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Necessary and Sufficient Optimality 
Conditions for Average Reward of Controlled 
Markov Chains 

KAREL SLADKY 

On the base of the recurrence relation for expected reward necessary and sufficient optimality 
conditions for average reward and average overtaking reward of controlled finite Markov chains 
are inferred. Some results are also extended to semi-Markov decision processes in the Appendix. 

0. INTRODUCTION AND NOTATIONS 

Necessary and sufficient optimality conditions for discounted Markov chains 
were derived in [3]. A more general form of these conditions can be found [5]. 
Using an interesting recurrence relation for expected reward also in [5] necessary 
and sufficient optimality conditions for average reward of ergodic Markov chains 
were studied. 

This paper presents a general form of the recurrence relation for expected reward 
of controlled (non-ergodic) Markov chains. On the base of this recurrence relation 
necessary and sufficient optimality conditions of controlled (non-ergodic) Markov 
chains are inferred for average reward and also for more selective Veinott's average 
overtaking reward optimality criterion (compare [2], [6]). For the average overtaking 
case the obtained results are compared with that inferred in [2]. In the Appendix 
the average reward optimality conditions are also extended to the case of ergodic 
semi-Markov decision processes and it is indicated how the obtained results can 
be employed for investigation of continuous time Markovian decision models. 
Notations used in [4], [5] are followed in this paper. 

We shall investigate a controlled Markov chain with state space I = {1, 2, ..., r} 
and the set of control parameter values z e J = {1, 2, ..., s} in any of the states. 
Choosing control parameter value z e J in state j el state kel will be reached in the 
next transition with given probability p(j, k; z). c(j, k; z) denotes the reward asso
ciated with such a transition. The values p(j, k; z), c(j, k; z) are supposed to be 
known for any pair j , kel and any ze J. For the sake of brevity we shall introduce 



the expected one stage reward c(j; z) in state j if control parameter takes value z. 125 
Obviously, 

c(j;z) = Yp(j,k;z)c(j,k;z). 
kel 

A control co of the chain is given by a sequence of control parameter values z chosen 
with respect to the complete history of the chain. So we write co = {z„(j0, } \ , •..,}„), 
n = 0, 1,...} where z„(j0, / , , ..., j„) is the control parameter value chosen at the n-th 
transition following the occurrence of states j0,ji, • ..,}„. co is called a Markovian 
(memoryless) control if z„(j0,ju ..-,]„) = z„(j„), for n = 0, 1, . . . . A Markovian 
control is called homogeneous if z„(jn) = z(jn). For homogeneous Markovian 
control we write co ~ z(j). The chosen control co together with the transition prob
abilities and the initial state j el define the probability distribution PJ of a sequence 
{X„, n = 0, 1, ...} of random variables describing the development of the chain 
under control OJ (of course, X0 = j). By EJ we denote the mathematical expectation 
with respect to this probability distribution. For shortening we shall often delete 
the arguments X0, ...,Xk and j 0 , ...,jk in zk(...) e.g. we shall write z2 instead of 
z2(X0,XuX2) or instead of z2(}0,}u}z)-

The (random) reward up to the next n following transitions is given by 

C„= ic(Xm_1,Xm,zm_i) 
m = l 

(we set C0 = 0). The quality of control co of the considered controlled Markov chain 
is considered according to the limit behaviour (if n -» oo) of (1/n) EJC„. Obviously, 

£?C„=Z£7c(Xm_i;Zm_i), 
m = l 

where X0 = j . A control co will be called average optimal if for an arbitrary control co 
and any j el 

lim - EfCL ^ lim sup - EJCL . 
L-OO L L-OD L 

A more selective than average reward optimality criterion is the following average 
overtaking optimality criterion introduced by Veinott in [6]. A control to* will 
be called average overtaking optimal if for an arbitrary control co and any j el 

l i m i n f i £ (EfCM - EfCM) ^ 0. 
L-oo L M = 0 



1. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR 
AVERAGE REWARD 

Lemma 1.1. There exists a homogeneous Markovian control cb ~ z(j) and 
numbers gx, g2,..., gr; wl,w2, ...,wr such that 

(1.1) 9j =- T P(J, k; z(j)) • 6u = X P(h k; z). gk 
kel kel 

for all ze J and any j e / ; 

(-.-') *>j + 9j = c(j; z(j)) + I p(j, k; z(j)). wk ;> 
kel 

^c(j;z) + YJp(j,k;z).wk 
kel 

for any j el and any ze J for which(l.l) holds with equality. 

