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On Some New Measures of Uncertainty, 
Inaccuracy and Information 
and their Characterizations 

P. N. RATHIE 

Various measures of uncertainty, inaccuracy and information are defined in this paper which 
generalize several well known measures of uncertainty, inaccuracy and information. These 
generalized measures are given in (1.1), (1.3), (1.5) and (1.7) respectively. These are characterized 
by means of functional equations. 

1. INTRODUCTION AND DEFINITIONS 

Consider a finite discrete probability distribution P = (p1; ..., p„) with pt > 0, 

W(P) = Y, Pi = I- L e t <A denote the set of all finite discrete distributions. 
i = l n 

Throughout this paper, £ will stand for the sum ]T and logarithms will be taken to 
i = l 

the base 2 unless otherwise specified. 
Now we define the various measures of uncertainty, inaccuracy and information 

one by one. First of all we define the jS-entropy for the distribution P as 

(i.i) H'<P> = - E P T 1 log/>./!>., 

which is clearly a generalization of the well known entropy, 

(1-2) H ( P ) « - 2 > . i o g j > f / l > . , 

introduced earlier in [5, 6]. 
Consider P —(p«., ..., p„) e A and Q = (qt,..., q„) e A as the two generalized 

probability distributions, the correspondence between the elements of P and Q is 
that given by their subscripts. Then we define the ^-inaccuracy as 

(1-3) tf'<P:G>=-Ep?+1log«./D>., 



which when /? = 0 reduces to the inaccuracy [2], 

(1.4) H(P\Q)= - 2 > f l o g « i / 2 > i -

Also we define the /^-information as, 

(1.5) / "<P :Q> = >:P? + 1 l o g ( p 1 M Z ^ ; 

which yields the information-gain [5] or the directed divergence [3] for /} = 0 as 
given below 

(1-6) I(P|o) = Ip.log(p«/<Z«)/L>«. 

Lastly, we define another generalized measure of information and inaccuracy as 
follows: 

(1.7) 7f<P : Q> = (1 - IP^Vt-Hp.m - 2 * _ 1 ) , « * 1 • 

We shall call the measure i%(P : Q} as (a, /?)-inaccuformation. Clearly for /? = 
= a — 1, (1.7) gives the non-additive information of order a defined by, 

(1.8) lr\P : Q> = (1 - 2>?«|1-/2>*)/(- " 2 a _ 1 ) ' * * 1 • 

Also for P = 0, (1.7) gives the non-additive inaccuracy of order a, defined by 

(1.9) /°<P : Q> = (1 - I M r ' / 2 > , ) / ( l - 2 - 1 ) , « * 1 . 

When p; = <j; for all i, then (1.9) where a is replaced by 2 — a is the non-addrtive 
entropy introduced earlier in [7]. 

The non-additive information of order a defined in (1.8) was recently characterized 
by the author [4]. 

If p;'s are allowed to take zero values and the convention 0 log 0 = 0 is followed, 
then we have to impose the restriction fi > —1 in (1.1), (1-3), (1.5) and (1.7) and the 
restriction a > 0 in (1.8). 

The object of this paper is to prove characterization theorems for the various gener
alized measures defined in (1.1), (1.3), (1.5) and (1.7) to (1.9) by means of functional 
equations. Section 2 deals with the functional equations useful for the characterization 
purposes and their solutions. Section 3 deals with the characterization theorems for 
(1.1), (1.3) and (1.5). In section 4, characterization theorems for (1.7), (1.8) and (1.9) 
are proved. All the characterization theorems proved in this paper are for n = 2 
from which the corresponding results for any n > 2 can be derived. 
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This section deals with the solutions of the following functional equations: 

(2-1) f(pq) = PPf(q) + ql,f(p), 

where p, q e (0, 1] and / (p) is a continuous function of p e (0, l ] . 

(2-2) f(PlPl, qiq2) = p{f(p2, q2) + pp
2f(Pl, <h) , 

where p. , p2, qu q2 e(0, l ] , / ( p , 1) a n d / ( l , q) are continuous functions of p e ( 0 , 1] 
and q e (0, l ] respectively. 

