Appendix to the Article "On Generalized Linear Discrete Inversion Filters"

LUDVÍK PROUZA

An expression for the mean square error of the inversion filter is derived and some consequences are shown.

1. INTRODUCTION

Let

(1)
$$B_{j}(z) = b_{j0} + b_{j1}z^{-1} + \dots + b_{jh}z^{-h}$$
$$(j = 0, 1, \dots, m)$$

be Z-transforms of discrete signals, the signal with j=0 being wanted and the other disturbing. The signals are weighted by weights w_j , where $w_0=1,\,w_j\geqq0$ for $j=1,\,2,\,\ldots,\,m$.

Let us define

(2)
$$B(z) = b_0 + b_1 z^{-1} + \dots + b_s z^{-s}, \quad (s \le h)$$

with the aid of the relation

(3)
$$|B(z)|^2 = \sum_{j=0}^m w_j |B_j(z)|^2, \ z = \exp i\omega.$$

According to the known Fejér-Riesz theorem B(z) exists and is unique if we choose its roots only on and outside the unit circle C_1 .

Suppose B(z) to have all roots only outside of C_1 . Then, B(z) $B(z^{-1})$ z^s is a reciprocal polynomial with roots ζ_1, \ldots, ζ_s outside C_1 and $\zeta_{s+1}, \ldots, \zeta_{2s}$ inside C_1 (the reciprocal values of the roots ζ_1, \ldots, ζ_s) and

(4)
$$B(z) B(z^{-1}) z^s = \frac{b_0 b_s}{(-1)^s \zeta_1 \dots \zeta_s} (1 - \zeta_1 z) \dots (1 - \zeta_s z) (z - \zeta_1) \dots (z - \zeta_s).$$

Define 265

(5)
$$q_0 + q_1 z + \ldots + q_s z^s = \frac{b_0 b_s}{(-1)^s \zeta_1 \ldots \zeta_s} (z - \zeta_1) \ldots (z - \zeta_s).$$

Put

(6)
$$C_i(z) = A(z) B_i(z).$$

In [2] there has been shown that A(z) fulfilling

(7)
$$\frac{1}{2\pi i} \left\{ w_0 \int_{C_1} |z^{-T} - A(z) B_0(z)|^2 \cdot |dz| + \sum_{j=1}^m w_j \cdot \int_{C_1} |A(z) B_j(z)|^2 \cdot |dz| \right\} = \min$$

is given by the expression

(8)
$$A(z) = \frac{z^{s-T}(r_0 + r_1 z + \dots + r_T z^T)}{(1 - \zeta_1 z) \dots (1 - \zeta_s z)}.$$

where r_j (j = 0, 1, ..., T) result from the system of equations

(9)
$$q_{0}r_{0} = b_{00}.$$

$$q_{1}r_{0} + q_{0}r_{1} = b_{01},$$

$$\vdots$$

$$q_{T}r_{0} + q_{T-1}r_{1} + \dots + q_{0}r_{T} = b_{0T},$$

where $q_j = 0$ for j > s, $b_{0j} = 0$ for j > h.

In [1], [2] has been shown that the minimum in (7) is $1 - c_{0T}$, where c_{0T} is the coefficient of z^{-T} in the development of (6), and also that $0 < c_{0T} \le 1$.

2. AN EXPRESSION FOR c_{0T}

From the system (9) it is seen that $r_0, ..., r_T$ are coefficients of the development

(10)
$$r_0 + r_1 z^{-1} + \dots = \frac{b_{00} + b_{01} z^{-1} + \dots + b_{0h} z^{-h}}{q_0 + q_1 z^{-1} + \dots + q_s z^{-s}}.$$

The coefficient c_{0T} is given by

(11)
$$c_{0T} = \frac{1}{2\pi i} \int_{C} B_0(z) A(z) z^T \frac{dz}{z},$$

(12)
$$B_{0}(z) A(z) z^{T} = \frac{b_{00} + \dots + b_{0h}z^{-h}}{(z^{-1} - \zeta_{1}) \dots (z^{-1} - \zeta_{s})} (r_{0} + \dots + r_{T}z^{T}) =$$

$$= \frac{b_{00} + \dots + b_{0h}z^{-h}}{(-1)^{s} \zeta_{1} \dots \zeta_{s}} (q_{0} + \dots + q_{s}z^{-s}) (r_{0} + \dots + r_{T}z^{T}) =$$

$$= \frac{b_{0}b_{s}}{(-1)^{s} \zeta_{1} \dots \zeta_{s}} (r_{0} + r_{1}z^{-1} + \dots) (r_{0} + \dots + r_{T}z^{T}).$$