Proof. The rigorous proof can be found in [4] or [6]. Homogeneous Markovian 
control & ~ z(j) and the numbers gx, §2,..., gr; wu w2, ...,wr can be found e.g. by 
Howard's policy iteration procedure described in [1] or [4]. • 

We shall denote J j cz J the set of all control parameter values in state j for which 
(1.1) holds with equality. 

Remark 1.2. Let us denote 

(1-2) xp(j;z) = YJp(fk;z).gk-gj, 
kel 

(1.2') <p(j; z) = c(j; z) + £ p(j, k; z) . wk - Wj - §j . 
kel 

For homogeneous Markovian control d> ~ z(j) and any j e I, \l/(j; z(j)) = 0, 
cp(j; z(j)) = 0. (Note that \j/(j; z) ^ 0 for any j el, ze J and q>(j; z ) S 0 for any 
j el and z e J,). 

Theorem 1.3. For an arbitrary control co ~ z„ and all M = 0, 1 , . . . 

M - l 
(1.3) EfCM - ^ . . M = £ [ ( M - l - n ) . E? xjf(Xn; z„) + Ef <p(Xn; z„)] + 

n = 0 

+ wj - E)°WXM . 

Proof. By induction with respect to M. For M = 0 equation (1.3) is trivially 
fulfilled, for M = 1 equation (1.3) reads 

c(j; z) - S} = (p(jl z) + $j - E p(j, k; z) . wk 
kel 

that coincides with (1.2'). 



Let (1.3) hold for M. As EjCM+i = E?CM + EJ c(XM; zM) we have 1 2 7 

(1.4) E»CM+1 - gj. (M + 1) = £ [(M - 1 - n). £? ^ f c l «.) + £? fl>(*-5 *-)] + 
м - i 

XI 
п = 0 

+ w, - EjwXм + E] c(Xм; zм) - {jj + EJ^Xм + i - E°ţwXм + i + 

+ EjgXM - EfgXM - £ E? cp(X„; zn) + Wj - EJWXM + I + 
n = 0 

M - l M 

+ £ ( M - l - n). jsy <A(X; z,) + X (£^x„ - £?<!*„-,) • 
(1 = 0 11=1 

As EjgXn+1 - EmjgXn = Ej°il/(X„; z„) setting into (1.4) we obtain 

M 

£ J C M + 1 - gj. (M + 1) = £ E? <HXn; - 0 + » , - E°WXM + I + 
(i = 0 

+ f (M - R) . E? 4>(Xn; z„). U 
(1 = 0 

Remark 1.4. For the ergodic case #,- = <7 for any j el and the set of equations 
(1.1), ( l . r ) takes the form 

(1.1*) wj + g = max [c(j; z) + £ p(j, fc; z) . w j . 
zeJ kel 

Under these assumptions \j/(j; z) = 0 for any j el, z e J (so gj = g for any j eI) 

and the recurrence relation (1.3) reads 

M - l 

(1.3*) Ej>CM -gj.M=l Ej° <p(X„; -„) + w, - EJWXM . 
(1 = 0 

Relation (1.3*) was inferred in [5] and it can be also extended to the case of semi-
Markov decision processes as it is shown in the Appendix. 

Theorem 1.5. A control oo is average optimal if and only if the following condi
tions are satisfied for any j el and all n = 0 , 1 , . . . 

