
K Y B E R N E T I K A — VOLUME 8 (1972), NUMBER 1 

Precedence Relations and Their Connection 
with Unambiguity of Context-free Grammars 

MlROSLAV HLADKY 

The paper deals with the use of so called precedence relations either defined between the 
symbols of a context-free grammar or generalized on strings. It shows how by using these relations 
one may recognize unambiguous context-free grammars and how to use them in syntactical 
analysis. 

1. PRELIMINARIES 

A context-free grammar is a quadruple (V, VT, P, a), where Vis a finite nonempty 
set of symbols (vocabulary), VT c V is a nonempty set of terminal symbols, P is 
a finite nonempty set of productions of the form v —> x, v e V — VT, x e V* (V* is 
free monoid of strings over V including the empty string e), a e V — VT is the initial 
symbol. 

About the strings y, z e V* we say that: 

v immediately generates z in G and conversely z reduces into y in G (we denote 
y => z) if there exist strings u, v e V* such that y = uvv, z = uxv and v -* x is a pro
duction from P; y nontrivialy generates z in G (denoted y ±> z) if there exist strings 
z0, z,, ..., zr eV* (r > 0) such that z, => zi+x (i = 0, 1, ..., r — 1) and z0 = y 
and z, = z. The sequence z0, z., ..., zr is called a y-derivation of the string z in G. 
If we admit also /• = 0, we say that y generates z and we denote y 5> z. 

The language ^C(G) of the context-free grammar G (context-free language) is 
the set of strings &(G) - {x\xeV*, a %> x}. By a sentence of G we denote any 
string x such that a S> x (in G). To every context-free grammar G there exists a con
text-free grammar G' = (V', VT,P', a') such that ie(G) = .S?(G') - {e} while: 

a) no production in P' is of the form £ -+ e, £, -* £,, £, -* c'(£ e V' — Vr"), 
b) V' - Vf contains only those nonterminal symbols on which <r' depends (£ de

pends on v, f and v e V- VT, if <̂  2> uvt> for some a , c e V*), 
c) for no V e V' - VT there holds U 4 U. 



2 The generative power of both grammars G and G' is the same with the exception 
of the ability to generate the empty string e. So in the following by the notion gram
mar we shall understand the context-free grammar with properties a) — c) and by the 
language the language of such a grammar. 

By the leftmost (rightmost) derivation of the string w from the string £ we denote 
the derivation c, = w0 =>'w. =>...=> wr = w, where w( = «i£>,yi, wi+l = uiz^i, 
v{-> zte P and ut e V* (yt e VT in the case of the rightmost derivation) for all 0 ^ 
g i g r - 1. A grammar G is said to be ambiguous if there is some string in i?(G) 
generated by two different leftmost (rightmost) derivations from a. A grammar which 
is not ambiguous is said to be unambiguous. 

2. SIMPLE PRECEDENCE RELATIONS AND SIMPLE 
PRECEDENCE GRAMMARS 

In [1] the following problem is presented: Find a family of unambiguous context-
free grammars. By introducing so-called simple precedence relations between the 
symbols of context-free grammar we may decide if such a grammar is so called simple 
precedence grammar or not. We shall show in this part that every simple precedence 
grammar is unambiguous. 

Let G = (V, VT, P, a) be a given grammar. 

Definition 2.1. Let U e V - VT. We define the sets L(U), R(U): 

L(U) = {A | U U Ax, AeV, xeV*}, 

R(U) - {A | U U xA, A e V, x e V*} . 

Definition 2.2. Let Su S2 e V. We define the relations =,<?,<>: 

a) Sj = S2 if there exists in P a production of the form U -> uS1S2v for some 
u,ve V*. 

b) Sy <» S2 if there exists in P a production of the form U -» uS{U2v and S2 e 
e L(U2) for some U, U2 e V - VT and u, v e V*. 

c) Sj > S2 if there exists in P a production of the form U -» uUxU2v and there 
holds Sx e P(Ui) and either S2 = U2 or S2 e L(U2) for some u,veV*,UteV- VT. 

The relations = = , < , > will be called simple precedence relations. 

Remark 2.1. In this part we shall be limited only to the simple precedence relations. 
The word "simple" will be therefore omitted. 

Remark 2.2. Simple precedence relations are not generally symmetric. If we say 
in the following "the precedence relation R holds between the symbols S\, S 2 " it 
will indicate that (S., S2) is in the relation R. 



Definition 2.3. A grammar G = (V, VT, P, a) such that between every two symbols 
of Vat most one precedence relation holds will be called simple precedence grammar. 

Notation. For any string x 4= e we shall denote by l(x) and r(x) the leftmost and 
the rightmost symbol of x respectively. 

