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On Directable Automata

JAN CERNY, ALICA PIRICKA, BLANKA ROSENAUEROVA

The paper is concerned with the shortest directing word estimates for non-initial Medvedev
automata.

Let & = (4, X, 6) be a Medvedev automaton with the set of states A, the set of
input signals X and the transition function 8.

& maps the set A x X* into the set 4 (where X* is the set of all words over X).
The definition of § can be extended to the set 4” = 24 of all subsets of 4. This
extended mapping we designate ¢, that means

3(B, p) = {6(b, p) : be B} .

Fig. 1.

HcC= 5’(B, p), we shall sometimes use the brief designation B - C. Forevery Be
€24, |Bl will designate the number of elements in B. Putting a; = A4 and using &'
and A’, we can define the total initial automaton &’ = (4', X, &', a) corresponding
to 7.



290 Example 1, Let %, = ({0; 1;2; 3}; {0; 1}, J) where ¢ is defined on the fig. 1. The multigraph of
the corresponding % is on the fig. 2.

If there exists a word p € X* and a state a € A such that 4 s {a}, we shall call of
directable and p the directing word of /.



If o/ is directable then there exists a path from 4 to {a} on the multigraph of .2¢".
Let us designate I(p) the length of the word p and put

n(s#) = min (p)
where the minimum is taken over the set of all directing words of 7.

In example 1 n(%,) = 9 and the shortest directing word is 100010001.

Let IT, be the set of all directable automata with k states. Let
n(k) = sup n(«) .
el
In [1] it was proved that
(03] (k=12 2nk)ys2*—k—1; k=1,2,...
In [2] the following inequality was found:
) n(k) £ 1+ tk(k — 1) (k — 2)

which is better than the abovementioned one for k = 7.
We see that the upper and lower estimates of n(k) in (1) are equal for k = 1,2, 3,
but their difference is an increasing function of k for k = 4 (see table 1).

Table 1.

k 1 2 3 4 5 6
k— 1? 0 1 4 9 16 25
2k —1 0 1 4 11 26 57
3,262 2 1 4 10 22 46
(k/3) — (3k[2) + (25k[6) — 4 1 4 10 21| 39
n(k) in Theorem 2 9
n(k) in Theorem 3 16

|

If of = (A, X, 6) € II,, we can choose a directing word x4, ..., x, such that in the
sequence {0'(4, x; ... x;)} we have 1. no two identical terms, 2. no couple of terms
with the equal numbers of elements containing a state pair b, ¢ such that 6(b, x) =
= §(c, x) for some x. Thus

n(k) £ 1 +§[<’J‘)—<f:22> + 1]=3.2*"2—2.

Improving the Starke’s method from [2] we can obtain the following theorem.
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Theorem 1. For every integer K = 2 the following inequality holds:
(3) n(k) < 3k — 3k* + 2k — 4.

Proof. Let of = (A, X, 8) € . We are going to look for a directing word p of &/
such that

I(p) £ 1 — 3k* + Lk — 4.

Let us suppose that p = x; ... Xip) = Xy X2 0ve Xiye_y --+ X
erty that

where h; has the prop-

[0 (A, x, o xpm)] 2T+ 15 8 (Ax x| S5 (=1, k= 1).

Note that the case of h; = h;_, is possible. Then

Ip)y=1 +)-‘=i:(hj"1 —hj).

First we are going to prove that p can be chosen such that
k J . .
(4) hjoy = h; = 2 - 5 -Jj+3 (J=2,---,k“1)

(the right hand side is obviously not less than 3).

Because o is directable, there exists such x, € X that |5'(4, x,)| = k < k. Then
we put X; = Xp,_, = X, (heoy = ... = hy).

Let us assume that x, . ... . x,, has been already chosen.

a) If |6'(4, x, ... x;,)| < j then we put h;_, = h; and

. A
hj_l—hj=0<<2)—<;>—j+3.

b) If [5'(A, x, ... x,,)| = j and if there exists such x € X that [6'(d, x; ... x,x)| £
< j— 1then we put h;_; = h; + 1 and x,,_, = x. Obviously

k N
hj,l—h,=1<<2>—<;)—,+3.

<) If]&’(A, Xi.on x,,,)l = jand no such x € X exists that I&’(A, X1 .o x,,)x)] <j-1
then because of the directability of .« there exists such x € X that

Bi=38(4,x;...x%,) % C; = 84, x1 ... %, %) .

