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On Some New Measures of Uncertainty,
Inaccuracy and Information
and their Characterizations

P. N. RATHIE

Various measures of uncertainty, inaccuracy and information are defined in this paper which
gencralize several well known measures of uncertainty, inaccuracy and information. These
generalized measures are given in (1.1), (1.3), (1.5) and (1.7) respectively. These are characterized
by means of functional equations.

1. INTRODUCTION AND DEFINITIONS

Consider a finite discrete probability distribution P = (p,, ..., p,) with p, > 0,
n
W(P) =Y p; £ 1. Let 4 denote the set of all finite discrete distributions.
i=1 n
Throughout this paper, £ will stand for the sum Z and logarithms will be taken to
i=1

the base 2 unless otherwise specified.
Now we define the various measures of uncertainty, inaccuracy and information
one by one. First of all we define the f-entropy for the distribution P as

(1.1) HY(Py = — Ypi* log pifY p;,
which is clearly a generalization of the well known entropy,
(1.2) H(P) = — Yp;log pifYp:,
introduced earlier in [5, 6].
Consider P = (p;,...,p,)e4 and Q =(qy,...,q,)€ 4 as the two generalized

probability distributions, the correspondence between the elements of P and Q is
that given by their subscripts. Then we define the f-inaccuracy as

(13) HICP: Q) = ~ Ypi " log qifYp:s



which when § = 0 reduces to the inaccuracy [2], 395

(14) HP| Q)= - Ypiloga yp:-

Also we define the B-information as,

(15 1P :Qy =Y pi*  log (pilg)[p: s

which yields the information-gain [5] or the directed divergence [3] for § = 0 as
given below

(1.6) I(P| Q) = Y.p:log (pila)/Yp; -

Lastly, we define another generalized measure of information and inaccuracy as
follows:

(1.7 BeP:@y =1 -2t g Tp)f(1 = 227Y), a#1.

We shall call the measure 18P : Q) as (a, B)-inaccuformation. Clearly for g =
=0 -1, (1.7) gives the non-additive information of order « defined by,

(1.8) TPy = (L= 2rha " yp)f(1 =27, a%1.
Also for f = 0, (1.7) gives the non-additive inaccuracy of order «, defined by
(1.9) IKP 0y = (L= Ypai *Yp)f1 — 2271, a#1.

When p; = g; for all i, then (1.9) where « is replaced by 2 — « is the non-addrtive
entropy introduced earlier in [7].

The non-additive information of order o defined in (1.8) was recently characterized
by the author [4].

If p;’s are allowed to take zero values and the convention 0 log 0 = 0 is followed,
then we have to impose the restriction § > —~1in (1.1), (1.3), (1.5) and (1.7) and the
restriction o > 0 in (1.8).

The object of this paper is to prove characterization theorems for the various gener-
alized measures defined in (1.1), (1.3), (1.5) and (1.7) to (1.9) by means of functional
equations. Section 2 deals with the functional equations useful for the characterization
purposes and their solutions. Section 3 deals with the characterization theorems for
(1.1), (1.3) and (1.5). In section 4, characterization theorems for (1.7), (1.8) and (1.9)
are proved. All the characterization theorems proved in this paper are for n = 2
from which the corresponding results for any n > 2 can be derived.
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2. FUNCTIONAL EQUATIONS AND THEIR SOLUTIONS

This section deals with the solutions of the following functional equations:
(21) f(pa) = p* (@) + o’ f(p)
where p, g €(0, 1] and f(p) is a continuous function of p (0, 1].
(2.2) f(p1p2: 4142) = PLS(P2, 42) + PEf(P1s 44) -

where py, P2, 41, 42 € (0, 1]; f(p. 1) and f(1, g) are continuous functions of p € (0, 1]
and g € (0, 1] respectively.

(23) , f(pipas 9149,) :f(l’h q1) + f(p2, q;) + (21‘1 - 1 f(piq:) f(pa2s ‘72) ,

where o % 1, py, ps, 44,9, €(0, 1]; f(p, 1) and f(1, g) are continuous functions of
pe(0,1] and g (0, 1] respectively.

Solution of (2.1)

Rewriting (2.1) in the form,

(24 () S pg) = a7 fa) + p" A(p)
and setting

(25) Fyp)y=p""1(p), pe(0,1],
we have 7

(2:6) Fy(pa) = Fy(p) + Fyla).

Since f(p) is a continuous function of p e (0, 1] and therefore Fy(p) is also a con-
tinuous function of p. Thus the continuous solution [1, p. 41] of (2.6) are given by

(2.7 Fip)=clogp, pe(0,1]:
Hence from (2.5) and (2.7), we get
(2.8) f(p) = cpflogp,

where ¢ is an arbitrary real constant.
Solution of (2.2)
Taking p; = 1, p, = p, 41 = ¢, 4, = 1in (2.2), we have

(2.9) f(p,q) = f(p. 1) + P f(1L. q) .



