On Directable Automata

Ján Černý, Alica Pirická, Blanka Rosenauerová

The paper is concerned with the shortest directing word estimates for non-initial Medvedev automata.

Let $\mathscr{A}=(A, X, \delta)$ be a Medvedev automaton with the set of states A, the set of input signals X and the transition function δ.
δ maps the set $A \times X^{*}$ into the set A (where X^{*} is the set of all words over X). The definition of δ can be extended to the set $A^{\prime}=2^{A}$ of all subsets of A. This extended mapping we designate δ^{\prime}, that means

$$
\delta^{\prime}(B, p)=\{\delta(b, p): b \in B\}
$$

Fig. 1.

If $C=\delta^{\prime}(B, p)$, we shall sometimes use the brief designation $B \underset{\boldsymbol{p}}{ } C$. For every $B \in$ $\in 2^{A},|B|$ will designate the number of elements in B. Putting $a_{0}^{\prime}=A$ and using δ^{\prime} and A^{\prime}, we can define the total initial automaton $\mathscr{A}^{\prime}=\left(A^{\prime}, X, \delta^{\prime}, a_{0}^{\prime}\right)$ corresponding to \mathscr{A}. the corresponding \mathscr{U}_{4}^{\prime} is on the fig. 2

Fig. 2.

If there exists a word $p \in X^{*}$ and a state $a \in A$ such that $A \rightarrow\{a\}$, we shall call \mathscr{A} directable and p the directing word of \mathscr{A}.

If \mathscr{A} is directable then there exists a path from A to $\{a\}$ on the multigraph of \mathscr{A}^{\prime}.
Let us designate $l(p)$ the length of the word p and put

$$
n(\mathscr{A})=\min l(p)
$$

where the minimum is taken over the set of all directing words of \mathscr{A}.
In example $1 n\left(\mathscr{H}_{4}\right)=9$ and the shortest directing word is 100010001 .
Let Π_{k} be the set of all directable automata with k states. Let

$$
n(k)=\sup _{\mathscr{A} \in \boldsymbol{I}_{k}} n(\mathscr{A})
$$

In [1] it was proved that
(1)

$$
(k-1)^{2} \leqq n(k) \leqq 2^{k}-k-1 ; \quad k=1,2, \ldots
$$

In [2] the following inequality was found:

$$
\begin{equation*}
n(k) \leqq 1+\frac{1}{2} k(k-1)(k-2) \tag{2}
\end{equation*}
$$

which is better than the abovementioned one for $k \geqq 7$.
We see that the upper and lower estimates of $n(k)$ in (1) are equal for $k=1,2,3$, but their difference is an increasing function of k for $k \geqq 4$ (see table 1).

Table 1.

k	1	2	3	4	5	6
$(k-1)^{2}$	0	1	4	9	16	25
$2^{k}-k-1$						
$3.2^{k-2}-2$						
$(k / 3)-(3 k / 2)+(25 k / 6)-4$	0	1	4	11	26	57
$n(k)$ in Theorem 2						
$n(k)$ in Theorem 3		1	4	10	22	46

If $\mathscr{A}=(A, X, \delta) \in \Pi_{k}$ we can choose a directing word x_{1}, \ldots, x_{n} such that in the sequence $\left\{\delta^{\prime}\left(A, x_{1} \ldots x_{j}\right)\right\}$ we have 1 . no two identical terms, 2 . no couple of terms with the equal numbers of elements containing a state pair b, c such that $\delta(b, x)=$ $=\delta(c, x)$ for some x. Thus

$$
n(k) \leqq 1+\sum_{j=2}^{k-1}\left[\binom{k}{j}-\binom{k-2}{j-2}+1\right]=3 \cdot 2^{k-2}-2
$$

Improving the Starke's method from [2] we can obtain the following theorem.