(1.5) EJil,(Xn; z„) = 0 , 

i M - l 

(1.6) lim — V EJ <p(Xm; zm) = 0 . 
M->oo M m = 0 

Proof. Obviously, 

(1.7) lim - i . E»CM = gj o lim ~ (EJCM - Sj . M) = 0 . 
M-»oo M M - o o M 

(Notice that equation (1.7) is fulfilled for homogeneous Markovian control d> ~ z(/)). 



Let x(J; z) = 1 if ip(j; z) < 0 (resp. x(j, z) = 0 if ip(j; z) = 0) and let 9 be the 
set of all pairs (j; z) for which x(j; z) = 1. As the control parameter z can take only 
a finite number of values there exists 

max cp(j; z) = K± 2: 0 and max \j/(j; z) = K2 < 0 . 
j _ 0";z)e® 
ze/ 

First we shall show that condition (1.5) must be fulfilled for any average optimal 
control. Let us therefore suppose EJ 4>(Xn; z„) to be negative for certain n, say let 
Ej° ̂ (XnQ; z„0) < 0. As \j/(j; z) = 0 => cp(j; z) ^ 0 from (1.3) we obtain for any 
M > n0 + m0 (where integer m0 2: —KiJK2, '«o < ~K\JKi + 1) 

(1-8) 7 ; (£;CM - ^ • M - w, - Ey>xJ = 
M 

< M - l 

- - X K W - 1 - n ) . By «K*„; z„) + £J? «<„,; z„)] < 
M n = 0 

= 77 • [(Af " 1 - "0) • EJ 4,{XnQ; z„o) + EJ cp(Xna; z„0)] + 
M 

i M - l 

+ TT. I [ ( M - l - ^ . X . + X j . E j x ^ z J . 
M n = M-m0 

But for M — 00 

-1 Y [ ( M - l - n ) . K 2 + * . , ] - > 0. 
M n = M-mo 

So from (1.8) we have 

(1.9) lim sup — EJCM - 9j < EJ ^(Xno; z„o) < 0 
M-00 M 

and the control co cannot be average optimal (compare (1.7)). So condition (1.5) must 
hold if o is average optimal. 

Under condition (1.5) equation (1.3) can be written as (1.3*). From (1.3*), (1.7) 
fulfilling (1.6) (in case that (1.5) holds) must be also the necessary and sufficient 
average reward optimality condition. • 

From (1.8) we also simply obtain the following Corollary. 

Corollary 1.6. If EJ ip(Xna; z„0) < 0 then there exists certain K < 0 and M0 

such that for any M ^ M0 

1 M - l 

(1.10) — £ [(M - 1 - n) . EJ xjj(Xn; z„) + Ef cp(Xn; z„)] < K < 0 . 
M n = 0 



The properties of controls determined by the solution of the set of equations 129 
(1.1), (LI ') are summarized in the following Corollary. 

Corollary 1.7. Homogeneous Markovian control & ~ z(j) is average optimal. 
Moreover, 

(1.3') E?CM - gj .M = wj- EfwXM . 

In case that state j belongs to an aperiodic class of states (with respect to transition 
probability matrix determined by control to) then even 

(1.3") hm (E?CM - cjj. M) = wj - £ n(j, k; <&). wk 
M-"X> kel 

where n(j, k; Co) is the limit probability of transition probability matrix 

P«=\p(j,k;z(j))\rj,k^ (&~*U)) 

defined as 

K^fe^ j^^- i im -±- 'i(py. 
m-oo m + 1 » = 0 

2. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR 
AVERAGE OVERTAKING OPTIMAL CONTROLS 

In this paragraph the recurrence relation inferred in paragraph 1 (compare 
Theorem 1.3) will be employed for investigating optimality conditions for average 
overtaking optimal controls. First we shall formulate some lemmas. 

