KYBERNETIKA — VOLUME 7 (1971), NUMBER 4

On Directable Automata

JÁN ČERNÝ, ALICA PIRICKÁ, BLANKA ROSENAUEROVÁ

The paper is concerned with the shortest directing word estimates for non-initial Medvedev automata.

Let $\mathscr{A} = (A, X, \delta)$ be a Medvedev automaton with the set of states A, the set of input signals X and the transition function δ .

 δ maps the set $A \times X^*$ into the set A (where X^* is the set of all words over X). The definition of δ can be extended to the set $A' = 2^A$ of all subsets of A. This extended mapping we designate δ' , that means

$$\delta'(B, p) = \{\delta(b, p) : b \in B\}.$$

If $C = \delta'(B, p)$, we shall sometimes use the brief designation $B \xrightarrow{\rightarrow} C$. For every $B \in 2^A$, |B| will designate the number of elements in B. Putting $a'_0 = A$ and using δ' and A', we can define the total initial automaton $\mathscr{A}' = (A', X, \delta', a'_0)$ corresponding to \mathscr{A} .

Example 1. Let \$\$\mathscr{U}_4\$ = ({0; 1; 2; 3}; {0; 1}, δ) where δ is defined on the fig. 1. The multigraph of the corresponding \$\$\mathscr{U}_4\$ is on the fig. 2.

Fig. 2.

If there exists a word $p \in X^*$ and a state $a \in A$ such that $A \xrightarrow{p} \{a\}$, we shall call \mathscr{A} directable and p the directing word of \mathscr{A} .

If \mathscr{A} is directable then there exists a path from A to $\{a\}$ on the multigraph of \mathscr{A}' . 291 Let us designate l(p) the length of the word p and put

$$n(\mathscr{A}) = \min \, l(p)$$

where the minimum is taken over the set of all directing words of \mathcal{A} .

In example 1 $n(\mathcal{U}_4) = 9$ and the shortest directing word is 100010001.

Let Π_k be the set of all directable automata with k states. Let

$$\mathbf{n}(k) = \sup_{\mathscr{A} \in \mathbf{\Pi}_k} n(\mathscr{A}) \, .$$

In [1] it was proved that

(1)
$$(k-1)^2 \leq n(k) \leq 2^k - k - 1; \quad k = 1, 2, ...$$

In [2] the following inequality was found:

(2)
$$n(k) \leq 1 + \frac{1}{2}k(k-1)(k-2)$$

which is better than the abovementioned one for $k \ge 7$.

We see that the upper and lower estimates of n(k) in (1) are equal for k = 1, 2, 3, but their difference is an increasing function of k for $k \ge 4$ (see table 1).

Table 1.

k	1	2	3	4	5	6
$\frac{(k-1)^2}{2^k - k - 1}$ 3. $2^{k-2} - 2$ (k/3) - (3k/2) + (25k/6) - 4 n(k) in Theorem 2 n(k) in Theorem 3	000	1 1 1	4 4 4 4	9 11 10 10 9	16 26 22 21 16	25 57 46 39

If $\mathscr{A} = (A, X, \delta) \in \Pi_k$ we can choose a directing word x_1, \ldots, x_n such that in the sequence $\{\delta'(A, x_1 \ldots x_j)\}$ we have 1. no two identical terms, 2. no couple of terms with the equal numbers of elements containing a state pair b, c such that $\delta(b, x) = \delta(c, x)$ for some x. Thus

$$n(k) \leq 1 + \sum_{j=2}^{k-1} \left[\binom{k}{j} - \binom{k-2}{j-2} + 1 \right] = 3 \cdot 2^{k-2} - 2.$$

Improving the Starke's method from [2] we can obtain the following theorem.

