (E2. input);
£3 :— new disjunction (false); E2. output, into (E3. input);
E5. output, into (Ei. input); D4 :— new conjunction mult (true);
G8. output, into (D4. input); E3. output, into (D4. input);
E5. output, into (D4. input);
for P:- G8, D\, E2, E3, D4, D6, E5, El, new print do P. into;
P :— this example, first;
inspect last when neuron do
for P:— P, P. sue while P = / = this neuron do P. output, into (input);
new clock (T). into (this example)
end example;

Let us mention that the class conjunction mult which performs the conduction

of more input informations can be declared in the following way without previous

determination of the number of terms in the conjunction:

neuron class conjunction mult;
begin auxiliary output, information : = 1;
for K:— input, first, K. sue while K = / = none do inspect K
when neuron signal do this conjunction mult, auxiliary

output, information : = this conjuction mult, auxiliary
output, information X information end;

Concerning the types of the ordering we can only state that one can respect both
the types without any distinguishing.

6. APPENDICES

6.1. There are various possibilities of other ordering of the printing regarding
to the other paragrapgs of the description of the models. It is possible to introduce
general rules for the situations which can be logically meaningful in the ordering
of the paragraphs. We have not introduced it in the present paper as the fine details
concerning the results are without importance for the non-computer-oriented users;
moreover the fine details can be expressed only for the second generation languages:
in the first generation ones they degenerate into a trivial analyzis of the sequence
of the body of the simulation (the instruction is performed before another one iff
it is written before it), while in the third generation languages the description needs
to know profoundly the exact definitions of the class SIMULATION of the language
SIMULA 67, which implies that the conclusions cannot be generalized for the other
third generation languages.

6.2. One can imaginate that beside the declarations of neurons in the third gener
ation (or beside the rules for program patterns in the first generation and beside the
rules for the simulation language and its translation in the second generation) we
can formulate the declarations (the rules) which enable to simulate the systems
composed not only of neurons but also of elements joined with their outputs but
performing simple statistical processing of the comming information. The principle
would be the same only the arithmetical operations would be other, giving the result
not as zero or one but as a number (real or integer).

6.3. The initial conditions in the simulated logical networks can be introduced
in the section before the main simulation cycle (in the third generation languages:
after generating the neurons, i.e. before or after generating the clock). We have
formulate no general rules for them because from the view point of applications
the most interesting simulations concern the system which establish themselves
the initial conditions by a certain phasis of the simulation when uniform values
at the input come.

6.4. We have introduced the concepts of the first and the second type of ordering
(see 2.4 and 2.5). Though the rules of them can be satisfied manually without com
plications it would be possible to program so that the description of the system
would be given without satisfying any rules of ordering and the computer would
order the simulated system itself. In the second generation languages it means that
the description must be translated into another description before translating into
an algorithmic language. In the third generation the ordering can be performed

as a component of the initial actions of the simulation (see the procedure reorder
in 5.6). In the first generation languages it is difficult to present any method if the
program for the simulation is not specially labeled so that it has formally a form
of the second generation one. We shall present one algorithm for reordering the
set of neurons so that they satisfy the rules of the first type of ordering (and thus
automatically those of the first type of ordering). The algorithm is written in SIMULA
67 because we can have use of the concepts introduced in the preceding part (namely
the attributes of the neurons, the ordering of the neuron in the logical network),
because we can have use of the facilities for ordered sets handling, which have been
built in the SIMULA classes, and because the described algorithm is prepared as the
body of the mentioned procedure reorder.

begin ref (neuron) P, Q; ref (signal) S;
P:— first;
L: if P. delay then

begin if P. sue =j— none then
for Q :— P. sue, Q. sue while Q = / = none do

if ~| Q. input, empty then
for S:— Q. input, first, S. sue while S = / = none do

if S = = P. output then
begin Q. precede (P); P:~ Q; go to L end

end
else if P.prec = / = none then

for Q :— P. prec, Q. prec while Q = / = none do
if ~1 Q. input, empty then

for S:— Q. input, first, S. sue while 5 = / = none do
if S == P. output then

begin P. precede (Q); go to L end;
P :—• P. sue; if P = / = none then go to L;
end reorder;

Let us mention that the procedure reorder is related to a certain instance of a logical
network which is a subclass of the class head of sets. To this instance must be related
the procedures first, sue and prec if they are presented in the algorithm in connection
with P.

6.5. The concepts introduced in this paper can serve to describe exactly a certain
facility of the programming system COSMO. This facility behaves for the user
so that if he is not sure whether the simulation might not have numerical errors
he changes the position of a certain key at the computer desc and lets the computer
repeat the simulation. If the original results do not rather differ from the last ones
the simulation can be accepted as exact (see [28]). It is possible to be realized as the
simulated processes are continuous but the substance of the realization cannot
be simply described by means of compartmental system theory and by means of the
programming languages as well. In our terminology we can describe it exactly and
simply by the following way: one position of the mentioned key causes that the
compartments are processed as automata ordered as in the first type of ordering.

The second position of the key causes that the compartments are processed as
automata with delay ordered in the second type of ordering. This formulation
illustrate a certain practical value of the formulated relations.