Now we have to find expressions for f(p, 1) and f(1, g) respectively so that f(p, q) 397
may be completely known from (2.9). For this, let us take p; = p, = 1 in (2.2) so
that we have

(2-10) f(ls%‘lz):f(]sQ1)+f(1w41)~
By [1, p. 41], the continuous solution of (2.10) is given by
(211) f(1,q) =blogq, qe(0,1],

where b is an arbitrary real constant.
Again, taking q, = g, = 1in (2.2), we have

(2.12) fp2, 1) = pif(p2s 1) + P51(p0s 1)
which on multiplying throughout by (p;p,)~# and setting
(2.13) Fy(p) = p *f(p. 1), p(0,1]
gives

(2.14) Gylp1ps) = Gylps) + Gylpa) -

As f(p, 1) is continuous for p e (0, 1], therefore G4(p) is also continuous for pe
(0, 1]. Hence the continuous solution [1, p. 417 of (2.14) is given by

(2.15) Gyp) =alogp.
Hence (2.13) with the help of (2.15) gives
(2.16) f(p,1) =ap’logp, pe(0,1],
where a is an arbitrary real constant.  Thus (2.9), (2.11) and (2.16) give
(2.17) f(p.a) = plalogp + blogq],
where a and b are arbitrary real constants.
Solution of (2.3)
Taking p; = p, p» = q; = 1, g4, = ¢ in (2.3), we have
(2.18) fp-a) = f(p. 1) + /(1 @) + (271 = D f(p, 1) f(1, 9) -

Thus in order to determine f(p, q) we must find f(p, 1) and f(1, q) separately.
Again taking ¢, = g, =l in (2‘3), we get

(2‘19) f(l’xl’z, I) :f(pla 1) + f(PZv ]) + <2a_1 - l)f(Pp l)f(l’b 1) .



398

Let

(2.20) gp) =1+ = 1)f(p,1), pe(0,1].
Then (2.19) takes the following form

(221) 9dp1p2) = 9.p1) 9.(p-2) -

Since f(p, 1) is a continuous function of p e(0, 1], therefore g.(p) is continuous.
Hence by [1, p. 41] the continuous non-zero solutions of (2.21) are given by

(222) ga(p) = Pﬂ B
where f is an arbitrary real constant.
Thus (2.20) by the use of (2.22) gives
(223) S 1) = (0 = DJrt = 1),

Similarly on taking p; = p, = 1in (2.3) and following the procedure given above,
we get

(2.249) f(1,9) = (¢ = D)2 - 1),
where v is an arbitrary real constant.

Hence (2.18) with the help of (2.23) and (2.24) gives
(2.25) fp.9) = (PPq" — Dj@* = 1),
where § and v are arbitrary real constants.

3. CHARACTERIZATION THEOREMS FOR (1.1), (1.3) AND (1.5)
FOR n =2

In this section some characterization theorems for (1.1), (1.3) and (1.5) when

n = 2 are proved by using the functional equations (2.1) and (2.2) and their solutions
described in the last section.

We assume the following four postulates to prove a characterization theorem for
(1.1) when n = 2.

Postulate 1. H*(p) is a continuous function of pe (0, t].
Postulate 2. H(3) = (1)F.

Postulate 3. For p, g € 4, we have

H¥pq) = pPPH¥q> + ¢"H (p) .



Postulate 4. For P = (p,, p,) € 4, we have

2 2
HICPY = 5 p*pd] 3 pi-

i
Theorem 1. The function satisfying the postulate 1, 2, 3 and 4 is the B-entropy,

2 2
(3.1) HICPy = — % pi*tlog pif X pi -
i= i=1

=1

Proof. Postulates 1 and 3 are equivalent to (2.1) and hence {rom (2.8), we have
(3.2) HMpy = ¢cp’logp.

Thus (3.2) on using the postulate 2 yields ¢ = —1 giving
(3.3) H¥py = —pllogp.

Hence (3.3) and the postulate 4 proves theorem 1.

Now, let us assume that H?(P : Q) satisfies the following five postulates:

Postulate 1. H?(p : 1> and H’{1 : q) arc continuous functions of pe(0, 1] and
q (0, 1] respectively.

Postulate 2. H°(1:1)> = 1.

Postulate 3. H*{ : 1> = 0.

Postulate 4. For py, p,, 44, 4, € 4, we have

HYp,ps:q:4:) = PYH N p; : q2) + pHMp, 141> .
Postulate 5. For P = (p,, p,)€ 4 and Q = (q;, 9,) € 4, we have

Mw

Di-

HKP: Q) = _leill”<pi tq0f )

i

1l

Theorem 2. The function satisfying the postulates 1, 2, 3, 4 and 5 is the B-

inaccuracy,
2

(3.4 HP:Qy = — Y pi*'log g,

i=1 i

™M

Pi-
1

Proof. Postulates 1 and 4 are equivalent to (2.2) and hence from (2.17), we have
(3.5) Hp:q) = p’lalogp + blogq].
On using postulates 2 and 3 in (3.5), we get b = —1 and a = 0 respectively giving,

(3.6) Hp:q>=—pllogq.

