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Synthesis of Time-Optimal Control 
for Linear Systems and the Minimal-Time 
Lyapunoff Function 

LILIWAN ADEMOLA IGBO 

The minimal-time control to the origin is considered. It is shown that for a certain class of 
problems the minimal-time function, if it exists, completely determines the performance of 
a system. The intent here is to demonstrate that the existence of the minimal-time function gua
rantees asymptotic stability, and it is a Lyapunoff function. The minimal-time control problem 
is associated with reachability set. The main result here, for the problem solved, leads to the 
determination of the reachability set and the construction of the switch curve. 

1. INTRODUCTION 

It is well known that the gradient of the minimal-time function can be used in place 
of the adjoint response in synthesising the optimal control. 

Here we shall discuss the time-optimal control problem in a manner suggested 
by Lee and Markus [1, pp. 100]. We shall associate our problem with reachability set, 
and show that for certain class of problems the minimal-time function, if it exists, 
completely determines the performance of a system. 

The class of problems are those in which the system can be represented by an 
idealisation which may not be controllable. It may happen that the controllability 
space of the actual system is limited to a certain region of the state space. Then we can 
always restrict the actual system to this region of the state space, since there is always 
a stable control law in this region that will steer the system to the origin in an 
optimal fashion. The existence of the minimal time function guarantees asymptotic 
stability of such systems, and it is a Lyapunoff function in this region of the state 
space. 

The minimal-time control problem as presented here leads to'the determination 
of the reachability set and the construction of the switch curve. 



2. PROPERTIES OF THE REACHABILITY SET 

Consider the linear dynamical system in R", 

(1) x = Ax + Bu 

with initial data x(0) = x0, x is the state of the system, and the controls u(t) e Q <= 
c= Rm are restricted by |w,| < 1. The well-known solution of (1) for an admissible 
control u(t) e Q is given by 

x(t, u) = X(t) x0 + X(t) f X~l(r) B u(r) dT 

where X(t) = eAt is the fundamental matrix solution of the homogeneous system 

x(t) = A x(t), and X(0) = / is the identity matrix. 

Further, consider the change of coordinates defined by 

x(t,u)=X(t)y(t,u) = eA'y(t,u) 

with 

x(0, u) = X(0) v(0, u) = y(0, u) . 

Then an equivalent system to (1) is 

(2) y(t,u) = Y(t)u(t) 

where Y(i) = e~AtB. Thus y(t; u) is the solution of (2) satisfying j;(0; u) = x(0; u). 
The reachability set is the set of all initial states from which it is possible by 

admissible controls to go to the origin in time t and is defined as 

Җt) = J e-
A*B м(т) dт : |м,.| < 1, м є ß<0 . , : 

The set of states that can be reached from the origin in time t is given by eA> 3i(t). 
Thus the reachable set is 

m = u{^(() : fH 0} . 

It has been established [2, pp. 46] that M(t) is compact, convex, symmetric about 
the origin and satisfies the inclusion relations 

®(r) c 0l(t), O ^ T ^ i . 

Let lnt^(i) and dM(i) denote the interior and boundary of Sk(t) respectively. If (1) 
is controllable, and 01 is open then 

?A(r) c Int »(i) , 0 < T < t 



140 obviously, 

x 6 dm(t). 

Consider the case where the controls w, are not restricted by any preassigned 
bound, then we obtained the controllability space 

i(i) = i J e~AtB u(x) dr-.ue Q<0A , 

S = u{4f) : r > 0} 

which are linear subspaces of R". 

Remark 1. From the above we see that the geometry of the set of reachability 
.<ffl(t) does not depend on the initial state x0, except for the location of this set in R". 
For autonomous linear system only the difference t — t0 is important and r0 is 
usually taken as zero. 

In all that follows we shall be concerned with positive time solutions. Thus reaching 
the origin in minimal time corresponds to x e 8%(t). Let T(x) be the minimal time 
for steering x to the origin. Then, 

T(x) > 0 if x 4= 0 , 

T(x) = 0 if x = 0 . 

The minimal-time function T(x) is given [ l , pp . 145] by 

T(x) = inf {t ^ 0 : x e l ( ( ) } . 

Obviously, 0 <; T ^ + oo with T(x) < + oo if and only if x e M(i). From the maximal 
principle we deduce that 

max {<-grad T(x), Ax + Bu) : u e Q, jw;| ^ 1} = 1 

provided that the gradient of T(x) exists almost everywhere in 01 [ l , pp . 146]. 
Then the optimal feedback control is given by 

U(x) = - s g n ( B r g r a d T ( x ) ) . 

Lemma 1. Let S be a unique linear controllability space in R" for 

(S) x = Ax + Bu . 