Theorem 1. For every integer $K \geqq 2$ the following inequality holds:

$$
\begin{equation*}
n(k) \leqq \frac{1}{3} k^{3}-\frac{3}{2} k^{2}+\frac{25}{6} k-4 \tag{3}
\end{equation*}
$$

Proof. Let $\mathscr{A}=(A, X, \delta) \in \Pi_{k}$. We are going to look for a directing word p of \mathscr{A} such that

$$
l(p) \leqq \frac{1}{3} k^{3}-\frac{3}{2} k^{2}+\frac{25}{6} k-4
$$

Let us suppose that $p=x_{1} \ldots x_{l(p)}=x_{h_{k-1}} x_{2} \ldots x_{h_{k-2}} \ldots x_{h_{1}}$ where h_{j} has the property that

$$
\left|\delta^{\prime}\left(A, x_{1} \ldots x_{h_{j}-1}\right)\right| \geqq j+1 ; \quad\left|\delta^{\prime}\left(A, x_{1} \ldots x_{h j}\right)\right| \leqq j \quad(j=1, \ldots, k-1)
$$

Note that the case of $h_{j}=h_{j-1}$ is possible. Then

$$
l(p)=1+\sum_{j=2}^{k-1}\left(h_{j-1}-h_{j}\right)
$$

First we are going to prove that p can be chosen such that

$$
\begin{equation*}
h_{j-1}-h_{j} \leqq\binom{ k}{2}-\binom{j}{2}-j+3 \quad(j=2, \ldots, k-1) \tag{4}
\end{equation*}
$$

(the right hand side is obviously not less than 3).
Because \mathscr{A} is directable, there exists such $x_{1} \in X$ that $\left|\delta^{\prime}\left(A, x_{1}\right)\right|=\vec{k}<k$. Then we put $x_{1}=x_{h_{k-1}}=x_{h k},\left(h_{k-1}=\ldots=h_{k}\right)$.
Let us assume that $x_{1} \ldots \ldots x_{h}$, has been already chosen.
a) If $\left|\delta^{\prime}\left(A, x_{1} \ldots x_{h_{j}}\right)\right|<j$ then we put $h_{j-1}=h_{j}$ and

$$
h_{j-1}-h_{j}=0<\binom{k}{2}-\binom{j}{2}-j+3
$$

b) If $\left|\delta^{\prime}\left(A, x_{1} \ldots x_{h_{j}}\right)\right|=j$ and if there exists such $x \in X$ that $\left|\delta^{\prime}\left(A, x_{1} \ldots x_{h_{j}} x\right)\right| \leqq$ $\leqq j-1$ then we put $h_{j-1}=h_{j}+1$ and $x_{h_{j-1}}=x$. Obviously

$$
h_{j-1}-h_{j}=1<\binom{k}{2}-\binom{j}{2}-j+3
$$

c) If $\left|\delta^{\prime}\left(A, x_{1} \ldots x_{h_{j}}\right)\right|=j$ and no such $x \in X$ exists that $\left|\delta^{\prime}\left(A, x_{1} \ldots x_{h_{j}} x\right)\right| \leqq j-1$ then because of the directability of \mathscr{A} there exists such $x \in X$ that

$$
B_{j}=\delta^{\prime}\left(A, x_{1} \ldots x_{h_{j}}\right) \neq C_{j}=\delta^{\prime}\left(A, x_{1} \ldots x_{h,} \bar{x}\right)
$$

In B_{j} there are $\binom{j}{2}=j(j-1) / 2$ different pairs of its elements and in C_{j} there are
at least further $j-1$ pairs. Let $\{b, c\}$ be such a pair form these $\binom{j}{2}+j-1$ pairs
which possesses the shortest word q with the property that $\delta^{\prime}(\{b, c\}, q)$ is one point set.
Since the number of all pairs from A is $\binom{k}{2}$,

$$
I(q) \leqq\binom{ k}{2}-\binom{j}{2}-j+2 .
$$

If $b, c \in B_{j}$ then we put $x_{h_{j}+1} \ldots x_{h_{j-1}}=q$. If $b, c \in C_{j}$ then $x_{h_{j}+1} \ldots x_{h_{j-1}}=x q$. In both this cases

$$
h_{j-1}-h_{j} \leqq\binom{ k}{2}-\binom{j}{2}-j+3
$$

Thus we have found the word p by induction. Obviously p fulfils the condition (4). Then

$$
l(p)=1+\sum_{j=2}^{k-1}\left[\binom{k}{2}-\binom{j}{2}-j+3\right]=\frac{1}{3} k^{3}-\frac{3}{2} k^{2}+\frac{25}{6} k-4
$$

which concludes the proof.
In table 1 there are calculated the first values of

$$
\frac{1}{3} k^{3}-\frac{3}{2} k^{2}+\frac{25}{6} k-4
$$

Corollary 1. If an automaton $\mathscr{A} \in \boldsymbol{I}_{k}$ possesses two different pairs of states $\{a, b\}$ and $\{c, d\}$ such that

$$
\left|\delta^{\prime}(\{a, b\}, x)\right|=\left|\delta^{\prime}(\{c, d\}, y)\right|=1
$$

for some $x, y \in X$ then

$$
n(\mathscr{A}) \leqq \frac{1}{3} k^{3}-\frac{3}{2} k^{2}+\frac{25}{6} k-4-(k-2) .
$$