In B; there are (;) = j(j — 1)/2 different pairs of its elements and in C, there are



at least further j — I pairs. Let {b, c} be such a pair form these ; + j — 1 pairs

which possesses the shortest word g with the property that 8'({b, ¢}, q) is one point
set.

Since the number of all pairs from 4 is G) )

l(q)§(§>—(;)~j+2.

If b,ce B; then we put X401 ... %, = ¢. If b,ceC; then x,,41 ... X;_, = xq.

In both this cases
k j .
hjoy “hj§<2>—<2)*}+3A

Thus we have found the word p by induction. Obviously p fulfils the condition (4).

Then
k=1 F/k j
l(p)=l+2[<>—<)—j+3:|=§k3~%kz+%5k—4
=2 | \2 2

which concludes the proof.
In table 1 there are calculated the first values of

e — 3k 4+ 2k — 4.
Corollary 1. If an automaton o € II,, possesses two different pairs of states {a, b}
and {c, d} such that
]5’({a, b}, x)l = ](3'({(:, d}, y)l =
for some x, y € X then
n(af) € 4k — 3k + Bk — 4 — (k - 2).

Corollary 2. If an automaton &/ € Il,, k = 4 possesses two disjoint pairs {a, b}
and {c, d} such that {c, d} - {a, b} —> {f} for some x, ye X and f € A, then

n(sf) £ 4k — 31> + Bk — 4 — (k- 3).

The proof of this assertion is based on the inequalities

h,‘_z—h,‘_l§<k>—(k—l>-(k—l)+3—1=2,

2 2

hH—hmg<’2‘)—<k‘Z)f(k—z)+3—(k—4):6

2
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which immediately follow from the fact that every k — 1 tuple of states must contain
{a, b} or {c, d} and k — 2 tuple, excluding at most 4 must also contain {a, b} or

{c, d}.
Theorem 2. n(4) = 9.

Proof. We shall prove that for every automaton &« € I1,, o = (A = {], 2,3, 4},
X, 6) the inequality n(s/) < 9 is valid. Therefore considering (1) n(4) = 9.

Because &7 € I1, is directable, there are 2 possibilities:

1. There exist two such pairs {a, b} that |6’({a, b}, x)] = 1 for some x € X.

Then according to the corollary 1, n(s/) £ 8.

2. There exists exactly one pair with that quality, say {1, 2}, Then we must solve 2
cases: ‘

2.1. There exists y € X that {3, 4} = {1, 2}. Then by the corollary 2 n(/) < 9.

2.2. For every yeX &({3,4}, y) # {1,2}. Then because of directability of &
there exists such a pair {i,j} that ie{1,2}, je{3,4} and &'({i,j}, y) = {1,2} for
some y € X. If there are 2 such pairs, then there exists a word g that

hy —h, €5, h,—h3 <3 and Il(q) 9.

Thus let us assume, that the pair {i, j} is only one.

In the further cosiderations every x € X which fulfils I(S'({l. 2}, x)| =1 we shall
denote %. It is impossible that {i, j} 5 {1, 2} because then &'({1, j}, %) = 8'({2, j}, %) =
= {1, 2} what is in contradiction with our assumption.

Thus there are only 2 possibilities for X:

a) There exists a state b that 5(b, ¥) = 1 and &(c, X) + 2 for every state c.
b) There exists a state b that 5(b, X) = 2 and &(c, X) + 1 for every ce 4.

Therefore 2 cases are to be solved:

2.2.1. There exists X that a, is valid.

22.1.1. {i,j} = {1, 3} or {1,4}. Then {1,2,3,4} + {1, 3, 4} 5 {1,2, a};a=3
or 4 and there exists a directing word p that l(p) <09

2.2.1.2. {i, j} = {2, 3}. (The multigraphs of y € X, §({2, 3}, y) = {1, 2} arc on the
figures 3, 4, 5, 6.) .

If there is X’ that b, holds, then 4 w5 {1,2, a}, a € {3, 4} and n(=) < 9.
Let us assume that for every X only a) is valid. Then there exists z € X that
{1,3,4} > {2, 3,4} and obviously [5({1, 2}, z)| = 2.

2.2.1.2.1. There exists z with abovementioned quality such that {2, 3} - {1, 2}. The
corresponding multigraph of z is on the figure 3 (it is z,) or fig. 4 (it is z,).



We shall construct the directing word p = x(x, ... x,, 1 £ 9

“1
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Zy 1 X1XpX3%X, = X2,2,X or x1x2x3x4x; = Xz32;Z|X
so that A ;7 {1, 4} or {3, 4} what is allways possible. Then the others x; = z
forism—1,x,=xandh, —h; =4, h; — h, <4
Zy 1 X1X3X3Xg = X2,Z,X .