Then there exist coordinates x = { _l j in R" [ l , pp . 99] such that x2 = 0 in S 



and (S) can be written as 

Xi = Aiixl + A12x2 + B l U , 

X2 = -^22*2 

where 
/v*+l 

and x2 = 

\xk J 
The 

dim S = rank [B, AB, A2B, ..., A"-1B] . 

If (S) is restricted to S we obtain 

(Sc) y = Auy + Btu , x2 = 0 . 

Obviously 0t(i) = 0t^(i) x {0} and 3t(i) c S. The minimal-time function T(xt) = 
= T(y) if x2 = 0, it is finite-valued on Sk^(i) and continuous, T(x) = oo whenever 
x2 4= 0. 

Proof. The (S) is controllable on S, and 8 is an invariant subspace of R". Also 
the rank of the controllability matrix under linear equivalence is n. Thus, the 

dimS = rank [Bu AUBU ..., Au^i] = 

= rank [B, AB,..., A"- 1B] = n . 

The second part of the lemma is self-evidence. Q. E. D. 

3. THE MINIMAL-TIME FUNCTION AS A LYAPUNOFF FUNCTION 

Theorem 1. The minimal-time function T: § -> R1 u { + 00} is continuous, 
with M open in the linear space S <= R". 

Proof. Assume that T(x) is defined and finite-valued on 0t(i), and x„ -»• x with 
T(x„) ^ f. Then x„ e 0t(i) and so x 6 0l(i) <= M from closedness. Q. E. D. 

Remark 2. Since the origin is the only critical point of S it is immediate from 
lemma 1 that we can always find an optimal asymptotically stable solution y(t) 
of (S) through x0 e &(t). We shall verify this in the proof of the next theorem by 
showing that the minimal-time function for (Sc) is a Lyapunoff function. 

Theorem 2. Consider the linear autonomous system in R", 

(S) x = Ax + Bu 

with controls u(i) constrained to the unit cube. 



142 Suppose there exists a unique linear controllability space in R" with appropriate 

coordinates x = I 1 ) , x2 = 0 and (S) is precisely 

w 
'A"A»)(**) + (B>)u. 
0 A22)\xJ \0 ) 

Assume that (S) is restricted to S so that 

(Sc) y = A11y + B1u, x2 = 0 . 

For every x0 e 9l{t) and t g; 0 let y(t) be the unique time optimal solution of (S) 
with initial data y0 = x0. Then the minimal-time function T(y(t)) is a Lyapunoff 
function. 

Proof. The minimal-time function 

4! - T(x0) for 0 S t < £ 

if and only if x0 e d0l(i) (boundary relative to S), and y(t) is the value at t of the time 
optimal solution beginning at x0, then 

T(y(t)) = £ - t , 

that is, 

T(y(t)) = T(x0) - t 

and 

_ I t > _ ) ) _ _ i 
df 

Hence the minimal-time function for (S) is a Lyapunoff function for (Sc), and decreases-
monotonically along the optimal response, T(y(t)) = 0 if and only if y(t) = 0. 
Q. E. D. 

4. EXAMPLE 1: CONTROL OF A HARMONIC OSCILLATOR 

Consider the harmonic oscillator 
' : 'A 

x + x = u , JMJ :g 1 . - ••• -

An equivalent system of first-order equations is 

*A_ l *t\fa\ + (V\u. 
\x2J \—l 0j\x2J \1 

It is easily verified that the eigenvalues of A are 

h -» j ' , Xi = - j . 



The open loop system is neutrally stable. That is, it is on the border line between 143 
stability and instability [3, pp. 18]. Since it is a normal system, it is controllable. 
Hence there exists time-optimal control in the controllability space S that will steer 
the system to the origin. In this case, 

x(t) = cA' = ( costsint 

\ - s i n t cos t 

and 

Y(t) = e~AtB = ( _ s i " *) for u= + 1 . 
\ cos tj 

Thus, the equivalent system is (see (2)) 

(3) yt(t) = - s i n t, 

(4) y2(t) = cost. 

We confine ourselves to the interval n < t < 0. Integrate (3) and (4) from 0 to t 
to obtain 

Obviously, 

yt(t) = COS Í — 1 , 7Г < t < 0 , 

y2(t) = SІП t . 

y( ř) = e - ^ B = ( S Ш Ч for u= - 1 
- cos t 

and 

(5) yx(t) = sin r, 

(6) y2(t) = -cost. 