Corollary 2. If an automaton $\mathscr{A} \in \boldsymbol{\Pi}_{k}, k \geqq 4$ possesses two disjoint pairs $\{a, b\}$ and $\{c, d\}$ such that $\{c, d\} \rightarrow\{a, b\} \rightarrow\{f\}$ for some $x, y \in X$ and $f \in A$, then

$$
n(\mathscr{A}) \leqq \frac{1}{3} k^{3}-\frac{3}{2} k^{2}+\frac{25}{6} k-4-(k-3)
$$

The proof of this assertion is based on the inequalities

$$
\begin{gathered}
h_{k-2}-h_{k-1} \leqq\binom{ k}{2}-\binom{k-1}{2}-(k-1)+3-1=2 \\
h_{k-3}-h_{k-2} \leqq\binom{ k}{2}-\binom{k-2}{2}-(k-2)+3-(k-4)=6
\end{gathered}
$$

which immediately follow from the fact that every $k-1$ tuple of states must contain $\{a, b\}$ or $\{c, d\}$ and $k-2$ tuple, excluding at most 4 must also contain $\{a, b\}$ or $\{c, d\}$.

Theorem 2. $n(4)=9$.
Proof. We shall prove that for every automaton $\mathscr{A} \in \boldsymbol{I}_{4}, \mathscr{A}=(A=\{1,2,3,4\}$, $X, \delta)$ the inequality $n(\mathscr{A}) \leqq 9$ is valid. Therefore considering (1) $n(4)=9$.

Because $\mathscr{A} \in \Pi_{4}$ is directable, there are 2 possibilities:

1. There exist two such pairs $\{a, b\}$ that $\left|\delta^{\prime}(\{a, b\}, x)\right|=1$ for some $x \in X$.

Then according to the corollary $1, n(\mathscr{A}) \leqq 8$.
2. There exists exactly one pair with that quality, say $\{1,2\}$. Then we must solve 2 cases:
2.1. There exists $y \in X$ that $\{3,4\} \rightarrow \underset{y}{ }\{1,2\}$. Then by the corollary $2 n(\mathscr{A}) \leqq 9$.
2.2. For every $y \in X \delta^{\prime}(\{3,4\}, y) \neq\{1,2\}$. Then because of directability of \mathscr{A} there exists such a pair $\{i, j\}$ that $i \in\{1,2\}, j \in\{3,4\}$ and $\delta^{\prime}(\{i, j\}, y)=\{1,2\}$ for some $y \in X$. If there are 2 such pairs, then there exists a word q that

$$
h_{1}-h_{2} \leqq 5, \quad h_{2}-h_{3} \leqq 3 \quad \text { and } \quad l(q) \leqq 9
$$

Thus let us assume, that the pair $\{i, j\}$ is only one.
In the further cosiderations every $x \in X$ which fulfils $\left|\delta^{\prime}(\{1,2\}, x)\right|=1$ we shall denote \bar{x}. It is impossible that $\{i, j\} \rightarrow \vec{x}\{1,2\}$ because then $\delta^{\prime}(\{1, j\}, \bar{x})=\delta^{\prime}(\{2, j\}, \bar{x})=$ $=\{1,2\}$ what is in contradiction with our assumption.

Thus there are only 2 possibilities for \bar{x} :
a) There exists a state b that $\delta(b, \bar{x})=1$ and $\delta(c, \bar{x}) \neq 2$ for every state c.
b) There exists a state b that $\delta(b, \bar{x})=2$ and $\delta(c, \bar{x}) \neq 1$ for every $c \in A$.

Therefore 2 cases are to be solved:
2.2.1. There exists \bar{x} that a, is valid.
2.2.1.1. $\{i, j\}=\{1,3\}$ or $\{1,4\}$. Then $\{1,2,3,4\}-\vec{x}\{1,3,4\} \rightarrow \underset{y}{\rightarrow}\{1,2, a\} ; a=3$ or 4 and there exists a directing word p that $l(p) \leqq 9$.
2.2.1.2. $\{i, j\}=\{2,3\}$. (The multigraphs of $y \in X, \delta(\{2,3\}, y)=\{1,2\}$ are on the figures $3,4,5,6$.)