Comparing with Lemma 1.1 we shall need a deeper insight into the set of numbers 
fulfilling conditions (l . l) , (1.1') with equality. We can formulate 

Lemma 2.1. There exists a homogeneous Markovian control ra* ~ z*(j) and the 
(unique) numbers g*, g*, ..., gf; w*, w*, ..., w*; it*, u*, ...,u* corresponding to co* 
such that 

(2-1) g* = I P(j, k; z*(j)). g* = X p(j, k;z). g*k 

kel kel 

for all z e J and any j e I; 

(2.1') w* + g* = c(j; z*(j)) + % p(j, k; -*(/)) . w* ^ 
kel 

=5 KJi z) + I P(J> k- z) • wt 
kel 



130 for any j el and any z e J for which (2.1) holds with equality; 

(2.1") u*= -w* + ^p(j,k;z*(j)).ut^ 
kel 

= - w * + £ p(j, k; z) . ut 
kel 

for any j el and any z e J for which (2.1), (2.1') hold with equality if for any j el 

(2.2) 2 > ( ; , / < ; » * ) . w* = 0 , 
kel 

(2.2') £ n(j, k; co*). u* = 0 . 
kel 

(n(j,k;co) again denotes the limit probability of transition probability matrix 
P»=\\p(j,k;z(j))\\j^(ifo)~z(j)). 

Proof. The proof can be found in [6]. Theorem 6 in [6] also provides an algorithm 
for finding homogeneous Markovian control co* ~ z*(j) and the numbers g*, g*, ... 
...,g*; w*, w*, ..., w*; u*, «*, . . . , u*. • 

We shall again denote Jj c J (resp. J'j c Jy) the set of all control parameter 
values in s tate; for which (2.1) (resp. (2.1), (2.1')) hold with equality. 

Comparing with the values §u g2, •••, gr', Wj, w2, ..., wr determined in Lemma 1.1 
we can easily see that cjj = g* for any j e I. 

Remark 2.2. Let us denote 

(2.3) $(j; z) = £ p(j, k; z) . g* - g* (so $(j; z) = •/,(;; z)) , 
kel 

(2.3') cp(j; z) = c(j; z) + £ p(j, /<; z ) . w* - w* - g* , 
kel 

(2.3") y(/; z) = - w * + £ p(j, k; z ) . «* - u* . 
kel 

For homogeneous Markovian control co* ~ z*(j) and any j e £ i//(j; z*(j)) — 0, 
(p(j; z*(j)) = 0, -/(j; z*(j)) = 0. (Note that $(j; z) = 0 for any; efzeJ; p ( j ; z) = 

^ 0 for any j el, ze Jj; y(j; z) = 0 for any j el, ze J}). 

Setting for any _/ e £ g,- = a*, w7- = w* equation (1.3) reads 

(2.4) EJCM -g*.M =Y [(M - 1 - n). EJ $(Xn; z„) + £ - ?(*„; -,)] + 

+ w* - £>*- M . 

Investigation of the optimality conditions for average overtaking optimal controls 



will be based on the following identity (2.5) obtained by summing (2.4) for M = 131 
= 0,1,2, ...,L- 1: 

1 І - 1 Г 

(2-5) } I 
L м = o 

^cм-( вг--—- + w;-£yvŁ 

= | E 1(Y KM - ] - ") • E1 ?(*.; z-) + £ ? # * . ; *»)] -
L M=0 « = 0 

- ( £ > L - £ f - L ) } • 

Remark 2.3. From (2.2) 
l i m l l V w * M = 0. 

L-oo L M = 0 

So from (2.5) using homogeneous Markovian control co* ~ z*(j) we have for any 
; e I 

(2-5') Inn 1 ^ V c * - (g* . ^ + w*Y| = 0 . 
L-co L M = 0 |_ \ ' 2 J 

Now we shall formulate the main result of this paragraph. 