Thus

(13)
$$c_{0T} = \frac{b_0 b_s}{(-1)^s \zeta_1 \dots \zeta_s} (r_0^2 + r_1^2 + \dots + r_T^2).$$

3. SOME SPECIAL CASES

There is seen from (13) that c_{0T} is a nondecreasing function of T, thus the minimum of (7), being $1 - c_{0T}$, is a nonincreasing function of T. Since $c_{0T} \leq 1$, there exists the limit of C_{OT} for $T \to \infty$. From (13) with the aid of (12), (4), (5) and the Parseval indetity, there is

$$\begin{split} \lim_{T \to \infty} c_{0T} &= \frac{1}{2\pi \mathrm{i}} \int_{C_1} \frac{\left(b_{00} + \ldots + b_{0h}z^{-h}\right) \left(b_{00} + \ldots + b_{0h}z^{h}\right)}{z^{-s} (1 - \zeta_1 z) \ldots (1 - \zeta_s z) \left(z - \zeta_1\right) \ldots \left(z - \zeta_s\right) \frac{b_0 b_s}{(-1)^s \zeta_1 \ldots \zeta_s}} \cdot \frac{\mathrm{d}z}{z} &= \\ &= \frac{1}{2\pi \mathrm{i}} \int_{C_1} \frac{B_0(z) B_0(z^{-1})}{B(z) B(z^{-1})} \cdot \frac{\mathrm{d}z}{z} \,. \end{split}$$

In the case of "pure" inversion, that is $w_0 = 1$, $w_j = 0$ for j = 1, ..., m, there is $B_0(z) = B(z)$, thus $\lim_{T \to \infty} c_{0T} = 1$. Suppose further the "pure" inversion and T = 0. Then from (9), (5), (13) one gets

$$(15) r_0 = b_0/q_0 = 1/b_h$$

and since

(16)
$$b_h/b_0 = (-1)^h z_1 \dots z_h,$$

there is

(17)
$$c_0 = \frac{1}{(-1)^h \zeta_1 \dots \zeta_h} \cdot \frac{b_0}{b_h} = \frac{1}{\zeta_1 \dots \zeta_h z_1 \dots z_h} = \frac{\zeta_1^* \dots \zeta_h^*}{z_1 \dots z_h},$$

where $z_1, ..., z_h$ are the roots of the polynomial $z^h B(z)$ and

(18)
$$\zeta_{j}^{*} = \begin{cases} z_{j} & \text{for } |z_{j}| < 1, \\ z_{j}^{-1} & \text{for } |z_{j}| > 1, \end{cases} (j = 1, ..., h).$$

This result has been derived in [1] with the unnecessary restriction that all roots z_j are simple.

The restriction $|z_j| \neq 1$ in (18) is substantial since we know that no stable filter of the form (8) exists if some roots ζ_j lie on C_1 .

4. CONCLUDING REMARKS

From (9), (5), and (13) one sees that for c_{0T} expressions in the symmetric functions of the roots ζ_j can be derived, but they will be substantially more complicated than (17)

Furthermore, it is seen from (9), (10) that the sequence $\{r_j\}$ with j > h is solution of a homogeneous linear difference equation with characteristic roots $\zeta_{s+1}, \ldots, \zeta_{2s}$ lying inside C_1 .

The initial conditions result from (9) or (10). This result may be useful in connection with (14) for computing (13) if T is substantially greater than h, especially if a "dominant" root ζ_j exists.

(Received December 23, 1971.)

REFERENCES

- Prouza, L.: On the Inversion of Moving Averages, Linear Discrete Equalizers and "Whitening" Filters, and Series Summability. Kybernetika 6 (1970), 3, 225—240.
- [2] Prouza, L.: On Generalized Linear Discrete Inversion Filters. Kybernetika 8 (1972), 1, 30-38.

VÝTAH

Doplněk k článku "O zobecněných lineárních diskrétních inverzních filtrech"

Ludvík Prouza

V článku se odvozuje výraz pro střední kvadratickou chybu inverzního filtru a ukazují se některé důsledky.

Dr. Ludvík Prouza, CSc., Ústav pro výzkum radiotechniky (Research Institute for Radio Engineering), Opočínek, p. Lány na Důlku.