If there is \bar{x}^{\prime} that b, holds, then $A \stackrel{\rightharpoonup}{\vec{x}^{\prime} y}\{1,2, a\}, a \in\{3,4\}$ and $n(\mathscr{A}) \leqq 9$.
Let us assume that for every \bar{x} only a) is valid. Then there exists $z \in X$ that $\{1,3,4\} \underset{z}{\longrightarrow}\{2,3,4\}$ and obviously $\left|\delta^{\prime}(\{1,2\}, z)\right|=2$.
2.2.1.2.1. There exists z with abovementioned quality such that $\{2,3\} \underset{z}{\rightarrow}\{1,2\}$. The corresponding multigraph of z is on the figure 3 (it is z_{1}) or fig. 4 (it is z_{2}).

We shall construct the directing word $p=x_{1} x_{2} \ldots x_{n}, n \leqq 9$.

$$
z_{1}: x_{1} x_{2} x_{3} x_{4}=\bar{x} z_{1} z_{1} \bar{x} \quad \text { or } \quad x_{1} x_{2} x_{3} x_{4} x_{5}=\bar{x} z_{1} z_{1} z_{1} \bar{x}
$$

so that $A \underset{x_{1} \widehat{x_{2} . x}}{ }\{1,4\}$ or $\{3,4\}$ what is allways possible. Then the others $x_{i}=z_{1}$ for $i \leqq n-1, x_{n}=\bar{x}$ and $h_{2}-h_{3} \leqq 4, h_{1}-h_{2} \leqq 4$.
$z_{2}: x_{1} x_{2} x_{3} x_{4}=x z_{2} z_{2} x$.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

If $A \underset{\overrightarrow{x_{22} z_{2} \vec{x}}}{ }\{1,3\}$, then $x_{i}=z_{2}$ for $i \geqq 5$.
If $A \underset{\bar{x}_{2} z_{2} \vec{x}}{ }\{1,4\} \overrightarrow{z_{2}}\{3,4\}$, then there exists $u \in x$ that $\delta(4, u)=1$ or 3 and we put $x_{5}=u$ or $x_{5} x_{6}=z_{2} u$ so that we should get $\{1,2\},\{1,3\}$ or $\{2,3\}$. Then the others $x_{i}=z_{2}$, for $i \leqq n-1$ and $x_{n}=\bar{x}$.
If $A \overrightarrow{\bar{x}_{z} z_{2} \vec{x}}\{3,4\}$ it is possible to use the preceding method.
In every case with $z_{2}, h_{2}-h_{3}=3$ and $h_{1}-h_{2} \leqq 5$.
2.2.1.2.2. For every $z,\{1,2\} \rightarrow \vec{z}\{1,2\}$. Then obviously $3 \vec{y} 1$ and $2 \rightarrow 2$ (only the figure 5 and 6). The corresponding multigraph of z is on the figure $7\left(z_{3}\right)$ or $8\left(z_{4}\right)$

$$
z_{3}: x_{1} x_{2} x_{3}=\bar{x} z_{3} y .
$$

If $A \xrightarrow[x_{1} x_{2} x_{3}]{ }\{1,2,3\} \rightarrow \vec{z}_{3}\{1,2,4\}$, then $x_{4}=\bar{x}$ or $x_{4} x_{5}=z_{3} \bar{x}$ so that we should get $\{1,3\}$ or $\{1,4\}$ and then the others x; equal z_{3} or y for $i \leqq n-1, x_{n}=\bar{x}$.

If $A \xrightarrow[x_{1} x_{2} x_{3}]{ }\{1,2,4\} \xrightarrow[z_{3}]{\longrightarrow}\{1,2,3\}$, the preceding method can be used.
In the both cases $h_{2}-h_{3} \leqq 4$ and $h_{1}-h_{2} \leqq 4$.
z_{4} : It can be solved by means of similar considerations as the preceding ones so that $h_{2}-h_{3}=3$ and $h_{1}-h_{2} \leqq 5$.
2.2.1.3. $\{i, j\}=\{2,4\}$. The same procedure as in 2.2.1.2, we only change the states 3 and 4.

Fig. 7.