Theorem 2.4. A control co is average overtaking optimal if and only if the fol
lowing conditions are fulfilled for all n = 0, 1, ... and any j el 

(2.6) 

(2.7) 

and 

(2.8) 

EЩX„; z„) = 0, 

EJ čp(X„; z„) = 0 

І™ - I £?ľ-(Xm;zm) = 0. 
M-æ M ra = 0 

Proof. As E? î (X„; z„) = 0 => £? co(Z„; z„) < 0 using the results of Corollary 1.6 
if for certain n = n0, EJ ijj(X„0; z„o) < 0 then there exists certain K < 0 and integer 
M0 such that for any M ;> M0 

As 

- Е [ ( м ~ i - » ) . - 7 * ( * . ; - - . ) + Е??>(*.;z„)] á x < o . 
M н = 0 

7 " S Z V ~ 1 - «) • Ef ҖXn; z„) + Щ ф(X„; _-„)] , I "£EJw*Xм L м = o »=o L м=o 



132 are uniformly bounded from above for any N <, M0 and any L the righthand side 
of (2.5) tends to - oo for L -> oo if for certain n = n0, Ef if(Xno; z„0) < 0. So (if we 
compare (2.5') and (2.5)) condition (2.6) must be fulfilled for any control that is 
average overtaking optimal. As 

'Z z W v(x«> -.) - Z*(L - ] - ») • E1 v(xn; z„) 
M = 0 « = 0 « = 0 

under condition (2.6) equation (2.5) reads 

(2.9) 1 £ [E-CM - (*J • ^ ~ + w* - Ef^)] = 

- T i V - ! - » ) • £7 #*« z») - (£? < - BjVrJ] • 
L „ = o 

From (2.3") we have 

(2Ao) E?y(*„; z„) = - £ > * „ + £ ? < • + . - £T"*n • 

Summing (2.10) for n = 0 , 1 , 2,..., L — 1 we obtain 

(2.11) - l W < = z W K*-;z,) + «* - E7uk 
„=0 „=0 

and (as y(j; z*(j)) = 0 for to* ~ -*(/)) 

(2.12) - Z W < - £ f O = ZW ?(*»! --) - (£>*L - Efu^) . 
Z . - 1 

-z 
„ = 0 

Setting from (2+2) into (2.9) we obtain 

(2A3) 1 ] £ [E;CM - («* . ^ + w* - EfW*Jj 

- j (Z 1 K£ - - - ») • £7 tf*.; z«) + E1 y(*«> z«)] - ( £ X , - £f«*J} • 
L „ = o 

As 
EJ >A(Z„; z„) = 0 , EJ cp(X„; z„) = 0 => EJ y(Xn; z„) < 0 

using again the results of paragraph 1 (compare (1.10), (2.13) and employ the results 
of Corollary 1.6) if for certain n = n0, EJ (p(X„0; z„0) < 0 then 

(2.14) lim sup i X* \EJCM - f <?* . kzl + W*Y] < 0 
L-oo L M=0 |_ \ 2 / J 

and (compare (2.14) and (2.5')) the control co cannot be average overtaking optimal. 



Thus condition (2.7) must be also fulfilled for any average overtaking optimal 133 
control and any average overtaking optimal control must be taken from the set 
J' = J[ x J'2 x . . . x J'r. Under the conditions (2.6), (2.7) equation (2.13) reads 

(2-i5» zI[^-(»^+»;-*«-•)]-
- j • ['£' *? y(x,; z.) - (£>;, - E;-«W] . 

L n = 0 

As y(j; z) ^ 0 for any z e J) and 

from (2.15) 

1 L _ 1 

lim - X £ " V r * = 0 
L-oo L M = 0 

(2.16) 1-7 i k^-í^-V- + 
L-oo L M = 0 |_ \ 2 

= 0 

if and only if under conditions (2.6), (2.7) also condition (2.8) is fulfilled and for any 
other control to 

1 L~"1 / i l i m i n f - l (g* i 
L-oo L M=0 \ 

L - 1 
+ w* - £TCM = 

= lim i n f - У] (£J"CM - EjCM) > 0. П 
L-оэ L M = 0 

Corollary 2.5. Homogeneous Markovian control OJ* — z *( i) is not only average 
optimal but even average overtaking optimal. 

Remark 2.6. In case that \\p(j, k; z)||^>fc==1 is ergodic for any control co ~ z(j) 
condition (2.6) is fulfilled for any control co. 

Corollary 2.7. Using the recurrence relation (2.4) it can be easily seen that 
conditions (2.6), (2.7) are fulfilled (for any j eI and all n = 0, 1, ...) if and only 
if it holds for all M = 1,2, ... 