(2.3) f(Plp2, qiq2) = f(Pl, qi) + f(p2, q2) + (2*-1 - I ) / (p . , g , ) / (p 2 , <J2) , 

where a + 1, p 1 ; p 2 , flt, q2
 e (0> 1]> /(p> 1) a n d / ( L <7) a r e continuous functions of 

p e (0, l ] and q e (0, 1] respectively. 

Solution of (2.1) 

Rewriting (2.1) in the form, 

(2.4) (pqYff(pq) = «"'/(«) + p- ' / (p) 

and setting 

(2.5) ^ ( P ) = P - " / ( P ) , p e ( 0 , l ] , 

we have 

(2-6) Ff(pq) = Ffi(p) + Fp(q) . 

Since / (p) is a continuous function of p e (0, 1] and therefore Fp(p) is also a con
tinuous function of p. Thus the continuous solution [ l , p. 41] of (2.6) are given by 

(2-7) F,(p) = c log p , j , 6 ( 0 , 1 ] : 

Hence from (2.5) and (2.7), we get 

(2.8) / (p) = cp" log p , 

where c is an arbitrary real constant. 

Solution of (2.2) 

Taking Pl = 1, p2 = p, qx = q, q2 = 1 in (2.2), we have 

(2-9) f(p,q)=f(p,\) + Pl>f(Uq). 



Now we have to find expressions for f(p, l) and j ( l , q) respectively so thatj(p, q) 397 
may be completely known from (2.9). For this, let us take P\ = p2 = 1 in (2.2) so 
that we have 

(2.10) f(Uq1q2)=f(i,q1)+f(l,qz)-

By [1, p. 41], the continuous solution of (2.10) is given by 

(2.U) f(l,q) = b\0gq, qe(0,q, 

where b is an arbitrary real constant. 

Again, taking qY = q2 = 1 in (2.2), we have 

(2.12) f(PlPl, 1) = p[f(p2, 1) + p{f(Vl, 1) , 

which on multiplying throughout by (piP2)~
p and setting 

(2.13) Fp(p) = p-<
lf(P,l),pe(0,l-\ 

gives 

(2A4) G,(PlP2) = Gp(Pl) + Gp(p2) . 

As f(p, 1) is continuous for p e (0, 1], therefore Gp(p) is also continuous for p e 
e (0, 1]. Hence the continuous solution [ l , p. 41] of (2.14) is given by 

(2.15) GS!(p) = a log p. 

Hence (2.13) with the help of (2.15) gives 

(2A6) f(p, 1) = apt log p , pe(0,l], 

where a is an arbitrary real constant. Thus (2.9), (2.11) and (2.16) give 

(2.17) f(p,q) = PP[a log p + blogq], 

where a and b are arbitrary real constants. 

Solution of (2.3) 

Taking p1 = p, p2 = q1 = 1, q2 = q in (2.3), we have 

(2.18) f(p, q) = f(p, 1) + f(\, q) + (2*-1 - l)f(p, l ) j ( l , q) . 

Thus in order to determine f(P, q) we must fmd/(/>, 1) and j ( l , q) separately. 
Again taking qx = q2 = 1 in (2.3), we get 

(2.19) f(Plp2, 1) = f(Pl, 1) + f(p2, 1) + ( 2 ' " 1 - l)f(Pl, l)f(p2, 1). 
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(2.20) ga(p) = 1 + (2«-» - \)f(p, 1), p e (0, 1] . 

Then (2.19) takes the following form 

(2-21) giPiPi) = 9«(Pi) giPi) • 

Since f(p, 1) is a continuous function of p e(0, 1], therefore ga(p) is continuous. 
Hence by [ l , p. 41] the continuous non-zero solutions of (2.21) are given by 

(2.22) gx(p) = p* , 

where /? is an arbitrary real constant. 
Thus (2.20) by the use of (2.22) gives 

(2.23) f (p, l) = (p<<- 1)1(2*->-\). 