Integrating (5) and (6) from 0 to t we obtain 

yi(t) = - c o s t + 1 , -re < t* <* 0 j f y 

y2(t) = sin t. ; ,;',• 

Now we need to express our result in terms of x coordinates. Thus under change 
of coordinates we have 

(7) x = eAty 

or 

xi(t) = £ q%ykit)', qik = [eA% , : i = l?v ' ; ; « , " " ' " 



144 Obviously, when u = + 1 we obtain 

(9) xt(t) - 1 - cos t on -% < t < 0 , 

x2(t) = sin t 

and when u = — 1 we obtain 

x^(t) = cos t — 1 on rc < t < 0 , 

x2(f) = - sin t. 

Clearly, the set of states which can be forced to the origin in no more than % seconds 
by the control u = + 1 is defined as 

v+ = {(xj, x2) : (xx - l)2 + x\ = 1; x2 < 0, x t > 0} , 

and the set of states which can be forced to the origin in no more than n seconds 
by the control u = — 1 is defined as 

v_ = {(Xj, x2) : (xx + l)2 + x2 = 1; x2 > 0, Xn < 0} . 

The v switch curve is given by 

fv+ u v_ if \xA ^ 2 , 

x, = 0 if > 2 . 

Fig. 1. Switching locus and synthesis of minimal time optimal control to origin for i j = x2, 
x2 = — x2 + K, |a| = 1 (analogue simulation). 



It is not difficult to see that the set 01 of reachability is the open region bounded 145 
by the circle of radius 2 with center at the origin (see Fig. 1). Thus, 

0t = m+ u 01. = {(xl5 x2) : x2 + x2
2S 2} 

where 01 _ are the set of states which can be forced to the v+ curve in no more than n 
seconds by the control u = — 1, and 01+ are the set of states which can be forced 
to the v_ curve in no more than n seconds by control u — + 1 . 

Every solution of v+ leaves the point x 0 ± and crosses the x raxis once at most, 
and so each response initiating in 01 and leading to the origin will have at most one 
switch. Obviously, for every state in 01 _ the time-optimal control sequence is 
{ — 1, +1}, and for every state in 01 + the control sequence is { + 1, - l } . Hence the 
unique time-optimal control law as a function of state (x1; x2) is given by 

u* = H*(xl5 x2) = + 1 for all (xt, x2) 6 v+ u 0t_ , 

u* = w*(Xj, x2) = —I for all (xlt x2) e v_ u 01+ . 

More precisely, 

M*(x1; x2) = - sgn [x2 + sgn x1 7(1 - (x, - sgn Xj)2)] . 

Thus, the synthesis of feedback time-optimal control w*(x) reduces to a determination 
of the reachability set and to the construction of the v_ switch curve. 

Remark 3. Note that the shape of the reachability set does not change under 
change of coordinates since x0 = y0 e 80! (boundary relative to $). 

It will now be show that the time-optimal control ensures asymptotic stability in the 
controllability space by demonstrating that the minimal-time function is a Lyapunoff 
function. Assume that the point x0 with coordinate (2,0) can be steered to the origin. 
The minimal time of the control action is precisely 

£ = T(x0) = 7i seconds . 

Again consider the point (x,, x2) which can be forced to the origin in the time 

(io) T(XI, x2) = n i dx, = r — — J — — _*.. 
Jo x2 J0 V[l - (x, - 1) ] 

Substitute z = x, - 1 in the integrand (10). The changes in the limit of integration are 

x1 = 0 then z = — 1 , 
xx = 7 (1 - x2) + 1 then z = 7(1 - x2) 



W ( l - « 2 ) _ 
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/V(l-X22) J 

T(xu x2) = dz = [arc sin z\\ 

J - l 1 - z2 

= arc sin ^/(l — x2
2) + ijt = arc cos x2 + 7̂t = 

= 2-7t + (4-Ti — arc sin x2) = 7t — arc sin x2 . 

From (9) we see that x2 = sin t and so 

T(x(f)) = 7t - arc sin (sin t) = 

= 7t - t , 

obviously, 

dT(x(t)) 

dí 

Hence the optimal control law is a stable control law in the controllability space S. 
Suppose we have established the minimal-time function in the y coordinates, 

then for the purpose of synthesis of the actual system we must express the gradient 
of the minimal time function in terms of the x coordinates. More precisely, assume 
that 

T(yuy2) = T(xux2). 