Theorem 1. For every integer $K \ge 2$ the following inequality holds:

(3)
$$n(k) \leq \frac{1}{3}k^3 - \frac{3}{2}k^2 + \frac{25}{6}k - 4$$

292

Proof. Let $\mathcal{A} = (A, X, \delta) \in \Pi_k$. We are going to look for a directing word p of \mathcal{A} such that

$$l(p) \leq \frac{1}{3}k^3 - \frac{3}{2}k^2 + \frac{25}{6}k - 4.$$

Let us suppose that $p = x_1 \dots x_{l(p)} = x_{h_{k-1}} x_2 \dots x_{h_{k-2}} \dots x_{h_1}$ where h_j has the property that

$$|\delta'(A, x_1 \dots x_{h_j-1})| \ge j+1; \quad |\delta'(A, x_1 \dots x_{h_j})| \le j \quad (j=1, \dots, k-1).$$

Note that the case of $h_j = h_{j-1}$ is possible. Then

$$I(p) = 1 + \sum_{j=2}^{k-1} (h_{j-1} - h_j).$$

First we are going to prove that p can be chosen such that

(4)
$$h_{j-1} - h_j \leq \binom{k}{2} - \binom{j}{2} - j + 3 \quad (j = 2, ..., k - 1)$$

(the right hand side is obviously not less than 3).

Because \mathscr{A} is directable, there exists such $x_1 \in X$ that $|\delta'(A, x_1)| = \bar{k} < k$. Then we put $x_1 = x_{h_{k-1}} = x_{h\bar{k}}$, $(h_{k-1} = \ldots = h_{\bar{k}})$. Let us assume that $x_1 \ldots x_{h_j}$ has been already chosen.

a) If $|\delta'(A, x_1 \dots x_{h_j})| < j$ then we put $h_{j-1} = h_j$ and

$$h_{j-1} - h_j = 0 < \binom{k}{2} - \binom{j}{2} - j + 3.$$

b) If $|\delta'(A, x_1 \dots x_{h_j})| = j$ and if there exists such $x \in X$ that $|\delta'(A, x_1 \dots x_{h_j}x)| \le \le j - 1$ then we put $h_{j-1} = h_j + 1$ and $x_{h_{j-1}} = x$. Obviously

$$h_{j-1} - h_j = 1 < \binom{k}{2} - \binom{j}{2} - j + 3$$

c) If $|\delta'(A, x_1 \dots x_{h_j})| = j$ and no such $x \in X$ exists that $|\delta'(A, x_1 \dots x_{h_j} x)| \leq j - 1$ then because of the directability of \mathscr{A} there exists such $x \in X$ that

$$B_j = \delta'(A, x_1 \dots x_{h_j}) \neq C_j = \delta'(A, x_1 \dots x_{h_j} \overline{x}).$$

In B_j there are $\binom{j}{2} = j(j-1)/2$ different pairs of its elements and in C_j there are

at least further j - 1 pairs. Let $\{b, c\}$ be such a pair form these $\binom{j}{2} + j - 1$ pairs which possesses the shortest word q with the property that $\delta'(\{b, c\}, q)$ is one point set.

Since the number of all pairs from A is $\binom{k}{2}$,

$$l(q) \leq \binom{k}{2} - \binom{j}{2} - j + 2.$$

If $b, c \in B_j$ then we put $x_{h_j+1} \dots x_{h_{j-1}} = q$. If $b, c \in C_j$ then $x_{h_j+1} \dots x_{h_{j-1}} = xq$. In both this cases

$$h_{j-1} - h_j \leq \binom{k}{2} - \binom{j}{2} - j + 3.$$

Thus we have found the word p by induction. Obviously p fulfils the condition (4). Then

$$l(p) = 1 + \sum_{j=2}^{k-1} \left[\binom{k}{2} - \binom{j}{2} - j + 3 \right] = \frac{1}{3}k^3 - \frac{3}{2}k^2 + \frac{25}{6}k - 4$$

which concludes the proof.