Similarly on taking pt = p2 = 1 in (2.3) and following the procedure given above, 
we get 

(2.24) / ( l . « ) - ( « ' - - ) / ( 2 - - J - l ) . 

where v is an arbitrary real constant. 
Hence (2.18) with the help of (2.23) and (2.24) gives 

(2.25) /(p,«) = W - - ) / , ( - " 1 - l ) , 

where fi and v are arbitrary real constants. 

3. CHARACTERIZATION THEOREMS FOR (1.1), (1.3) AND (1.5) 
FOR n = 2 

In this section some characterization theorems for (1.1), (1.3) and (1.5) when 
n = 2 are proved by using the functional equations (2.1) and (2.2) and their solutions 
described in the last section. 

We assume the following four postulates to prove a characterization theorem for 
(1.1) when n = 2. 

Postulate 1. H'<p> is a continuous function of p e (0, 1]. 

Postulate 2. H<i> = (|)". 

Postulate 3. For p, q e A, we have 

H'<pq> = p>H><q> + «'H'<p> . 



Postulate 4. For P = (pt, p2)e A, we have 

H'<P)=YlPlH'<Pi)liPi. 
i = l i = l ; 

Theorem 1. The function satisfying the postulate 1, 2, 3 and 4 is the ^-entropy, 

(3-1) H"<P)= - i pf + 1 l o g p , . / i P i . 
i = l i = l 

Proof. Postulates 1 and 3 are equivalent to (2.1) and hence from (2.8), we have 

(3.2) H"<p) = epilogp . 

Thus (3.2) on using the postulate 2 yields c = - 1 giving 

(3.3) H\p)= - / l o g p. 

Hence (3.3) and the postulate 4 proves theorem 1. 
Now, let us assume that HI1<P : Q) satisfies the following five postulates: 

Postulate 1. H'<p : 1> and H'<\ : q) are continuous functions of pe(0, 1] and 
q e(0, 1] respectively. 

Postulate 2. H'<1 : £> = 1. 

Postulate 3. Hp<\ : 1> = 0. 

Postulate 4. For px, p2, qu q2 e A, we have 

H'<Plp2 : qiq2) = p\Hl><p2 : q2) + &H*<Vx • «i> • 

Postulate 5. For P = (pu p2) e J and Q = («,, o2) e ^ > w e have 

H"<P:e> = i;piH',<pi:ai>/Ipf. 
i = l i = l 

Theorem 2. The function satisfying the postulates 1, 2, 3, 4 and 5 is the /?-
inaccuracj', 

(3.4) H»<P:Q)= - i ^ + 1 log cjj | ] p , . 
i = l i = l 

Proof. Postulates 1 and 4 are equivalent to (2.2) and hence from (2.17), we have 

(3.5) H'<p : q) = pp[a log p + & log g] . 

On using postulates 2 and 3 in (3.5), we get b = - 1 and a = 0 respectively giving, 

(3.6) H'<p:q)= -p'logq. 



400 Hence the use of (3.6) in postulate 5 proves theorem 2. 
In order to prove a characterization theorem for /^-information (1.5) let us assume 

the following postulates: 

Postulate 1. /?<p : 1> and //!<1 : o> are continuous functions of p e (0, 1] and 
q e(0, 1] respectively. 

Postulate 2./"< I : i> = 1. 

Postulate 3 . / " G : i> = 0. 

Postulate 4. For pu p2, quq2e A, we have 

I"<PiP2 : 3i«2> = p[Hp2 • 42> + P'IHPI • <h> • 

Postulate 5. For P = (pl5 p2) e A and Q = (qt, q2)e A, we have 

HP •Q> = i Pilp<Pi : «,>/ i Pi • 
i = l i = 1 

Theorem 3. The function satisfying the postulates 1, 2, 3, 4 and 5 is the fS-informa-
tion, 

(3.7) I"<IJ:S> = Zpr i log(p1 . /a1 . ) />:Pi. 
i = l i = l 

Proof. The postulates 1 and 4 are equivalent to (2.2) and therefore from (2.17) 
we get 

(3.8) Ip<p:q> = p"[a log p + blogtj]. . 

Now using postulates 2 and 3 in (3.8), we get b = — 1 and a = 1. Thus 

(3-9) / "<p :a> = p ' l og (p /a ) . 