From relation (8) we obtain 

yj = I Qjk(t) xk(t), ; - 1, . . . ,n. 
*=i 

Thus the gradient of T(x) is 

._______) _ v dT(xux2) dyj _ v dT(xux2) 
A ~ *-> a A a y>~ 

/ d T ^ / ð Г \ 

dT 

_ e---
ðг 

Vd*J UлJ 
5. EXAMPLE 2: CONTROL OF D. C. SERVOMOTOR 

Consider the block diagram of Fig. 2. The system to be controlled is characterised 
by the transfer function 

j _ _C(p) 
KG(p) = 

p(xp + a) U(p) 



where a = 1, t = 10 and K — 1. We seek an optimal control action which reduces 147 
the error e(i) and its derivative e(t) to zero in the shortest possible time. The reference 
input signal v(t) is assumed constant. The control action u(t) is constrained by \u\ = 

< 10. 

elt) utt) 

1 
1 
1 

OC. SERVOMOTOR ~ 1 

vlt) elt) utt) 

1 
1 
1 1 1 I cfř) elt) 

J CONTROLLER 
utt) 

1 
1 
1 1 1 

elt) 
J CONTROLLER 

J utt>sumax 1 
1 
L 

1 

p I 
I 

_ J 

elt) 

J utt>sumax 1 
1 
L 

1 

p I 
I 

_ J 

elt) 

J utt>sumax 1 
1 
L 

I 
I 

_ J 

elt) 

I 
I 

_ J 

Fig. 2. Control of D. C. servomotor. 

( П ) 

The differential equation for the system is 

c(t) _ u(t) 
c(t) + 

10 10 

The differential equation (11) may be written in terms of the error as 

••/ \ éU) -Í \ v(t) u(t) -ě(t) ^L = -v(t) ^ + - L ! 
10 10 10 

Obviously, 

-ë(t) 
ê(t) _ u(t) 

10 10 

To form the state equations, let 

Xl = -e(t) and x2(t) = e(t) . 

An equivalent system of first-order equations is 

*i(0 = <0 = *a(0 > 

. / N ./ \ X2U) U(t) 
x2(t) = e(t) = - - ^ - i ! L , 

W W 10 10 
and in matrix notation 

0 \ u 

- 1 / 10 



or in vector form as 

x = Ax + Bu 

where 

The fundamental matrix solution 

and 

In this case, 

- 0 _ i ) . - ( _ : ) - - . /<» 
solution 

x W = e . i = A 1 0 ( l - e - ' / 1 0 ) \ 
w \o e- ' / i oy 

z-1W = e-.f = fH0(l-e-o)y 

no- . - . -^-p) .- » = +>». 
Clearly, the equivalent system is (see (2)) 

(12) )> . ( . ) - - 1 0 ( 1 - e " 1 0 ) . 

(13) j 2 ( 0 = - e ' / 1 0 -

Let 5? _ denote the set of states to the right of the v switch curve, and let _? + denote 
the set of states to the left of the v switch curve. Clearly, 

_?_ = {(xu x2) : xt + 10[10 In (1 - x2/lO) + x2] < 0} , 

,<M+ = {(xj, x2) : x, + 10[101n (1 - x2/l0) + x2] > 0} 

(see Fig. 3). 

The time-optimal control as a function of the state (xu x2) is given by 

u* = u*(xu x2) = +10 for all (xu x2) e v+ u £2_ , 

u* = M*(X1; x2) = —10 for all (x1; x2) e v_ u _?+ . 

More precisely, 

u(xu x2) = 10 sgn {Xl - 10[10 sgn x2 In (1 + |_c2|/l0) - x2]} . 

It is bang-bang (|M| = 10 almost everywhere), and changes sign once at most. The 



optimal control action u*(t) can be understood as a maximal accelerating force 149 
followed by a maximal braking deceleration until the motor stops just at the required 
position. 
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Fig. 3. Minimal time optimal responses to origin of the D.C. servomotor. Switching diagram 
and synthesis (analogue simulation). 

Integrating (12) and (13) from 0 to t we obtain 

y i = - 1 0 ( f - 10e ' / 1 0 + 10), 

y2 = -10(e ( / 1° - 1). 

Thus under change of coordinates (see (7)), when u = +10 we obtain 

Xl = -10[f - 10(1 - e - f / 1 0 ) ] , 

x2 = -10(1 - e- , / 1 0 ) 

and when u = —10 we obtain 

Xl = 10[ f- 10(1 - e " f / 1 0 ) ] , 

x2 = 10(1 - e - ' / 1 0 ) . 

Hence, the set of all states which can be forced to the origin by the control u = +10 

in positive time is defined as 

v+ = {(*!, x2) : xt + 10[10 In (1 - x2/l0) + x 2 ] = 0, xt > 0, x2 < 0} , 



150 and the set of all states which can be forced to the origin by the control u = —10 
in positive time is defined as 

v_ = {(*., x2) : xx - 10[101n (l + x2/l0) - x2] = 0, x. < 0, x2 > 0} . 

The v switch curve is given by 

v = v+ u v_ = {(*!, x2) : xx = 10[10 sgn x2 In (1 + |x2|/l0) - x2] . 
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