2.2.2. For every $\bar{x} b$), is valid. It is symmetric with 2.2.1.

Remark 1. Except of the automaton \mathscr{U}_{4} (example 1) we have found another automaton \mathscr{P}_{4} (fig. 9) not isomorphic with \mathscr{U}_{4}, such that $n\left(\mathscr{P}_{4}\right)=9$. For \mathscr{U}_{4} it is valid that for the shortest directing word $h_{2}-h_{3}=h_{1}-h_{2}=4$ while for \mathscr{P}_{4} it is

$$
h_{2}-h_{3}=3, \quad h_{1}-h_{2}=5
$$

Fig. 9.

Remark 2. Adding the new state 4 to \mathscr{U}_{4} we can easily obtain the automaton \mathscr{U}_{5} for which $n\left(\mathscr{U}_{5}\right)=16$ (see [1]). On the other hand no automaton \mathscr{P}_{5} with $n\left(\mathscr{P}_{5}\right) \geqq$ $\geqq 16$ we could find by adding a new state to \mathscr{P}_{4}. The following theorem is valid for the automata with 5 states.

Theorem 3. $n(5)=16$.
Proof. Because the proof is analogous as in theorem 2, we are not going to explain it in details. It is divided into the following main points:

1. Every mapping $\delta(0, x)$ is compressive, i.e. for every input symbol $x\left|\delta^{\prime}(A, x)\right|<$ $<|A|$.
1.1. There exist four states i, j, k, l, such that for some

$$
x, y \in X\left|\delta^{\prime}(\{i, j\}, x)\right|=\mid \delta^{\prime}(\{k, l\}, y \mid=1
$$

1.2. There exist three states i, j, k such that for some

$$
x \in X \mid \delta^{\prime}(\{i, j, k) \mid=1
$$

1.3. There exist three states i, j, k such that for some

$$
x, y \in X \mid \delta^{\prime}\left(\{i, j\}, x\left|=\left|\delta^{\prime}(\{j, k\}, y)\right|=1\right.\right.
$$

1.4. There exists the pair i, j such that for every $x \in X\left|\delta^{\prime}(\{i, j\}, x)\right|=1$ and for every $\{k, l\} \neq\{i, j\}$ and every $x \in X\left|\delta^{\prime}(\{k, l\}, x)\right|=2$.
2. There exist such a symbol $x \in X$ that the mapping $\delta(0, x)$ is a permutation of the elements of A.
2.1. The permutation is of the type $1 ; 2 ; 3 ; 4 ; 5$ (every state is mapped into itself).
2.2. Of the type $12 ; 3 ; 4 ; 5(1 \rightarrow 2 ; 2 \rightarrow 1$ and others into themselves $)$.
2.3. Of the type $12 ; 34 ; 5$.
2.4. Of the type $123 ; 4 ; 5$ (a cycle from 123).
2.5. Of the type $123 ; 45$.
2.6. Of the type $1234 ; 5$.
2.7. Of the type 12345 (the total cycle).

Remark 3. The hypothesis $n(k)=(k-1)^{2}$ may be found not valid only for $k \geqq 6$.
(Received May 26, 1969.)

REFERENCES

[1] J. Cerný: Poznámka k homogénnym experimentom s konečnými automatmi. Mat. fyz. čas. SAV 14 (1964), 208-215.
[2] P. H. Starke: Eine Bemerkung über homogene Experimente. Elektr. Informationverarbeitung und Kyb. 2 (1966) 257-259.

O usmernitelných automatoch
Ján Černý, Alica Pirická, Blanka Rosenauerová

V článku sa študujú odhady pre čísla $n(k)$, definované $v[1]$ ako $\sup _{\mathscr{A} \in \boldsymbol{\Pi}_{k} p \in P(\mathscr{A})} l(p)$, kde $\mathscr{A}=(A, X, \delta)$ je neiniciálny Medvedevov automat, $P(\mathscr{A})$ je množina jeho usmerňujúcich slov, definovaných v [1], a $\boldsymbol{\Pi}_{k}$ je množina všetkých usmernitelných automatov s k stavmi. Zlepšujú sa odhady pre $n(k)$ získané v [1] a [2], a to tým, že sa dokážu tieto vety:

Veta 1. Pre všetky $k \geqq 2$ je $n(k) \leqq k^{3} / 3-3 k^{2} / 2+25 k / 6-4$.
Veta 2. $n(4)=9$.

Veta 3. $n(5)=16$.

Doc. Dr. Ján Černý, CSc., Alica Pirická, Blanka Rosenauerová, druhá katedra matematiky, Univerzita P. J. Šafárika (Second Mathematical Institute, Šafárik's University), nám. Febr. vitazstva 9, Košice.