Hence the use of (3.9) in postulate 5 proves theorem 3. 

4. CHARACTERIZATION THEOREMS FOR (1.7), (1.8) AND (1.9) 
FOR n = 2 

This section deals with the characterization theorems for (1.7), (1.8) and (1.9) 
when n = 2 by using the solution to the functional equation (2.3). We start by 
assuming the following postulates: 

Postulate 1. /a<p : 1> and ?„<! : <?> a r e continuous functions of p e (0; 1] and 
q 6 (0, 1] respectively. 
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Postulate 3. l«(i '• i> = °-

Postulate 4. /„<i : 1 > = 0. 

Postulate5. If Pi, p2 , «i, <72 6 /I, then 

t.<PiP2 : «7i<?2> = K<Pi : ?i> + L,<P2 : 92> + 

+ ( 2 - J - l ) t ,<P i :<h> / a <P 2 : e x 

postulate 6. If P = (pi, p2) G A and Q = (qu q2) e A, then 

^ : Q> = I P j /p,-:</,•>/!>,• . 
i = l i = l 

Now we proceed to prove characterization theorems for (1.7), (1.8) and (1.9) for 
n = 2. 

Theorem 4. The function satisfying the postulates 1, 2, 5 and 6 is the (a, /?)-
inaccuformation, 

(4.1) If<P:e> = ( l - E p f + 1 ? r a / £ p i ) / ( 1 - 2 " " 1 ) , « * 1 . 
i = l i = l 

Proof. The postulates 1 and 5 are equivalent to (2.3) and hence from (2.25), we 
have 

(4-2) 7 a<p:g> = ( p V - l ) / ( 2 - 1 - l ) . 

Taking p -= 1, q = \ in (4.2) and using the postulate 2, we get v = 1 — a. Thus 

(4.3) / a <p: f l > = ( p ^ 1 - - l ) / ( 2 - 1 - l ) . 

Hence (4.3) and the postulate 6 prove theorem 4. 

Theorem 5. The function satisfying the postulates 1, 2, 3, 5 and 6 is the non-ad
ditive information of order a given by, 

(4.4) ^ - 1 < - P : Q > = ( l - f p ^ r o , / I P i ) / ( l - 2 " - 1 ) , « * 1 . 
i = 1 i = 1 

Proof. As done in the proof of theorem 4, postulates 1, 2 and 5 give (4.3). Now 
using postulate 3 in (4.3) yields /S -= a — 1 giving 

(4.5) /.<p:<D = ( p - V - " - l ) / ( 2 - l - l ) . 

Hence the use of (4.5) in postulate 6 proves theorem 5. 



402 Theorem 6. The function satisfying the postulates 1, 2, 4, 5 and 6 is the non-
additive inaccuracy of order a, 

(4.6) 7°<P : g> = (1 - l m \ - \ £ Pi)l(l -2'-1), a 4= 1 . 
i = l i = 1 

Proof. As done earlier in theorem 4; the postulates 1, 2 and 5 imply (4.3). Hence 
the use of postulate 4 in (4.3) yields ft = 0, giving 

(4.7) L.<p:«> = ( « 1 - ° ' - l ) / ( 2 a - 1 - l ) . 

Now using (4.7) in postulate 6 proves theorem 6. 

(Received December 15, 1970.) 
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O některých nových mírách nejistoty, nepřesnosti a informace 
a o jejich charakteristikách 

P. N. RATHIE 

Autor zavádí v první části článku /?-entropii (1.1), jS-nepřesnost (1.3), /^-informaci 
(1.5) a (a, /?)-informaci (1.7). Takto zavedené míry zobecňují některé známé míry 
nejistoty, nepřesnosti a informace studované již dříve v teorii informace. Zavedené 
zobecněné míry jsou charakterizovány funkcionálními rovnicemi, jejich řešení je 
probráno ve druhé Části článku. Ve třetí části jsou axiomaticky definovány první tři 
zavedené míry, v poslední části je axiomaticky definována čtvrtá zavedená míra 
a některé její speciální varianty. 
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University, Montreal, Canada. 