399



400 Hence the use of (3.6) in postulate 5 proves theorem 2.
In order to prove a characterization theorem for f-information (1.5) let us assume
the following postulates:

Postulate 1. I°{p : 1> and I’{1 : ¢} are continuous functions of pe(0, 1] and
q {0, 1] respectively.

Postulate 2. I°{1 : 1) = 1.
Postulate 3. I’¢(3 : 1> = 0.
Postulate 4. For py, p,, q,, 4, € 4, we have
1pip> 14142 = piIP{p, 1 g2 + PIIPpy 141>

Postulate 5. For P = (p,, p,)e 4 and Q = (g, q,) € 4, we have
2 2
IP: Q) = Z pid®p;: 4i>/ Z pi-
i=1 i=1

Theorem 3. The function satisfying the postulates 1,2, 3,4 and 5 is the f-informa-

tion,
B 2 2
(37 1P Q) = 3, o log (pifa)] T pi-
i=1 i=
Proof. The postulates 1 and 4 are equivalent to (2.2) and thercfore from (2.17)
we get
(3.8) I"p:qy = p[alogp + blogq].
Now using postulates 2 and 3 in (3.8), we get b = —1l and a = 1. Thus
(3.9) I"¢p: q> = p’ log(pfaq) .

Hence the use of (3.9) in postulate 5 proves theorem 3.

4. CHARACTERIZATION THEOREMS FOR (1.7), (1.8) AND (1.9)
FOR n =2

This section deals with the characterization theorems for (1.7), (1.8) and (1.9)
when n = 2 by using the solution to the functional equation (2.3). We start by
assuming the following postulates:

Postulate 1. I,{p:1> and I,{I :¢) are continuous functions of pe(0;1] and
q € (0, 1] respectively.



Postulate 2. [,{1 13> = 1.
Postulate 3. [, 11> = 0.
Postulate 4. [,{3 1> = 0.

Postulate 5. If p1, P2. 41, G2 € 4, then
1pip2 14192y = 1lpy tayy + 1lps 142> +
LG Y REIEPIY RSP I

Postulate 6. If P = (p,, p2) € 4 and Q = (q,, g,) € 4, then

M

i

1

2
ILP: Q) :_:le.-ixp.- : ‘h)/ ll’f .

Now we proceed to prove characterization theorems for (1.7), (1.8) and (1.9) for
n=2.

Theorem 4. The function satisfying the postulates 1, 2, 5 and 6 is the (o, ﬁ)—
inaccuformation,

2 2
(1) PPy =(1 =Y pi* gl [T p)f1 =271, a1,
i=1 i=1

Proof. The postulates 1 and 5 are equivalent to (2.3) and hence from (2.25), we
have

42 Ipgd = (P'q" — 1)j(2** = 1).
Taking p = 1, ¢ = % in (4.2) and using the postulate 2, we get v = | — «. Thus
(4.3) I&pqy = (PPq* = — Dj(2*"t = 1).

Hence (4.3) and the postulate 6 prove theorem 4.

Theorem 5. The function satisfying the postulates 1,2, 3, 5 and 6 is the non-ad-
ditive information of order o given by,

@ 1-a
pigqi |
i=1 i

M

Pl =270, a1

e

(4.4) TPy =(1 —

1

Proof. As done in the proof of theorem 4, postulates f, 2 and 5 give (4.3). Now
using postulate 3 in (4.3) yields f = « — 1 giving

(4.5) Ilpig) =@ tq' = D)2t = 1).

Hence the use of (4.5) in postulate 6 proves theorem 5.

401
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Theorem 6. The function satisfying the postulates 1, 2, 4, 5 and 6 is the non-
additive inaccuracy of order a,
2

2
(4.6) BP0y ==Y pai Y p)(l =227, a#1.
i=1 i=1
Proof. As done earlier in theorem 4; the postulates 1, 2 and 5 imply (4.3). Hence
the use of postulate 4 in (4.3) yields = 0, giving

4.7 I<pigy = (g*™* = Dj2= ' - 1).
Now using (4.7) in postulate 6 proves theorem 6.
{Received December 15, 1970.)
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VYTAH

O nékterych novych mirach nejistoty, nepfesnosti a informace
a o jejich charakteristikach

P. N. RATHIE

Autor zavadi v prvni &sti Slanku p-entropii (1.1), B-nepiesnost (1.3), f-informaci
(1.5) a (o, B)-informaci (1.7). Takto zavedené miry zobeciiuji n&které znamé miry
nejistoty, nepfesnosti a informace studované jiz dfive v teorii informace. Zavedené
zobecnéné miry jsou charakterizovany funkcionalnimi rovnicemi, jejich feSeni je
probrino ve druhé &asti &lanku. Ve tfeti &asti jsou axiomaticky definovany prvni tfi
zavedené miry, v posledni &asti je axiomaticky definovana &tvrtd zavedend mira
a nékteré jeji specialni varianty.

Pushpa Narayan Rathie, M. Sc., Ph. D., Visiting Scientist, Department of Mathematics, McGill
University, Montreal, Canada.
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