In table 1 there are calculated the first values of

$$\frac{1}{3}k^3 - \frac{3}{2}k^2 + \frac{25}{6}k - 4$$

Corollary 1. If an automaton $\mathscr{A} \in \Pi_k$ possesses two different pairs of states $\{a, b\}$ and $\{c, d\}$ such that

$$|\delta'(\{a, b\}, x)| = |\delta'(\{c, d\}, y)| = 1$$

for some $x, y \in X$ then

$$n(\mathscr{A}) \leq \frac{1}{3}k^3 - \frac{3}{2}k^2 + \frac{25}{6}k - 4 - (k - 2).$$

Corollary 2. If an automaton $\mathscr{A} \in \Pi_k$, $k \ge 4$ possesses two disjoint pairs $\{a, b\}$ and $\{c, d\}$ such that $\{c, d\} \rightarrow \{a, b\} \rightarrow \{f\}$ for some $x, y \in X$ and $f \in A$, then

$$n(\mathscr{A}) \leq \frac{1}{3}k^3 - \frac{3}{2}k^2 + \frac{25}{6}k - 4 - (k - 3).$$

The proof of this assertion is based on the inequalities

$$h_{k-2} - h_{k-1} \leq \binom{k}{2} - \binom{k-1}{2} - (k-1) + 3 - 1 = 2,$$

$$h_{k-3} - h_{k-2} \leq \binom{k}{2} - \binom{k-2}{2} - (k-2) + 3 - (k-4) = 6$$

which immediately follow from the fact that every k - 1 tuple of states must contain $\{a, b\}$ or $\{c, d\}$ and k - 2 tuple, excluding at most 4 must also contain $\{a, b\}$ or $\{c, d\}$.

Theorem 2. n(4) = 9.

Proof. We shall prove that for every automaton $\mathscr{A} \in \Pi_4$, $\mathscr{A} = \{A = \{1, 2, 3, 4\}, X, \delta\}$ the inequality $n(\mathscr{A}) \leq 9$ is valid. Therefore considering (1) n(4) = 9.

Because $\mathscr{A} \in \Pi_4$ is directable, there are 2 possibilities:

1. There exist two such pairs $\{a, b\}$ that $|\delta'(\{a, b\}, x)| = 1$ for some $x \in X$. Then according to the corollary 1, $n(\mathscr{A}) \leq 8$.

2. There exists exactly one pair with that quality, say $\{1, 2\}$. Then we must solve 2 cases:

2.1. There exists $y \in X$ that $\{3, 4\} \xrightarrow{\rightarrow} \{1, 2\}$. Then by the corollary 2 $n(\mathscr{A}) \leq 9$.

2.2. For every $y \in X$ $\delta'(\{3, 4\}, y) \neq \{1, 2\}$. Then because of directability of \mathscr{A} there exists such a pair $\{i, j\}$ that $i \in \{1, 2\}, j \in \{3, 4\}$ and $\delta'(\{i, j\}, y) = \{1, 2\}$ for some $y \in X$. If there are 2 such pairs, then there exists a word q that

 $h_1 - h_2 \leq 5$, $h_2 - h_3 \leq 3$ and $l(q) \leq 9$.

Thus let us assume, that the pair $\{i, j\}$ is only one.

In the further cosiderations every $x \in X$ which fulfils $|\delta'(\{1, 2\}, x)| = 1$ we shall denote \bar{x} . It is impossible that $\{i, j\} \xrightarrow{x} \{1, 2\}$ because then $\delta'(\{1, j\}, \bar{x}) = \delta'(\{2, j\}, \bar{x}) = \{1, 2\}$ what is in contradiction with our assumption.

Thus there are only 2 possibilities for \bar{x} :

a) There exists a state b that $\delta(b, \bar{x}) = 1$ and $\delta(c, \bar{x}) \neq 2$ for every state c.

b) There exists a state b that $\delta(b, \bar{x}) = 2$ and $\delta(c, \bar{x}) \neq 1$ for every $c \in A$.

Therefore 2 cases are to be solved:

2.2.1. There exists \bar{x} that *a*, is valid.

2.2.1.1. $\{i, j\} = \{1, 3\}$ or $\{1, 4\}$. Then $\{1, 2, 3, 4\} \xrightarrow{s} \{1, 3, 4\} \xrightarrow{r} \{1, 2, a\}; a = 3$ or 4 and there exists a directing word p that $l(p) \leq 9$.