Lemma 2.1. Let G = (V, VT, P, a) be a simple precedence grammar and let x = 
= x1x2...xn be an arbitrary sentence of G. Then between every two adjacent 
symbols x ;, xi+1 (i — 1, 2,..., n — 1) of x just one precedence relation holds. 

Proof. According to Definition 2.3 there is sufficient to prove that between every 
two adjacent symbols of x at least one precedence relation holds. Let x => y, x = 
= uZv, y = uzv and let between every two adjacent symbols of x at least one prece
dence relation hold. We shall prove that at least one precedence relation holds between 
every two adjacent symbols of y. By Definition 2.2 the relation = holds between 
every two adjacent symbols of z and 

r(u) <» l(z) when r(u) = Z or r(u) <° Z , 

r(u) s> l(z) when r(u) > Z and 

r(z) > l(v) for an arbitrary relation between Z and l(v) . 

Then there holds at least one precedence relation between every two adjacent symbols 
of y. The assertion of the Lemma follows from above by induction according to the 
length of the derivation. 

Lemma 2.2. Let G = (V, VT, P, a) be a grammar. Then for no sentence u of G 
there holds u t> u. 

Proof. Let there exist the sentence u of G such that ut> u. 

a) If \u\ = 1 then we get a contradiction with conditions laid on G in Part 1. 
b) Let |M| > 1 i.e. u = u^u2 ... un (M.eVfor i = 1,2, ..., n, n > l). Then ac

cording to Lemma 1.4.6 of [1]* there holds u1 2> uu u2 S> u2, ...,unt>un and as 
u t> u at least one of these derivations is nontrivial. But if for any i (1 g i <. n 
there holds «, X M, we get a contradiction with the assertion proved in a). 

Theorem 2.1. Let G = (V, VT, P, a) be a simple precedence grammar such that no 
two productions in P have the same right sides. Then G is unambiguous. 

* [11, page 21: If vtv2 . . . vr ^, iv.then there exist wv ..., wr such that w = wx ... wr andu ; i , 
i> M'; for each i. Furthermore, each occurence of a production used in the generation of vl ... vr f^ 
S> w occurs in-the generation of some t>; | > wt and conversely. 



Proof. We shall suppose that G is ambiguous. Then there exists a sentence x 
of G in £f(G) such that it has two different rightmost derivations 

a = w0 => w, =>...=> wk = x, 

Let w t_, = uZv, w^,_! = u'Z'v' and Z -^ z, Z' -»• z' be two productions of P. 
Plainly u 'zV = uzt; = x. According to the properties of the rightmost derivation 
there hold 

(1) veVT, v'eVT. 

Hence v = v' (otherwise either Z'v' _ c or Zo £ c' both in a contradiction with (l)). 
Since z <= z' or z' c z leads to a contradiction with Lemma 2.1 (if for example 
z c_ z' then between every two adjacent symbols of z' there holds the relation = but 
furthermore between at least two adjacent symbols of z' there holds the relation <s; 
we shall get similar result for z' c z) there must hold z = z' and according to the 
assumption also Z = Z'. Hence wk_1 = w'h^l. Repeating these arguments and 
applying Lemma 2.2 we get k = h and for all 0 _| f :§ A: w, = wj a contradiction 
with the assumption that both derivations are different. Hence G is unambiguous. 

3. PRECEDENCE RELATIONS OF HIGHER ORDER 

In [2] the use of simple precedence relations in syntactical analysis is studied. 
Using simple precedence relations we have no difficulties in the parse of sentences of 
simple precedence grammars but great difficulties arise when between some symbols 
more than one simple precedence relation hold. By generalization of the definition 
of simple precedence relations on strings we may reach similar results, i.e. we may 
obtain another class of unambiguous context-free grammars. The result depends on 
the manner of such generalization. The way suggested in [2] is too general and it 
leads to many difficulties both in the study of the properties of these grammars and 
in the parse. We shall now present one such generalization and state sufficient con
ditions for the given grammar (not a simple precedence one) to be unambiguous. At 
the end of this part we put the algorithm of syntactical analysis and its use on several 
examples of the practical parse may be seen in Part 4. 

Definition 3.1. Let k be an integer, U e V - VT. We define the sets Lk(U) and Rk(U): 

Lk(U) ={zlz2...zk\U
+

=>zl...zku', u ' eV* , z, ... zk e V* - {e}} , 

Rk(U) = {zlz2...zk\Ut>u'zl ...zk, u'eV*, zt...zkeV* - {s}} . 