6.6. In the paragraph 2.10 we have mentioned the possibility of using procedure
and function facilities in the first generation languages when applying them to
simulation of logical networks. If we transfer the results presented there for the
second generation simulation languages we can formulate the following general
rules: if the algorithmic language to which the compiler translates has facilities
of procedures but does not admit the parameters the possibility of composed program
pattern is more suitable (see par. 3.8), while if the algorithmic language admits the
procedures with parameters the simple program patterns are more suitable. In the
last case the program pattern form the line

2E/5 (A3, A4)

is translated into the following program pattern

DISJUNCTION (A3, A4, A2)

and the procedure DISJUNCTION is declared in the following form:

PROCEDURE DISJUNCTION X, Y, Z
Z = X + Y- X. Y

while in the case of procedures without parameters the program pattern generated
from the same line is

XI = A3
X3 = A4
DISJUNCTION
A2 = XI

and the procedure DISJUNCTION is declared in the following form:

PROCEDURE DISJUNCTION
XI =X2 + X3- X2.X3

In the third generation languages the use of procedures has no importance because
it is better to declare an element for simulation than an element of programming.

In the third generation languages and in a lot of the languages of the preceding
generations there are boolean operations and types. We have not has use of these
facilities in order to present properties of programming which would be the most
general ones, adequately to the size of that paper. To transform the presented consider
ations so that we apply the logical or the boolean operations corresponds only
to great simplifying of certain special cases of logical (boolean) operations considered
in the present paper.

(Received February 24, 1972.)

REFERENCES

[1] E. Kindler: Basic facilities of application of mathematical modelling in life sciences. Acta
Univ. Carol, medica. 15 (1969).

[2] V. Dupač, J. Hájek: Pravděpodobnost ve vědě a technice. NČSAV, Praha 1962.
[3] S. C. Kleene: Representation of events in neuron networks and finite automata. Automata

studies, Princeton 1956. (Russian translation: Avtomaty, Moscow 1956.)
[4] A. T. Bharucha - Reid: Elements of the theory of Markov processes and their applications.

New York, Toronto 1960.
[5] Stroje na zpracování informací (Information processing machines), No. 1, Prague 1953.
[6] J. W. Backus a kol.: Programování v jazyku ALGOL. Praha SNTL 1963.
[7] J. Szcepkowicz: Autokód MOST 1. Kancelářské stroje, Hradec Králové 1966.
[8] Autokód pro samočinný počítač NE 803. Kancelářské stroje, Praha 1963.
[9] O.-J. Dahl, K. Nygaard: SIMULA, a language for programming and description of discrete

event systems. Introduction and user's manual. 5 t h edition. Oslo 1967.
[10] V. Černý, J. Půr: Příručka programátora samočinného počítače ODRA 1013. Kancelářské

stroje, Hradec Králové 1967.
[11] O.-J. Dahl: Discrete event simulation languages. Norsk Regnesentralan, Oslo 1967.
[12] Simulation programming languages. Proceedings of the IFIP working conference on simul

ation programming languages, Oslo 1967, North—Holland Publishing Co., Amsterdam 1968.
[13] R. D. Brennan: Continuous system modeling programs state-of-the-art and prospectus

for development. In [12], 371 — 394.
[14] System/360 continuous system modeling program User's Manual. IBM 1967.
[15] E. Kindler: COSMO (Compartmental system modelling), description of a programming

system. In [12], 402-424.
[16] E. Kindler: Simulation System COSMO — description of its language and compiler.

Kybernetika 5 (1969), 4, 287-312.
[17] E. Kindler: Computer software for modelling of compartmental systems. In: Computers

in radiology — proceedings of the international meeting, Brussels 1969. S. Karger, Basel,
Munchen, Paris, New York 1970, pp. 444-447.

[18] E. Kindler: Styk lékaře s počítač;m. Lékař a technika 1 (1970), 1, 1 0 - 1 1 .
[19] E. Kindler: Použití kompartmsntových systémů k modelování živých organismů. Biologické

listy 35 (1970), 3, 161-166.
[20] E. Kindler: Automatic modelling of compartmental systems. In: Information processing 68.

North-Hol land Publishing Co., Amsterdam 1969, pp. 1502-1505.
[21] C. W. Sheppard: Basic principles of tracer method. J. Wiley, New York, London 1962.
[22] A. Rescigno, G. Segre: La cinetica dei farmaci e dei traccianti radioattivi. .Edit. Univ.

Boringheri, Torino 1961.
[23] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Coster: Draft report on the

algorithmic language ALGOL 68. Mathematisch centrum, Amsterdam 1968.
[24] J. V. Garwick: Do we need all these languages? In [12], pp. 143-155.
[25] O.-J. Dahl, K. Nygaard: Class and subclass declaration. In [12], pp. 158-171.
[26] O.-J. Dahl, Bjorn Myhrhang, K. Nygaard: SIMULA 67 Common base language. Norsk

Regnecentralen, Oslo 1968.
[27] O.-J. Dahl, K. Nygaard: SIMULA 67 common base definition. Norsk Regnecentralen,

Oslo 1967.
[28] E. Kindler: MINICOSMO — universal generator of steady state compartmental system

model. Acta Univ. Carol, medica 16 (1970), 3/4, 281-294.

PhDr. RNDr. Evžen Kindler, CSc, Biofyzikální ústav Fakulty všeobecného lékařství Karlovy
university (Biophysical Institute, Faculty of General Medicine, Charles Universit)'), Salmovská 3,
120 00 Praha 2. Czechoslovakia.