2.2.1.2. $\{i, j\} = \{2, 3\}$. (The multigraphs of $y \in X$, $\delta(\{2, 3\}, y) = \{1, 2\}$ are on the figures 3, 4, 5, 6.)

If there is \overline{x}' that b, holds, then $A \underset{\overline{x}'y}{\longrightarrow} \{1, 2, a\}, a \in \{3, 4\}$ and $n(\mathscr{A}) \leq 9$.

Let us assume that for every \bar{x} only a) is valid. Then there exists $z \in X$ that $\{1, 3, 4\} \xrightarrow{-1} \{2, 3, 4\}$ and obviously $|\delta'(\{1, 2\}, z)| = 2$.

2.2.1.2.1. There exists z with abovementioned quality such that $\{2, 3\} \xrightarrow{r} \{1, 2\}$. The corresponding multigraph of z is on the figure 3 (it is z_1) or fig. 4 (it is z_2).

We shall construct the directing word $p = x_1 x_2 \dots x_n$, $n \leq 9$.

$$z_1 : x_1 x_2 x_3 x_4 = \overline{x} z_1 z_1 \overline{x}$$
 or $x_1 x_2 x_3 x_4 x_5 = \overline{x} z_1 z_1 \overline{x}$

so that $A \xrightarrow{x_1,x_2,x} \{1, 4\}$ or $\{3, 4\}$ what is allways possible. Then the others $x_i = z_1$ for $i \leq n - 1$, $x_n = \bar{x}$ and $h_2 - h_3 \leq 4$, $h_1 - h_2 \leq 4$.

$$z_2: x_1 x_2 x_3 x_4 = x z_2 z_2 x \, .$$

If $A \xrightarrow{\overline{x}z_2z_3\overline{x}} \{1, 3\}$, then $x_i = z_2$ for $i \ge 5$.

If $A_{\overline{xz_2z_2x}} \{1, 4\}_{\overline{xz}} \{3, 4\}$, then there exists $u \in x$ that $\delta(4, u) = 1$ or 3 and we put $x_5 = u$ or $x_5x_6 = z_2u$ so that we should get $\{1, 2\}, \{1, 3\}$ or $\{2, 3\}$. Then the others $x_i = z_2$, for $i \leq n-1$ and $x_n = \overline{x}$.

If $A \xrightarrow{\overline{xz_2z_2x}} \{3, 4\}$ it is possible to use the preceding method.

In every case with z_2 , $h_2 - h_3 = 3$ and $h_1 - h_2 \leq 5$.

2.2.1.2.2. For every z, $\{1, 2\} \xrightarrow{} \{1, 2\}$. Then obviously $3 \xrightarrow{} 1$ and $2 \xrightarrow{} 2$ (only the figure 5 and 6). The corresponding multigraph of z is on the figure 7 (z_3) or 8 (z_4)

$$z_3: x_1x_2x_3 = \bar{x}z_3y \,.$$

If $A_{\overline{x_{1,x_{2,x_{3}}}}}\{1, 2, 3\} \underset{z_{3}}{\longrightarrow} \{1, 2, 4\}$, then $x_{4} = \overline{x}$ or $x_{4}x_{5} = z_{3}\overline{x}$ so that we should get $\{1, 3\}$ or $\{1, 4\}$ and then the others x; equal z_{3} or y for $i \leq n - 1$, $x_{n} = \overline{x}$.

If $A_{\frac{1}{x_1x_2x_3}}$ {1, 2, 4} $\frac{1}{x_2}$ {1, 2, 3}, the preceding method can be used. In the both cases $h_2 - h_3 \leq 4$ and $h_1 - h_2 \leq 4$.

 z_4 : It can be solved by means of similar considerations as the preceding ones so that $h_2 - h_3 = 3$ and $h_1 - h_2 \leq 5$.

2.2.1.3. $\{i, j\} = \{2, 4\}$. The same procedure as in 2.2.1.2, we only change the states 3 and 4.