(2.17) EJCM = g*.M + w* ~ Ejw*M . 

If the conditions Ej ij/(X„; z„) = 0, EJ cp(X„; z„) = 0 are satisfied for all n = 0, 1, ... 
and any j e I employing (2.11) condition (2.8) will be fulfilled if and only if for 
any j el 

(2.18) i i m 7 I EJ w*„ = 0 
L-o: Lп = 0 J 



134 So (2+7) together with (2.18) forms also the necessary and sufficient optimality 
conditions for average overtaking optimal controls. Conditions (2.17), (2.18) were 
inferred by another approach in [2]. 

APPENDIX 

AVERAGE REWARD OPTIMALITY CONDITIONS FOR ERGODIC 
SEMI-MARKOV DECISION PROCESSES AND CONTINUOUS TIME 
DECISION MODELS 

Let us suppose that the transition of the considered Markov chain (that is ergodic 
for any possible control) from state j into state k is associated with the values 
c(j, k; z); d(j, k; z) ^ 0 that are supposed to be known for any j , kel, z e J. 
d(j, k; z) can be interpreted as the time spent in state j before transition into state k 
occurs and 

d(j;z) = Jjp(j,k;z).d(},k;Z) 
kel 

as the expected time spent in state j under control parameter value z. Such an object 
is a particular case of a/semi-Markov decision process. Denoting D„ the (random) 
time up to the n following transitions, obviously, 

£JD„ = £ is? 3(Xw_ i ;-„.-.), 
m = l 

where X0 = j . 

By an analogy with Markov chains it can be shown the existence of the solution 
(denoted g; wu w2,..., wr) of the set of equations 

(A.l) Wj = max [c(j; z) + £ p(j, k; z),wk- d(j; z ) . a] (j = 1,2,..., r) 
zeJ kel 

if d(j; z) > 0 at least for one state that is recurrent for any admissible control. 
Denoting 

(A.1') <p(j; z) = c(j; z) + £ p(j, k; z ) . wk - Wj - d(j; z ) . § 
kel 

then for any control w ~ z„ (« = 0, 1, 2, . . .) 

(A.l") EJ c(Xn; z„) - g -Ej0 d(X„; z„) = £ J <p(X„; z„) + Ef wXn - E)°wXn+l . 

If we sum (A+") for n = 0, 1, 2, ..., M — 1 we immediately obtain 

(A.2) EJCM - § . £JD M = f EJ cP(X„; z„) + Wj - EJWXM . 



As (l/M) E"JDM is uniformly bounded and positive for M -» co 

(A. 3) lim ££*- = go lim ~ (EJCM - g . EJDM) = 0 . 

M-co EjDM M-co M 

Let us denote by C(t) the (random) reward up to time t and let E'}' C(t) be the 
expected value of C(t) under control co (if X0 = j). If the random variable M(t) 
denotes the total number of transitions up to time t then, obviously, 

EJ(C(t) - CMit)) S EJ(Cmt) + l - Cm)) ^ max c(j, k; z), 
j,k;z 

resp. 

E%t - Dщt)) й EJ(DЩt)+ì - Dщt)) S max d(j, k; z) , 
j,k;z 

and 

(A.4) lim - EJ(C(t) - C M ( 0 ) = 0 , 
t-00 t 

(A.5) lim 1 EfDM{t) = 1 
t-ce t 

(as(\lt)EjDM{t) = \ - (t - EJDM(t))jt). 

As t ->• co => M(t) -- oo from (A.4), (A.5) and the relation 

1 E1 c { t ) = E ^ EJD^ + 1 E m ) _ ^ 

' Ej DM{t) t t 

we can infer that it holds for an arbitrary control co ~ z„ and all / e / 

(A.6) hm sup i EJ C(t) = lim sup £&L , 

.-co t M-co £?DM 

resp. 