Fig. 3.

° ° Fig. 5. &D Fig. 6.
If 4

° Fig. 4.

S22k
If A

e
X2222%

{1, 3}, then x; = z; for i 2 5

put x5 = u or Xsxg = z,u so that we should get {1, 2}, {1, 3} or {2, 3}. Then the
X222:%

{1,4} > {3, 4}, then there exists u e x that §(4, u) = [ or 3 and we
others x; = z,,fori £ n — land x, = X.

If 4 5552 {3, 4} it is possible to use the preceding method.
In every case with z,, h, — hy =3 and hy — h, < 5.

2.2.1.2.2. For every z, {1, 2} -7 {1, 2}. Then obviously 3 ;> 1 and 2 > 2 (only the
figure 5 and 6). The corresponding multigraph of z is on the figure 7 (z;) or 8 (z,)

Z31X(XyX3 = Xz3) .

<

If Ay {1, 2,3} 5 {1,2,43, then x, = Xor x4x5 = z3% s0 that we should get
{1, 3} or {1, 4} and then the others x; equal z; or y for i

n—1,x, =X



296 If 4557 {1, 2,4} 57 {1, 2, 3}, the preceding method can be used.
In the both cases h, — hy < 4and hy — h, £ 4.
z,: It can be solved by means of similar considerations as the preceding ones so
that h, — hy =3 and by — h, < 5.
2.2.1.3.{i, j} = {2, 4}. The same procedure as in 2.2.1.2, we only change the states 3
and 4.

O—0 - O=0

Lo=0 (O O

2.2.2. For every X b), is valid. It is symmetric with 2.2.1.

Remark 1. Except of the automaton %, (example 1) we have found another auto-
maton 2, (fig. 9) not isomorphic with %,, such that n(#,) = 9. For %, it is valid
that for the shortest directing word i, — hy = hy — h, = 4 while for 2, it is

hy—hy=3, h,—h,=5.

Fig. 9.

Remark 2. Adding the new state 4 to %, we can easily obtain the automaton %
for which n(%) = 16 (see [1]). On the other hand no automaton 2, with n(#s) 2
= 16 we could find by adding a new state to 2,. The following theorem is valid for
the automata with 5 states.



Theorem 3. n(5) = 16.

Proof. Because the proof is analogous as in theorem 2, we are not going to explain
it in details. It is divided into the following main points:

1. Every mapping 5(0, x) is compressive, i.e. for every input symbol x[d’(A, x)] <
< |4].

1.1. There exist four states i, j, k, I, such that for some
X,y eX[é’({i,j}, x)| = Iri‘({k, 13, yI = 1.
1.2. There exist three states i, j, k such that for some
xeX|o({i,j, k)| =1.
1.3. There exist three states i, j, k such that for some
x, v e X|((i ), x| = [0 K = 1

1.4. There exists the pair i, j such that for every x € X |8'({i,j}, x)] = 1 and for
every {k, I} # {i,j} and every x eX[é’({k, 1}, x)l =2.

2. There exist such a symbol x € X that the mapping (0, x) is a permutation of
the elements of A.

2.1. The permutation is of the type 1; 2; 3; 4; 5 (every state is mapped into itself).

2.2. Of the type 12;3;4;5 (1 — 2; 2 — | and others into themselves).

2.3. Of the type 12; 34; 5.

2.4. Of the type 123; 4; 5 (a cycle from 123).

2.5. Of the type 123; 45.

2.6. Of the type 1234; 5.

2.7. Of the type 12345 (the total cycle).

Remark 3. The hypothesis n(k) = (k — 1)> may be found not valid only for
k = 6.

(Received May 26, 1969.)
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VYTAH

O usmernitelnych automatoch

Jin CERNY, ALICA PIRICKA, BLANKA ROSENAUEROVA

V &lanku sa $tudujii odhady pre &isla n(k), definované v [1] ako sup min I(p),
AelkpeP(od)
kde & = (4, X,5) je neinicidlny Medvedevov automat, P(</) je mnoZina jeho

usmeriiujicich slov, definovanych v [1], a IT, je mnoZina vietkych usmernitelnych
automatov s k stavmi. ZlepSujii sa odhady pre n(k) ziskané v [1] a [2], a to tym, Ze sa
dokazu tieto vety:

Veta 1. Pre vsetky k = 2 je n(k) < k*|3 — 3K*|2 + 25k[6 — 4.
Veta 2. n(4) = 9.
Veta 3. n(5) = 16.
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