2.2.2. For every \bar{x} b), is valid. It is symmetric with 2.2.1.

Remark 1. Except of the automaton \mathcal{U}_4 (example 1) we have found another automaton \mathcal{P}_4 (fig. 9) not isomorphic with \mathcal{U}_4 , such that $n(\mathcal{P}_4) = 9$. For \mathcal{U}_4 it is valid that for the shortest directing word $h_2 - h_3 = h_1 - h_2 = 4$ while for \mathcal{P}_4 it is

$$h_2 - h_3 = 3$$
, $h_1 - h_2 = 5$.

Fig. 9.

Remark 2. Adding the new state 4 to \mathcal{U}_4 we can easily obtain the automaton \mathcal{U}_5 for which $n(\mathcal{U}_5) = 16$ (see [1]). On the other hand no automaton \mathcal{P}_5 with $n(\mathcal{P}_5) \ge 16$ we could find by adding a new state to \mathcal{P}_4 . The following theorem is valid for the automata with 5 states.

Theorem 3. n(5) = 16.

Proof. Because the proof is analogous as in theorem 2, we are not going to explain it in details. It is divided into the following main points:

1. Every mapping $\delta(0, x)$ is compressive, i.e. for every input symbol $x |\delta'(A, x)| < |A|$.

1.1. There exist four states i, j, k, l, such that for some

$$x, y \in X[\delta'(\{i, j\}, x)] = |\delta'(\{k, l\}, y| = 1.$$

1.2. There exist three states i, j, k such that for some

$$x \in X \left| \delta'(\{i, j, k) \right| = 1$$

1.3. There exist three states i, j, k such that for some

$$x, y \in X[\delta'(\{i, j\}, x] = |\delta'(\{j, k\}, y)| = 1.$$

1.4. There exists the pair *i*, *j* such that for every $x \in X |\delta'(\{i, j\}, x)| = 1$ and for every $\{k, l\} \neq \{i, j\}$ and every $x \in X |\delta'(\{k, l\}, x)| = 2$.

2. There exist such a symbol $x \in X$ that the mapping $\delta(0, x)$ is a permutation of the elements of A.

2.1. The permutation is of the type 1; 2; 3; 4; 5 (every state is mapped into itself).

2.2. Of the type 12; 3; 4; 5 (1 \rightarrow 2; 2 \rightarrow 1 and others into themselves).

2.3. Of the type 12; 34; 5.

2.4. Of the type 123; 4; 5 (a cycle from 123).

2.5. Of the type 123; 45.

2.6. Of the type 1234; 5.

2.7. Of the type 12345 (the total cycle).

Remark 3. The hypothesis $n(k) = (k - 1)^2$ may be found not valid only for $k \ge 6$.

(Received May 26, 1969.)

REFERENCES

 J. Černý: Poznámka k homogénnym experimentom s konečnými automatmi. Mat. fyz. čas. SAV 14 (1964), 208-215.

[2] P. H. Starke: Eine Bemerkung über homogene Experimente. Elektr. Informationverarbeitung und Kyb. 2 (1966) 257-259.

298 <u>VÝŤAH</u>

O usmerniteľných automatoch

JÁN ČERNÝ, ALICA PIRICKÁ, BLANKA ROSENAUEROVÁ

V článku sa študujú odhady pre čísla n(k), definované v [1] ako sup min l(p), $\mathcal{A} = I(A, X, \delta)$ je neiniciálny Medvedevov automat, $P(\mathcal{A})$ je množina jeho usmerňujúcich slov, definovaných v [1], a $\mathbf{\Pi}_k$ je množina všetkých usmerniteľných automatov s k stavmi. Zlepšujú sa odhady pre n(k) získané v [1] a [2], a to tým, že sa dokážu tieto vety:

Veta 1. Pre všetky $k \ge 2$ je $n(k) \le k^3/3 - 3k^2/2 + 25k/6 - 4$.

Veta 2. n(4) = 9.

Veta 3. n(5) = 16.

Doc. Dr. Ján Černý, CSc., Alica Pirická, Blanka Rosenauerová, druhá katedra matematiky, Univerzita P. J. Šafárika (Second Mathematical Institute, Šafárik's University), nám. Febr. víťazstva 9, Košice.