Definition 3.2. Let x, y e V* - {e}, x = S_„,... S_„ y = Sj ... S,„ m and n are 
positive integers. We define the relations = , <§ and > : 



a) x = v if there exists in P a production of the form U -> uxyv for some u, v e V*. 
b) x <° y if there exists in P a production of the form U -> uxU, f and y e £'(Ui) 

for some U, Uj e V — VT and u, . e V*. 
c) x s> >' if either there exists a production in P of the form U -> uU_j>u and 

x e r ( f 7 _ , ) for some U, U_,eV — VT and some u,veV* or there exists in P 
a production of the form U->uU_1U1y and xeR m (U_j ) , >'e L"(U,) for some 
U, U_i, UteV- Vrand u,veV*. 

In all these cases we speak about precedence relations of the order (m, n). 

Remark 3.1. We see that simple precedence relations are precedence relations of 
the order (1,1). 

Remark 3.2. If we say that the precedence relation R holds between the strings x, y 
it will indicate that: 

a) (x, y) e R, 
b) the relations is of the order (|x|, |>'|). 

Lemma 3.1. Let R be one of precedence relations, S__ . . . S_,, S, . . . S. e V* — {e} 
and let (S__... S_,,Si . . . S , ) _ R . Then (S_A . . . S_j, St . . . Sk)eR for any in
tegers h, k such that l ^ h ^ p , l ^ k ^ q . 

Proof, a) If R = = then P contains the production of the form U ~> _S__. . . 
... S_,,... S_jSj . . . St... S-tf for some u, veV* and by Definition 3.2 ( S - „ . . . 
. . . S_!, S! . . . Sk)eR. 

b) If R = <_ then P contains the production of the form U -> «S_p . . . S_A... 
... S^U^, where Ut t> St ...Sk... Sqv' for some u, v, v' 6V*. By Definition 3.2 
( S _ „ . . . S _ 1 , S 1 . . . S * ) e R . 

c) If R = > then P contains the production of the form U -> uV_1V1p where 
V_! e V - VT, V eV, u and veV* and there hold V.t t> u 'S__. . . S_, and either 
Vtf = Si . . . S.tf' or V _> S! . . . S^f' for some c' eV*. Then by Definition 3.2 there 
holds also S_A... S_, §> Sj ... Sk for any integers h, fe such that 1 | „ | p ( 1 g 
_5 fc __ a-

Definition 3.3. We say that the grammar G = (V VT, P, a) (in the sense of Part 1) 
has the property A when it complies the following conditions: If there hold between 
S„ S1+1 e Vmore than one (simple) precedence relations then to every sentence of G 
of the form uS,S, + 1y there exist uu u2, vt, v2 6 V* such that u = u ^ , v = vtv2, 
uv 4= e and between uS ;, S,+ 1y only one precedence relation holds and between 
every two adjacent symbols of the strings u2Sh Si+1v1 only one simple precedence 
relation holds. 

Theorem 3.1. Let G = (V VT, P, o) be a grammar such that: 

a) P contains no productions with the same right sides, 
b) G has the property A from Definition 3.3. 



Then G is unambiguous grammar. 

Proof. Let x = StS2 .-. S ; 5 ; + 1 ... Sk be a sentence of G such that between 
S ;, S i + 1 more than one simple precedence relations hold. But according to b) there 
exist substrings Sh... S ;, S i + 1 . . . S. of the strings St ... St, S i + 1 . . . Sk respectively 
such that between Sh ... St, S ; + 1 . . . St only one precedence relation holds. By 
Lemma 3.1 and Definition 3.2 the same relation holds between S ;, S1 + 1 and when all 
relation symbols which are between S ;, S ; + 1 are replaced by that which holds between 
S ; , . . . S ;, S ; + 1 . . . S ; we get the same situation as we had in the parse of sentences of 
simple precedence grammars. And simple precedence grammars are unambiguous. 

4. APPLICATION 

Merely to clarify what follows, we shall at first give an example of the parse of 
several sentences of simple precedence grammar. It is really simple. To the investigated 
string x we construct the "associated" string _L x JL where ±$Vand we put _L <$ a 
and a > 1 for any a e V. Going from the left to the right we find out the first oc
curence of the relation symbol 5> and then we return back to the left seeking the first 
occurence of the relation symbol <s. If the string between <° and °> is the right side 
of some production of P we replace it by the nonterminal symbol which is on the 
left side of this production. Then we add missing precedence relations and continue 
in the same way. The parse is succesfully finished when we obtain the string 1 initial 
symbol 1. If no production in P has the same right side as the string in <s, °> the 
parse is finished because x is not a sentence of our simple precedence grammar. We 
get the same result if between some two adjacent symbols of x no simple precedence 
relation holds. 