(A.6') lim inf i £? C(.) = lim inf ^=^~ . 
(-co t ' M-co £j£>M 

(Similar result can be also found in the book S. M. Ross: Applied Probability Models with 
Optimization Applications, Holden-Day, San Francisco 1970.) 

As cp(j; z) ^ 0 from (A.2), (A.3), (A.6) it can be easily seen that 

lim I EJC(t) = lim ^&*- = g 
(-00 t M-co E?DM 



if and only if 

, M - l 

(A.7) lim — J E7 <P&*1 zn) = 0 
M->oo M n = 0 

and that there exists no control at for which 

. ^TCM ». 
hm sup —-—— > g . 

M-co E™I>M 

Obviously, homogeneous Markovian control to ~ z(j) for which equation (A.l) 
is fulfilled is average optimal. 

Under the ergodic properties of the set of transition probability matrices it can 
be shown that (A.7) is the necessary and sufficient average reward optimality condition 
even if the set of control parameter values 

z, = uz,; 
i = l 

where s, is a given number, all ZJt are compact and p(j, k; z), c(j, k; z), d(j, k; z) 
are continuous functions of z on any Z, ; (under these assumptions solution of 
equation (A.l) exists). These results can be also employed for investigation of con
tinuous time Markovian decision process X considered as a generalization of semi-
Markov decision processes if we allow the control parameter value to be changed 
between transitions (we only suppose that the selected control parameter value 
must be unchanged at least for a given time e > 0 if the trajectory of X remains 
in any of the states). 

Let us therefore consider a semi-Markov decision process X with state space I, 
transition probabilities p"k from state j into state k if the control parameter value 
ueUj = {1 ,2 , . . . , Sj} is selected in state j being in state j for a random sojourn 
time 0" ^ K (where K > 0 is a given number) with known distribution function 
F(j; (u, T)) = P{0"j < T} . E(j; (u, x)) is supposed to be a continuous function of T 
with F(j; (u, 0)) = 0, F(j; (u, K)) = 1 and the resulting transition probability matrix 
is supposed to be ergodic for any admissible control. As to the reward structure 
of X we shall suppose that the reward rJk is associated with transition from state j 
into state k and the reward rate vj is being obtained in state j if the control parameter 
value u e U, is selected. 

Let us construct a Markov chain embedded into the considered process X at the 
time instants at which new control parameter is selected. Of course, control parameter 
value u e Uk must be chosen whenever a new state k =j= j is reached from state j 
and if the trajectory of X remains in state j after elapsing of an arbitrary chosen 
time T e <e; K~) new control parameter value from U, can be used (choosing T = K 
means that no new control parameter is selected if the trajectory of X remains 
in state j). 



The transition probabilities of the embedded Markov chain are given by 

(A.8) p(j,j;(u,r)) = 1 - F(j; («, -)) 

and for j 4= fc 

(A.8') -{ / , k; (H, T)) = p j , . F(j; (u, T)) . 

The expected time spent (resp. the expected reward obtained) in state j up to the 
next transition of the embedded Markov chain can be calculated as 

(A.9) d(j; (u, T)) = \ \ . c\F(j; (u, c)) + x . [1 - F(j; (u, T))] , 

resp. 

(A.9') c(j; (u, T)) = V, p(j, k; (u, t)) . rJk + v) . d(j; (u, T)) . 
kel 

Considering the pair (u,x) as a control parameter value zeZj= Uj x <e; X ) 
in state j from the optimality properties of the embedded Markov chain (compare 
(A.l) —(A.7)) optimality conditions for continuous time Markovian decision process 
X can be inferred. From the average reward optimality properties of the embedded 
Markov chain follows that the long range average reward of the considered continuous 
time decision process X can be found among stationary decision rules specifying 
for each state j certain control parameter value Uj e Uj and a fixed time T,- e <e; K~) 
during which control parameter value Uj is being used if the trajectory of X remains 
in state j . 

(Similar result was also obtained in the paper Chitgopekar, S. S.: Continuous Time Markovian 
Sequential Control Processes, SIAM Journal Control 7 (1969), 3, 367—389.) 

(Received August 1, 1972.) 
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