Example 1. 

G' = (V, VT, P', I), 

V = {l,L,D,a,b,...,z, A,B,...,Z, 0, 1 . . . . . 9} , 

V'T = {a, b,...,z, A,B,...,Z, 0, 1, . . . , 9 } , 

?' : 1 -+L, 

I -> IL, 

1->w, 
L -» a, L -» b, ..., L -» z , 

l~> A, L-*B,...,L - > Z , 

D-*0, D - * l , . . . , 5 ^ 9 . 

We can easily find out that £P(G') is a fragment of the language ALGOL 60 describing 
the syntactical definition of identifier. 



The corresponding precedence matrix is 

I L D a b c ... z A B C Z 0 1 2 

= = < < < . . . < < < < . . . < < < < . . . < 
> > > > > . . . > > > > . . . > > > > . . . > 
> > > > > . . . > > > > . . . > > > > . . . > 
> > > > > . . . > > > > . . . > > > > . . . > 
> > > > > . . . > > > > . . . > > > > . . . > 
> > > > > . . . > > > > . . . > > > > . . . > 

A
 

A
 

A
 

A
 

A
 

Д
 

Д
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

Д
 

A
 

Д
 

A
 

Д
 

A
 

A
 

Д
 

A
 

A
 

A
 

A
 

A
 

Д
 

A
 

Д
 

A
 

A
 

Д
 

A
 

A
 

A
 

A
 

A
 

A
 

Д
 

A
 

A
 

A
 

A
 

A
 

Д
 

Д
 

Д
 

Д
 

A
 

A
 

A
 

A
 

Д
 

A
 

A
 

Д
 

A
 

Д
 

Д
 

A
 

A
 

A
 

Д
 

A
 

Д
 

A
 

A
 

A
 

Д
 

A
 

Д
 

A
 

Д
 

Д
 

A
 

Д
 

Д
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

Д
 

A
 

A
 

Д
 

Д
 

A
 

A
 

A
 

Д
 

A
 

A
 

A
 

A
 

A
 

A
 

A
 

> > > > > . . . > > > > . . . > > > > . . . > 
a) The investigated string is "A23KB6": 

1 < A > 2 > 3 > к > в > 6 > 1 

1 < £ > 2 > 3 > к > в > 6 > 1 

± < I < 2 > 3 > к > в > 6 > 1 

1 < Ï = D > 3 > к > в > 6 > 1 

± < I < 3 > к > ß > 6 > 1 

± < I = D > к > в > 6 > J_ 

± <ï < к > в > 6 > 1 

± < I = L > ß > 6 > 1 

± < / < в > 6 > 1 

1 < / = L > 6 > JL 

1 < / < 6 > 1 

1 < / = Í5 > 1 

± / 1 



b) We investigate the string "2a£73": 

± < 2 >a>B>7>3*>± 

l < s / 3 § > a s > B § > 7 s > 3 s > l 

The parse finishes because D is the right side of no production of P'. The string 
"2aB73" is not a sentence of G'. 

c) The string "A67I2" is not the sentence of G' because no simple precedence 
relation holds between its adjacent symbols 7 and 7. 

The parsing algorithm for the class of grammars described in Part 3 is given by the 
flowchart (Fig. l). It follows from above that we get only one sequence of the left 
reductions and thus the rightmost derivation for every sentence of G. 

Comments to the parsing algorithm: 

1. We construct the associated string to the investigated string in the same way 
as we did in the case of simple precedence grammars. 

2. When between two adjacent symbols S;, S;+1 of the investigated string more 
than one precedence relations hold we add at first the left context of the symbol S; 

to it. If it is not possible to continue to the left we start to add the right context of the 
symbol S;+1 to it. We continue until the precedence relation between arizing strings 
is the only one and then we replace by its relation symbol the relation symbol between 

sbsi+1. 
3. The investigated string is not the sentence of the given grammar of supposed 

properties in these cases: 

a) between some two adjacent symbols of it no precedence relation holds, 

b) the string in <°, > is not the right side of any production of P, 

c) we do not obtain strings such that between them only one precedence relation 
holds (there is not satisfied the condition b) from Theorem 3.1). 

Example 2. 

where 
G = (V VT, P, S) 

V = {S,U, W,a,b,c,d,e,fg}, 

Vr= {a,b,c,d,e,f,g}, 

P:S-+aUWd, U -* bcU , U-* c, 

W->Wefg, W-^ef. 



p —s.| 

0+ì 
7-/c 

i+1 — i 

4-1, 
k+1-~ k 

Qi l -
1/У 

/4t Zecst one PR 
holds between 

Si.P* 

i—Һ 

Between Sn..Si,Pk 

only one PR f> 
holds 

Һ-ҺҺ 

f BetweenSh..ShPk at "N 
I least one PR' holds J 

/c—m 

y_[Between SM.Sj,Pk..Pn 

only one PR p 
holds ' 

m+l*m 

ím^) 
/ Between Pm.hPm just VLJ7\ 
I o/?e PR holds J^X'J 

5;-..Sj- г's t/je г/űrлŕ 
s/cte of some proauct 

of P 

deduct on 

I "S% 

j " ''• 

( gfg^r^^FV 

( V ) T/ie string Pf--P
n is not a sen

tence of G . 

Fig. 1. Parsing algorithm flowchart (PR = precedence relation). 



10 The corresponding precedence matrix of simple precedence relation is 

U W a b c d e / 9 

U >, =, < <, > 
W = = 
a = < < 
b = 
c = > < <5 > 
d 
e = 
f • > s> — 
9 > ä> 

A) The investigated string is "abcbccefefgd": 

a) ±<a<b=c<b = c < c > e=f>e=f=g>d>± 
b) ±<a<b=c<b = c =U<,_>_e = f>e=f=g>d>± 
c) ± < a < b = c = U <, j> e=f>e=f=g>d>± 
d) ± < a = U >, <_ e=f>e=f=g>d>± 
e) ± < a = U <.,=,> W=e=f=g>d>± 
f) ± < a = U < , = . , > W = d >± 
g) ± S ± 

Comments to the parse: 

a) Between every two adjacent symbols there holds just one precedence relation, 
b), c) There hold U < e and simultaneously U > e but cU > e. We put between 

U, e the relation symbol >. 
d) There hold simultaneously U > e and U < e but aU < e. We put < between 

U, e. 
e) There hold U > W, U = W, U < W and also aU < W and aU = W but 

aU < We. We put < between U, W. 
f) There hold U < W, U = W, U > W, aU < W, aU = Wbut aU = Wd. 
g) The parse finishes. 

B) The investigated string is "abccefg": 

±<a<b=c<c > e=f=g>± 
±<a<b = c=U>_, <e=f=g>± 
± < a = U >, <_ e = f = g > ± 

Comments to the parse: 

b) There hold U > e and U < e but cU > e. 
c) In P is no production with the right side "efg". The string abccef'£ .S?(G). 



C) The string "abcbcfgd" does not also belong to J?(G) because between its 
two adjacent symbols c , / n o simple precedence relation holds 

(Received July 2, 1969.) 

REFERENCES 

[1] S. Ginsburg: The Mathematical Theory of Context-free Languages. New York 1967. 
[2] N. Wirth, H. Weber: Euler — A Generalization of ALGOL. Communication of the ACM 

(1966), 1, 2. 

Precedenční relace a jejich souvislost s jednoznačností 
nekontextových gramatik 

MIROSLAV HLADKÝ 

V [1] je předložen následující problém: Najděte třídu jednoznačných nekontexto
vých gramatik. Na tento problém navazuje předložená práce, kterou lze v podstatě 
rozdělit do dvou částí: 

a) V první části (odstavce 1 a 2) jsou zavedeny tzv. jednoduché precedenční relace 
mezi symboly slovníku nekontextové gramatiky. Dále jsou definovány tzv. jednoduché 
precedenční gramatiky jakožto nekontextové gramatiky takové, že mezi každými 
dvěma symboly slovníku dané nekontextové gramatiky platí nejvýše jedna jednoduchá 
precedenční relace. V závěru této části je ukázáno, že každá jednoduchá precedenční 
gramatika taková, že žádná dvě pravidla nemají stejné pravé strany, je jednoznačná. 

b) Možnost zobecnění jednoduchých precedenčních relací je nadhozena v [2]. 
Navržený způsob je však příliš obecný a vede k zásadním potížím jak ve studiu vlast
ností těchto relací, tak při syntaktické analýze. Přesto je však možno získat širší 
třídu nekontextových, gramatik než je třída jednoduchých precedenčních gramatik 
rovněž jednoznačných. V druhé části práce (odstavce 3 a 4) je navržen způsob zobec
nění jednoduchých precedenčních relací na relace mezi řetězy a možnost využití 
těchto relací k získání širší třídy jednoznačných nekontextových gramatik. V závěru 
je uveden algoritmus syntaktické analýzy pro tyto gramatiky a jeho aplikace na 
příkladech. 

Dr. Miroslav Hladký, Katedra aplikované matematiky FEVUT (Department of Applied Mathe-
matics — Technical University), Hilleho 6, Brno. 


